Imperial College London

Professor Ortwin Hess

Faculty of Natural SciencesDepartment of Physics

Leverhulme Chair in Metamaterials
 
 
 
//

Contact

 

+44 (0)20 7594 7586o.hess Website

 
 
//

Location

 

806Blackett LaboratorySouth Kensington Campus

//

Summary

 

Summary

Professor Ortwin Hess holds the Leverhulme Chair in Metamaterials in the Blackett Laboratory /  Department of Physics at Imperial College London. He is Co-Director of the Centre for Plasmonics & Metamaterials and Deputy-Head of the Condensed Matter Theory group. Professor Hess is also a member of the Imperial Centre for Quantum Engineering, Science and Technology, the Controlled Quantum Dynamics CDT, the Theory and Simulation of Materials CDT and the Thomas Young Centre in London.  is also an academic member of the Thomas Young Centre

Bridging condensed matter physics and quantum optics, Professor Hess's research interests and his group's activities are in Quantum Nanophotonics, Active Metamaterials and Laser Physics and are currently focused on active (photonic, electronic and magnetic) metamaterials, quantum nano-photonics and spatio-temporal dynamics of (plasmonic and semiconductor) nanolasers.

The Hess Group in October 2016

The Hess Group at Imperial College London


Architecting Light and Nanophotonics Quantum Systems ... via Active Topological Metamaterials and Lasers

The Future of Light Art | Active Nanophotonics and Metamaterials with Quantum Gain on the Nanoscale | A public presentation in a museum: ZKM Karlsruhe, Germany in February 2018. 


The Royal Society Rumford Medal 2016


The Rumford Medal 2016 has been awarded to Professor Ortwin Hess for his pioneering work in active nano-plasmonics and optical metamaterials with quantum gain at the Royal Society's Anniversary Day in November 2016.  

Ortwin Hess

Professor Ortwin Hess at Imperial College

The Rumford Medal is awarded for important discoveries in the field of thermal or optical properties of matter and their applications.

Notable recipients include: Michael Faraday, Louis Pasteur, James Clerk Maxwell, Gustav Robert Kirchhoff, Hendrik Anton Lorentz, Lord Rayleigh, William Henry Bragg, Friedrich Paschen and Peter Debye. 

The award was established following a donation by Benjamin Thompson FRS (PDF), Count Rumford of the Holy Roman Empire, an American-born former soldier, spy, statesman and scientist who would go on to found the Royal Institution. The first award was made in 1800. 

NEWS and Highlights

PAPERS

Quantum Plasmonic Immunoassay Sensing, Nano Lett 19 (9), 5853-5861 (2019) by Kongsuwan, Xiong, Bai, You, Png, Wu and Hess

quantum plasmonic immunoassay sensing

Quantum plasmonic immunoassay sensing


Suppressing spatiotemporal lasing instabilities with wave- chaotic microcavities, Science 10.1126/science.aas9437 (2018)  by Bittner, Guazzotti, Zeng, Hu, Yılmaz, Kim, Oh, Wang, Hess and Cao. 

quantum chaos in a D-cavity semiconductor laser

quantum-chaotic semiconductor laser [S Bittner, Yale]

Near-field strong coupling of single quantum dotsScience Advances 4, eaar4906 (2018) by Gross, Hamm, Tufarelli, Hess and Hecht. 

quantum dot near-field strong coupling

near-field strong coupling of a quantum dot

Ultraslow waves on the nanoscale, Science 358, eaan5196 (2017) by Tsakmakidis, Hess, Boyd and Zhang. 

trapped rainbow

Nanophotonic 'trapped rainbow'

Electrical access to critical coupling of circularly polarised waves in graphene chiral metamaterials, Science Advances 3, e1701377 (2017) by Kim, Oh, Kim, Park, Hess, Min and Zhang. 

CDZM

Gate-controlled active conjugated double-Z metamaterials

Reading the Orbital Angular Momentum of Light Using Plasmonic Nanoantennas, ACS Photonics 4, 891 (2017) by Kerber, Fitzgerald, Reiter, Oh and Hess. 

twisted light

Reading 'twisted light' with a plasmonic nanoantenna

Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities Nano Lett 16, 5605 (2016) by Mertens, Demetriadou, Bowman, Benz, Kleemann, Tserkezis, Shi, Yang, Hess, Aizpurua and Baumberg. 

Single-molecule strong coupling at room temperature in plasmonic nanocavities,  Nature 535, 127 (2016) by Chikkaraddy, de Nijs, Benz, Barrow, Sherman, Rosta, Demetriadou, Fox, Hess and Baumberg. 

NPoM


Ultrafast plasmonic nanowire lasers near the surface plasmon frequency, Nature Physics 10, 870 (2014) by Sidropoulos, Rider, Geburt, Hess, Maier, Running and Oulton. 

Cavity-free plasmonic nanolasing enabled by dispersonless stopped light, Nature Communications 5, 4972 (2014) by Pickering, Hamm, Page, Wuestner and Hess. 

Metamaterials with Quantum Gain Science 339, 654 (2013) by Hess &Tsakmakidis

Active Nanoplasmonic Metamaterials Nature Materials 11, 573 - 584 (2012) by Hess et al.  

'Trapped rainbow' storage of light in metamaterials Nature 450, 397 (2007) by Tsakmakidis, Boardman and Hess. 

trapped rainbow

Trapped rainbow in a metamaterial heterostructure

 

Recent Plenary and Key-Note Talks at Conferences

Active Quantum Nanoplasmonics: From Single Molecule Strong Coupling to Stopped-Light QED and Lasing, Meta 2017, Incheon, Korea (10 August 2016). 

META 2017 Plenary Speakers

META 2017 Plenary Speakers

Transformation Optics and Simulation of Strong Coupling in Plasmonic Nanocavities, PIERS, Shanghai, China (10 August 2016). 

Ultrafast and Quantum Dynamics of Plasmonic Nanolasers, PIERS, Shanghai, China (8 August, 2016). 

Plasmonic Nano Lasing: From Single-Molecule Strong Coupling to Stopped-Light Nanolasing, EMN, Singapore (11 May 2016). 

Plasmonic Stopped-Light Lasing: A Route to Cavity-Free Nanolasing, Internatioanl conference on Nanoscience and Nanotechnology (ICONN 2016), Canberra, Australia (7 February 2016). 

 

Books  

Active Optical Metamaterials by Wuestner and Hess in: Progress in Optics (E Wolf, Ed.) Vol. 59 (Elsevier, 2014). 

Photonics of Quantum-Dot Nanomaterials and Devices: Theory and Modelling by Hess and Gehrig (Imperial College Press, London, 2012). 

Spatio-Temporal Dynamics and Quantum Fluctuations in Semiconductor Lasers by Gehrig and Hess (Springer, Berlin, 2003). 


Online TALKS AND LECTURES

Controlled Single Molecule Strong Coupling and Stopped-Light Lasing in Nanoplasmonic Cavities given at Harvard University (8 March 2017) in the Joint Quantum Sciences Seminar discusses recent progress in the study of quantum emitters and quantum gain in nanoplasmonic systems and deliberates on approaches combining classical and quantum many-body theory and simulation to describe and model the spatio-temporal dynamics of the optical near field and plasmon polaritons coupled with quantum emitters in nano- plasmonic cavities. 

The Stopped-Light Laser: An Optical 'Black Hole' on the Nanoscale given at the Cambridge University Physics Society (19 Nov 2014) discusses a new lasing principle realised by stopped light at nanoplasmonic singularities. 

 Active Nanoplasmonic Metamaterials provides a brief overview of recent research on metamaterials and nanoplasmonics with quantum gain.

 

Quantum NanoPhotonics and Metamaterials

Promoting an extreme control of light and matter interaction quantum nano-photonics empowers novel femto- and attosecond and nano-photonic phenomena, forming the basis for quantum photonics and innovative nano-photonic lasers. 

And the  "metamaterial" concept to control photons and electrons by the principle "function from structure" has inspired scientists to conceive perfect lenses, new lasers, 'invisibility' and acoustic cloaks and opened the door to slow and stopped broadband light with applications in quantum science and technology, sensing and nano-chemistry. 

The Quantum Nano-Photonics group studies the physics of nanophotonics and optical and electronic metamaterials and advanced lasers, and investigates the (ultrafast) nonlinear and quantum dynamics of nano-plasmonic and nano-photonic materials and  (complex) nano-photonic systems with gain. Concurrently, the group is striving to embed metamaterials in new realms of applications in information and laser technology, nanophotovoltaics and the bio-medical sciences.

Light in Photonic and Electronic Metamaterials

- Nanoplasmonic metasurfaces 
- Chiral metamaterials, metafoils and chiral light
- Self-organised active 3D gyroidal metamaterials
- Semiconductor metamaterials
- "Dirac light" in active nanoplasmonic metasurfaces

QUANTUM PHOTONICS

- Slow and stopped light
- Quantum fluctuations and spontaneous emission control 
- Nanoplasmonic strong coupling
- Femto- and attosecond nanophotonics

Nano Optics

- Functional nano-plasmonic nano-cavities
- Ultra-low energy optical switching
- Nanoparticle photo-chemistry
- Nanophotovoltaics

NanoLaser Dynamics

- Plasmonic stopped-light nanolasing
- Nonlinear metamaterials with quantum gain
- Quantum-dot lasers
- Ultrafast plasmonic semiconductor nanolasers

 

Short Biography

Professor Ortwin Hess holds the Leverhulme Chair in Metamaterials in the Department of Physics at Imperial College London and is Co-Director of the Centre for Plasmonics & Metamaterials.

Professor Hess studied physics at the University of Erlangen and the Technical University of Berlin. Following pre- and post-doctoral times in Edinburgh and at the University of Marburg, Hess has been (from 1995 to 2003) Head of the Theoretical Quantum Electronics Group at the Institute of Technical Physics in Stuttgart, Germany. He has a Habilitation in Theoretical Physics at the University of Stuttgart (1997) and became Adjunct Professor in 1998. Since 2001 he is Docent of Photonics at Tampere University of Technology in Finland. Professor Hess has been Visiting Professor at Stanford University (1997 - 1998) and the University of Munich (2000 - 2001). From 2003 to 2010 he was Professor of Theoretical Condensed Matter and Optical Physics in the Department of Physics and the Advanced Technology Institute at the University of Surrey in Guildford, UK. 

Research Interests

Professor Hess's research interests and activities are in condensed matter quantum optics and are currently focused on quantum photonics, optical and electronic metamaterials, spatio-temporal laser dynamics and computational photonics.

Bridging theoretical condensed-matter physics, quantum optics and laser physics, Professor Hess has pioneered the research fields and concepts of active nano-plasmonics and optical metamaterials with quantum gain and made seminal contributions to spatio-temporal dynamics of semiconductor lasers.

Hess has discovered the ‘trapped-rainbow’ principle and recently introduced and explained the idea of cavity-free ‘stopped-light lasing’.

He has further contributed significantly to quantum dot photonics [book (Imperial College Press, 2012)] and computational modeling of photonic crystals as well as to the quantum theory of temperature on the nano-scale [several book chapters].

Hess combines theoretical solid state (quantum) optics with computational photonics, involving the development of innovative approaches and techniques leading to the realization of a unique and flexible family of codes for active nano-plasmonics and (inherently multi-scale) metamaterials as well as nonlinearities and the microscopic spatio-temporal interplay of intense light with nano-structured materials (semiconductors, polymers, etc) on ultrafast time-sclaes.

He strives to explore the dynamics and light-matter interaction in active (nonlinear, gain-enhanced and dynamic) nanophotonic metamaterials, the physics of self-organised (polymer based) nanoplasmonic chiral metamaterials, semiconductor quantum nanomaterials, quantum dots and graphene with gain as well as the dynamics and quantum fluctuations of slow and stopped light and ultrafast (nano-) lasers. Further plans are the study of the ultrafast spatio-temporal dynamics in nano-plasmonics and the control of spontaneous and amplified spontaneous emission.

Selected Publications

Journal Articles

Kongsuwan N, Xiong X, Bai P, et al., 2019, Quantum plasmonic immunoassay sensing, Nano Letters, Vol:19, ISSN:1530-6984, Pages:5853-5861

Bello F, Sanvito S, Hess O, et al., 2019, Shaping and Storing Magnetic Data Using Pulsed Plasmonic Nanoheating and Spin-Transfer Torque, Acs Photonics, Vol:6, ISSN:2330-4022, Pages:1524-1532

Roman Castellanos L, Hess O, Lischner J, 2019, Single plasmon hot carrier generation in metallic nanoparticles, Communications Physics, Vol:2, ISSN:2399-3650

Dolan JA, Dehmel R, Demetriadou A, et al., 2019, Metasurfaces atop metamaterials: surface morphology induces linear dichroism in gyroid optical metamaterials, Advanced Materials, Vol:31, ISSN:0935-9648

Guazzotti S, Pusch A, Reiter DE, et al., 2018, Dynamic theory of nanophotonic control of two-dimensional semiconductor nonlinearities, Physical Review B, Vol:98, ISSN:2469-9950

Kerber R, Fitzgerald J, Oh S, et al., 2018, Orbital angular momentum dichroism in nanoantennas, Communications Physics, Vol:1, ISSN:2399-3650

Karwat P, Reiter D, Kuhn T, et al., 2018, Coherent phonon lasing in a thermal quantum nanomachine, Physical Review A, Vol:98, ISSN:1050-2947

Crai A, Pusch A, Reiter D, et al., 2018, Coulomb effects on the photoexcited quantum dynamics of electrons in a plasmonic nanosphere, Physical Review B, Vol:98, ISSN:1098-0121

Bittner S, Guazzotti S, Zeng Y, et al., 2018, Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities, Science, Vol:361, ISSN:0036-8075, Pages:1225-1230

Vaianella F, Hamm J, Hess O, et al., 2018, Strong coupling and exceptional points in optically pumped active hyperbolic metamaterials, Acs Photonics, Vol:5, ISSN:2330-4022, Pages:2486-2495

Vaquero-Stainer A, Yoshida M, Hylton NP, et al., 2018, Semiconductor nanostructure quantum ratchet for high efficiency solar cells, Communications Physics, Vol:1, ISSN:2399-3650

Hecht B, Hamm J, Tufarelli T, et al., 2018, Near-field strong coupling of single quantum dots, Advances in Nursing Science, Vol:4, ISSN:0161-9268

Page AF, Hamm J, Hess O, 2018, Polarization and plasmons in hot photoexcited graphene, Physical Review B, Vol:97, ISSN:1098-0121

Saba MS, Hamm JM, Baumberg JJ, et al., 2017, Group Theoretical Route to Deterministic Weyl Points in Chiral Photonic Lattices, Physical Review Letters, Vol:119, ISSN:0031-9007

Chikkaraddy R, Turek VA, Kongsuwan N, et al., 2017, Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami., Nano Letters, Vol:18, ISSN:1530-6984, Pages:405-411

Tsakmakidis KL, Hess O, Boyd RW, et al., 2017, Ultraslow waves on the nanoscale, Science, Vol:358, ISSN:0036-8075

Kongsuwan N, Demetriadou A, Chikkaraddy R, et al., 2017, Suppressed quenching and strong-coupling of Purcell-enhanced single-molecule emission in plasmonic nanocavities, Acs Photonics, Vol:5, ISSN:2330-4022, Pages:186-191

Kim T-T, Oh SS, Kim H-D, et al., 2017, Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials., Science Advances, Vol:3, ISSN:2375-2548

Demetriadou A, Hamm J, Luo Y, et al., 2017, Spatio-temporal dynamics and control of strong coupling in plasmonic nano-cavities, Acs Photonics, Vol:4, ISSN:2330-4022, Pages:2410-2418

Bello F, Page AF, Pusch A, et al., 2017, Combining ε-Near-Zero Behavior and Stopped Light Energy Bands for Ultra-Low Reflection and Reduced Dispersion of Slow Light., Scientific Reports, Vol:7, ISSN:2045-2322

Ren G, Yudistira D, Nguyen TG, et al., 2017, Experimental demonstration of two-dimensional hybrid waveguide-integrated plasmonic crystals on silicon-on-insulator platform, Apl Photonics, Vol:2, ISSN:2378-0967

Kerber R, Fitzgerald J, Reiter D, et al., 2017, Reading the orbital angular momentum of light using plasmonic nanoantennas, Acs Photonics, Vol:4, ISSN:2330-4022, Pages:891-896

Guazzotti S, Pusch A, Reiter D, et al., 2016, Dynamical calculation of third harmonic generation in a semiconductor quantum well, Physical Review B, Vol:94, ISSN:1550-235X

Mertens J, Demetriadou A, Bowman RW, et al., 2016, Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities, Nano Letters, Vol:16, ISSN:1530-6992, Pages:5605-5611

Chikkaraddy R, de Nijs B, Barrow S, et al., 2016, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature, Vol:535, ISSN:0028-0836, Pages:127-130

Curtin OJ, Yoshida M, Pusch A, et al., 2016, Quantum cascade photon ratchets for intermediate band solar cells, Ieee Journal of Photovoltaics, Vol:6, ISSN:2156-3381, Pages:673-678

Hamm JM, Page AF, Bravo-Abad J, et al., 2016, Nonequilibrium plasmon emission drives ultrafast carrier relaxation dynamics in photoexcited graphene, Physical Review B, Vol:93, ISSN:1550-235X

Page AF, Pickering TW, Hamm JM, et al., 2016, Dynamics of Plasmonic Stopped-Light Nanolasing and Condensation, Mrs Advances, Vol:1, ISSN:2059-8521, Pages:1671-1676

Pusch A, Oh S, Wuestner S, et al., 2015, A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices, Scientific Reports, Vol:5, ISSN:2045-2322

Oh SS, Hess O, 2015, Chiral metamaterials: enhancement and control of optical activity and circular dichroism, Nano Convergence, Vol:2, ISSN:2196-5404

Okada Y, Ekins-Daukes NJ, Kita T, et al., 2015, Intermediate band solar cells: Recent progress and future directions, Applied Physics Reviews, Vol:2, ISSN:1931-9401

Wuestner S, Hamm JM, Pusch A, et al., 2015, Plasmonic leaky-mode lasing in active semiconductor nanowires, Laser & Photonics Reviews, Vol:9, ISSN:1863-8880, Pages:256-262

Ibbotson LA, Demetriadou A, Croxall S, et al., 2015, Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials, Scientific Reports, Vol:5, ISSN:2045-2322

Page AF, Ballout F, Hess O, et al., 2015, Nonequilibrium plasmons with gain in graphene, Physical Review B, Vol:91, Pages:75404-75404

Wuestner S, Pickering TW, Hamm JM, et al., 2015, Ultrafast dynamics of nanoplasmonic stopped-light lasing, Faraday Discussions, Vol:178, ISSN:1359-6640, Pages:307-324

Sidiropoulos TPH, Roeder R, Geburt S, et al., 2014, Ultrafast plasmonic nanowire lasers near the surface plasmon frequency, Nature Physics, Vol:10, ISSN:1745-2473, Pages:870-876

Kim T-T, Oh SS, Park H-S, et al., 2014, Optical Activity Enhanced by Strong Inter-molecular Coupling in Planar Chiral Metamaterials, Scientific Reports, Vol:4, ISSN:2045-2322

Pickering TW, Hamm JM, Page AF, et al., 2014, Cavity-free plasmonic nanolasing enabled by dispersionless stopped light, Nature Communications, Vol:5, ISSN:2041-1723, Pages:4972-4972

Wu J, Ng B, Liang H, et al., 2014, Chiral Metafoils for Terahertz Broadband High-Contrast Flexible Circular Polarizers, Physical Review Applied, Vol:2, ISSN:2331-7019

Tsakmakidis KL, Pickering TW, Hamm JM, et al., 2014, Completely Stopped and Dispersionless Light in Plasmonic Waveguides, Physical Review Letters, Vol:112, ISSN:0031-9007, Pages:167401-167401

Liu W, Miroshnichenko AE, Oulton RF, et al., 2013, Scattering of core-shell nanowires with the interference of electric and magnetic resonances, Optics Letters, Vol:38, ISSN:0146-9592, Pages:2621-2624

Hamm JM, Hess O, 2013, Two Two-Dimensional Materials Are Better than One, Science, Vol:340, ISSN:0036-8075, Pages:1298-1299

Salvatore S, Demetriadou A, Vignolini S, et al., 2013, Tunable 3D Extended Self-Assembled Gold Metamaterials with Enhanced Light Transmission, Advanced Materials, Vol:25, Pages:2713-2716

Weick G, Woollacott C, Barnes WL, et al., 2013, Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles, Physical Review Letters, Vol:110, ISSN:0031-9007

Hess O, Tsakmakidis KL, 2013, Metamaterials with quantum gain., Science, Vol:339, Pages:654-655

Oh SS, Demetriadou A, Wuestner S, et al., 2013, On the Origin of Chirality in Nanoplasmonic Gyroid Metamaterials, Advanced Materials, Vol:25, ISSN:0935-9648, Pages:612-617

Hess O, Pendry JB, Maier SA, et al., 2012, Active nanoplasmonic metamaterials, Nature Materials, Vol:11

Wuestner S, Hamm JM, Pusch A, et al., 2012, Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials, Physical Review B (condensed Matter and Materials Physics), Vol:85

Pusch A, Wuestner S, Hamm JM, et al., 2012, Coherent Amplification and Noise in Gain-Enhanced Nanoplasmonic Metamaterials: A Maxwell-Bloch Langevin Approach, ACS Nano, Vol:6, ISSN:1936-0851, Pages:2420-2431

Wuestner S, Pusch A, Hamm JM, et al., 2012, Dynamics of amplification in a nanoplasmonic metamaterial, Applied Physics A: Materials Science and Processing, Vol:107, Pages:77-82

Wuestner S, Pusch A, Tsakmakidis KL, et al., 2010, Overcoming Losses with Gain in a Negative Refractive Index Metamaterial, Physical Review Letters, Vol:105, ISSN:0031-9007

Reschner DW, Gehrig E, Hess O, 2009, Pulse Amplification and Spatio-Spectral Hole-Burning in Inhomogeneously Broadened Quantum-Dot Semiconductor Optical Amplifiers, IEEE Journal of Quantum Electronics, Vol:45, ISSN:0018-9197, Pages:21-33

Hess O, 2008, Optics - Farewell to flatland, Nature, Vol:455, ISSN:0028-0836, Pages:299-300

Boehringer K, Hess O, 2008, A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation, Progress in Quantum Electronics, Vol:32, ISSN:0079-6727, Pages:159-246

Tsakmakidis KL, Boardman AD, Hess O, 2007, 'Trapped rainbow' storage of light in metamaterials, Nature, Vol:450, ISSN:0028-0836, Pages:397-401

Gehrig E, Hess O, 2007, Dynamic spatiotemporal pulse shaping in two-photon active biomolecular media, Journal of the Optical Society of America B - Optical Physics, Vol:24, ISSN:0740-3224, Pages:522-526

Klaedtke A, Hess O, 2006, Ultrafast nonlinear dynamics of whispering-gallery mode micro-cavity lasers, Optics Express, Vol:14, ISSN:1094-4087, Pages:2744-2752

Hartmann M, Mahler G, Hess O, 2004, Existence of temperature on the nanoscale, Physical Review Letters, Vol:93, ISSN:0031-9007

Hess O, Hermann C, Klaedtke A, 2003, Finite-Difference Time-Domain simulations of photonic crystal defect structures, Physica Status Solidi. A - Applied Research, Vol:197, ISSN:0031-8965, Pages:605-619

Hermann C, Hess O, 2002, Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap, Journal of the Optical Society of America B - Optical Physics, Vol:19, ISSN:0740-3224, Pages:3013-3018

Gehrig E, Hess O, 2002, Mesoscopic spatiotemporal theory for quantum-dot lasers, Physical Review A, Vol:65, ISSN:1050-2947

Hess O, Kuhn T, 1996, Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers .1. Theoretical formulation, Physical Review A, Vol:54, ISSN:1050-2947, Pages:3347-3359

Hess O, Kuhn T, 1996, Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers .2. Spatiotemporal dynamics, Physical Review A, Vol:54, ISSN:2469-9926, Pages:3360-3368

Chapters

Wuestner S, Hess O, 2014, Active Optical Metamaterials, PROGRESS IN OPTICS, VOL 59, Editor(s): Wolf, ELSEVIER ACADEMIC PRESS INC, Pages:1-88

More Publications