Imperial College London

DrOliverRobinson

Faculty of MedicineSchool of Public Health

Lecturer in Molecular Epidemiology
 
 
 
//

Contact

 

+44 (0)20 7594 2067o.robinson

 
 
//

Location

 

161Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

75 results found

Robinson O, 2022, Cord blood metabolites and rapid postnatal growth as multiple mediators in the prenatal propensity to childhood overweight, International Journal of Obesity, ISSN: 0307-0565

BACKGROUND: The mechanisms underlying childhood overweight and obesity are poorly known. Here, we investigated the direct and indirect effects of different prenatal exposures on offspring rapid postnatal growth and overweight in childhood, mediated through cord blood metabolites. Additionally, rapid postnatal growth was considered a potential mediator on childhood overweight, alone and sequentially to each metabolite.METHODS: Within four European birth-cohorts (N=375 mother-child dyads), information on seven prenatal exposures (maternal education, pre-pregnancy BMI, weight gain and tobacco smoke during pregnancy, age at delivery, parity, and child gestational age), selected as obesogenic according to a-priori knowledge, was collected. Cord blood levels of 31 metabolites, associated with rapid postnatal growth and/or childhood overweight in a previous study, were measured via liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry. Rapid growth at 12 months and childhood overweight (including obesity) between four and eight years were defined with reference to WHO growth charts. Single mediation analysis was performed using the imputation approach and multiple mediation analysis using the extended-imputation approach.RESULTS: Single mediation suggested that the effect of maternal education, pregnancy weight gain, parity, and gestational age on rapid postnatal growth but not on childhood overweight was partly mediated by seven metabolites, including cholestenone, decenoylcarnitine(C10:1), phosphatidylcholine(C34:3), progesterone and three unidentified metabolites; and the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth. Multiple mediation suggested that the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth and that the mediating role of the metabolites was marginal. CONCLUSION: Our findings provide evidence of the involvement of in utero metabolism in the propensity

Journal article

Wielscher M, Mandaviya PR, Kuehnel B, Joehanes R, Mustafa R, Robinson O, Zhang Y, Bodinier B, Walton E, Mishra PP, Schlosser P, Wilson R, Tsai P-C, Palaniswamy S, Marioni RE, Fiorito G, Cugliari G, Karhunen V, Ghanbari M, Psaty BM, Loh M, Bis JC, Lehne B, Sotoodehnia N, Deary IJ, Chadeau-Hyam M, Brody JA, Cardona A, Selvin E, Smith AK, Miller AH, Torres MA, Marouli E, Gào X, van Meurs JBJ, Graf-Schindler J, Rathmann W, Koenig W, Peters A, Weninger W, Farlik M, Zhang T, Chen W, Xia Y, Teumer A, Nauck M, Grabe HJ, Doerr M, Lehtimäki T, Guan W, Milani L, Tanaka T, Fisher K, Waite LL, Kasela S, Vineis P, Verweij N, van der Harst P, Iacoviello L, Sacerdote C, Panico S, Krogh V, Tumino R, Tzala E, Matullo G, Hurme MA, Raitakari OT, Colicino E, Baccarelli AA, Kähönen M, Herzig K-H, Li S, BIOS consortium, Conneely KN, Kooner JS, Köttgen A, Heijmans BT, Deloukas P, Relton C, Ong KK, Bell JT, Boerwinkle E, Elliott P, Brenner H, Beekman M, Levy D, Waldenberger M, Chambers JC, Dehghan A, Järvelin M-Ret al., 2022, DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases, Nature Communications, Vol: 13, ISSN: 2041-1723

We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD.

Journal article

Freni Sterrantino A, Fiorito G, D'errico A, Oliver R, Virtanen M, Ala-Mursula L, Jarvelin MR, Ronkainen J, Vineis Pet al., 2022, Work-related stress and well-being in association with epigenetic age acceleration: a Northern Finland Birth Cohort 1966 Study, Aging, Vol: 14, Pages: 1128-1156, ISSN: 1945-4589

Recent evidence indicates consistent association of low socioeconomic status with epigenetic age acceleration, measured from DNA methylation. As work characteristics and job stressors are crucial components of socioeconomic status, we investigated their association with various measures of epigenetic age acceleration.The study population included employed and unemployed men and women (n=604) from the Northern Finland Birth Cohort 1966. We investigated the association of job strain, effort-reward imbalance and work characteristics with five biomarkers of epigenetic aging (Hannum, Horvath, PhenoAge, GrimAge, and DunedinPoAm).Our results indicate few significant associations between work stress indicators and epigenetic age acceleration, limited to a range of ±2 years, and smoking recording the highest effect on GrimAge age acceleration biomarker between current and no smokers (median difference 4.73 years (IQR 1.18, 8.41). PhenoAgeAA was associated with job strain active work (β=-1.301 95%CI -2.391, -0.212), slowing aging of less than 1.5 years, and working as white-collar slowed aging six months (GrimAgeAA β=-0.683, 95%CI -1.264, -0.102) when compared to blue collars. Association was found for working for more than 40 hours per week that increased the aging over 1.5 years, (HorvathAA β =2.058 95%CI 0.517,3.599, HannumAA β=1.567, 95%CI 0.415,2.719).The pattern of associations was different between women and men and some of the estimated effects are inconsistent with current literature. Our results provide the first evidence of association of work conditions with epigenetic aging biomarkers. However, further epidemiological research is needed to fully understand how work-related stress affects epigenetic age acceleration in men and women in different societies.

Journal article

Stratakis N, Siskos AP, Papadopoulou E, Nguyen AN, Zhao Y, Margetaki K, Lau C-HE, Coen M, Maitre L, Fernández-Barrés S, Agier L, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fossati S, Grazuleviciene R, Heude B, McEachan RRC, Meltzer HM, Millett C, Rauber F, Robinson O, Roumeliotaki T, Borras E, Sabidó E, Urquiza J, Vafeiadi M, Vineis P, Voortman T, Wright J, Conti DV, Vrijheid M, Keun HC, Chatzi Let al., 2022, Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health, eLife, Vol: 11, Pages: 1-20, ISSN: 2050-084X

Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used 1H NMR spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, N-methylnicotinic acid, urea, and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food consumption and also had higher capacity in discriminating children’s diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.

Journal article

Keski-Rahkonen P, Robinson O, Alfano R, Plusquin M, Scalbert Aet al., 2022, Commentary: Data processing thresholds for abundance and sparsity and missed biological insights in an untargeted chemical analysis of blood specimens for exposomics, Frontiers in Public Health, Vol: 9, ISSN: 2296-2565

A Commentary onData Processing Thresholds for Abundance and Sparsity and Missed Biological Insights in an Untargeted Chemical Analysis of Blood Specimens for Exposomicsby Barupal, D. K., Baygi, S. F., Wright, R. O., and Arora, M. (2021). Front. Public Health 9:653599. doi: 10.3389/fpubh.2021.653599

Journal article

Handakas E, Lau CH, Alfano R, Chatzi VL, Plusquin M, Vineis P, Robinson Oet al., 2022, A systematic review of metabolomic studies of childhood obesity: State of the evidence for metabolic determinants and consequences, Obesity Reviews, Vol: 23, Pages: 1-13, ISSN: 1467-7881

Childhood obesity has become a global epidemic and carries significant long-term consequences to physical and mental health. Metabolomics, the global profiling of small molecules or metabolites, may reveal the mechanisms of development of childhood obesity and clarify links between obesity and metabolic disease. A systematic review of metabolomic studies of childhood obesity was conducted, following Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines, searching across Scopus, Ovid, Web of Science and PubMed databases for articles published from January 1, 2005 to July 8, 2020, retrieving 1271 different records and retaining 41 articles for qualitative synthesis. Study quality was assessed using a modified Newcastle–Ottawa Scale. Thirty-three studies were conducted on blood, six on urine, three on umbilical cord blood, and one on saliva. Thirty studies were primarily cross-sectional, five studies were primarily longitudinal, and seven studies examined effects of weight-loss following a life-style intervention. A consistent metabolic profile of childhood obesity was observed including amino acids (particularly branched chain and aromatic), carnitines, lipids, and steroids. Although the use of metabolomics in childhood obesity research is still developing, the identified metabolites have provided additional insight into the pathogenesis of many obesity-related diseases. Further longitudinal research is needed into the role of metabolic profiles and child obesity risk.

Journal article

Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin Met al., 2022, Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review, Obesity Reviews, Vol: 23, Pages: 1-13, ISSN: 1467-7881

The tremendous increase in childhood obesity prevalence over the last few decades cannot merely be explained by genetics and evolutionary changes in the genome, implying that gene–environment interactions, such as epigenetic modifications, likely play a major role. This systematic review aims to summarize the evidence of the association between epigenetics and childhood obesity. A literature search was performed via PubMed and Scopus engines using a combination of terms related to epigenetics and pediatric obesity. Articles studying the association between epigenetic mechanisms (including DNA methylation and hydroxymethylation, non-coding RNAs, and chromatin and histones modification) and obesity and/or overweight (or any related anthropometric parameters) in children (0–18 years) were included. The risk of bias was assessed with a modified Newcastle–Ottawa scale for non-randomized studies. One hundred twenty-one studies explored epigenetic changes related to childhood obesity. DNA methylation was the most widely investigated mechanism (N = 101 studies), followed by non-coding RNAs (N = 19 studies) with evidence suggestive of an association with childhood obesity for DNA methylation of specific genes and microRNAs (miRNAs). One study, focusing on histones modification, was identified. Heterogeneity of findings may have hindered more insights into the epigenetic changes related to childhood obesity. Gaps and challenges that future research should face are herein described.

Journal article

Malacarne D, Chandakas E, Robinson O, Pineda E, Saez M, Chatzi L, Fecht Det al., 2022, The built environment as determinant of childhood obesity: a systematic literature review, Obesity Reviews, Vol: 23, Pages: 1-11, ISSN: 1467-7881

We evaluated the epidemiological evidence on the built environment and its link to childhood obesity, focusing on environmental factors such as traffic noise and air pollution, as well as physical factors potentially driving obesity-related behaviours, such as neighbourhood walkability and availability and accessibility of parks and playgrounds. Eligible studies were i) conducted on human children below the age of 18 years, ii) focused on body size measurements in childhood, iii) examined at least one built environment characteristic, iv) reported effect sizes and associated confidence intervals, and v) were published in English language. A z-Test, as alternative to the meta-analysis, was used to quantify associations due to heterogeneity in exposure and outcome definition. We found strong evidence for an association of traffic-related air pollution (nitrogen dioxide and nitrogen oxides exposure; p<0.001) and built environment characteristics supportive of walking (street intersection density; p<0.01 and access to parks; p<0.001) with childhood obesity. We identified a lack of studies which account for interactions between different built environment exposures or verify the role and mechanism of important effect modifiers such as age.

Journal article

Stratakis N, Siskos AP, Papadopoulou E, Nguyen AN, Zhao Y, Margetaki K, Lau C-HE, Coen M, Maitre L, Fernández-Barrés S, Agier L, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fossati S, Grazuleviciene R, Heude B, McEachan RRC, Meltzer HM, Millett C, Rauber F, Robinson O, Roumeliotaki T, Borras E, Sabidó E, Urquiza J, Vafeiadi M, Vineis P, Voortman T, Wright J, Conti DV, Vrijheid M, Keun HC, Chatzi Let al., 2021, Author response: Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health

Journal article

Papadopoulou E, Stratakis N, Basagaña X, Brantsæter AL, Casas M, Fossati S, Gražulevičienė R, Småstuen Haug L, Heude B, Maitre L, McEachan RRC, Robinson O, Roumeliotaki T, Sabidó E, Borràs E, Urquiza J, Vafeiadi M, Zhao Y, Slama R, Wright J, Conti DV, Vrijheid M, Chatzi Let al., 2021, Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts, Environment International, Vol: 157, Pages: 106853-106853, ISSN: 0160-4120

Developing children are particularly vulnerable to the effects of exposure to per- and polyfluoroalkyl substances (PFAS), a group of endocrine disrupting chemicals. We hypothesized that early life exposure to PFASs is associated with poor metabolic health in children. We studied the association between prenatal and postnatal PFASs mixture exposure and cardiometabolic health in children, and the role of inflammatory proteins. In 1,101 mothers-child pairs from the Human Early Life Exposome project, we measured the concentrations of PFAS in blood collected in pregnancy and at 8 years (range = 6-12 years). We applied Bayesian Kernel Machine regression (BKMR) to estimate the associations between exposure to PFAS mixture and the cardiometabolic factors as age and sex- specific z-scores of waist circumference (WC), systolic and diastolic blood pressures (BP), and concentrations of triglycerides (TG), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) cholesterol. We measured thirty six inflammatory biomarkers in child plasma and examined the underlying role of inflammatory status for the exposure-outcome association by integrating the three panels into a network. Exposure to the PFAS mixture was positively associated with HDL-C and systolic BP, and negatively associated with WC, LDL-C and TG. When we examined the independent effects of the individual chemicals in the mixture, prenatal PFHxS was negatively associated with HDL-C and prenatal PFNA was positively associated with WC and these were opposing directions from the overall mixture. Further, the network consisted of five distinct communities connected with positive and negative correlations. The selected inflammatory biomarkers were positively, while the postnatal PFAS were negatively related with the included cardiometabolic factors, and only prenatal PFOA was positively related with the pro-inflammatory cytokine IL-1beta and WC. Our study supports that prenatal, rather than post

Journal article

Stratakis N, Rock S, La Merrill MA, Saez M, Robinson O, Fecht D, Vrijheid M, Valvi D, Conti DV, McConnell R, Chatzi VLet al., 2021, Prenatal exposure to persistent organic pollutants and childhood obesity: A systematic review and meta-analysis of human studies, Obesity Reviews, Vol: 23, Pages: 1-16, ISSN: 1467-7881

We conducted a systematic review and meta-analysis of the associations between prenatal exposure to persistent organic pollutants (POPs) and childhood obesity. We focused on organochlorines (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB], and polychlorinated biphenyls [PCBs]), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and polybrominated diphenyl ethers (PBDEs) that are the POPs more widely studied in environmental birth cohorts so far. We search two databases (PubMed and Embase) through July/09/2021 and identified 33 studies reporting associations with prenatal organochlorine exposure, 21 studies reporting associations with prenatal PFAS, and five studies reporting associations with prenatal PBDEs. We conducted a qualitative review. Additionally, we performed random-effects meta-analyses of POP exposures, with data estimates from at least three prospective studies, and BMI-z. Prenatal DDE and HCB levels were associated with higher BMI z-score in childhood (beta: 0.12, 95% CI: 0.03, 0.21; I2 : 28.1% per study-specific log increase of DDE and beta: 0.31, 95% CI: 0.09, 0.53; I2 : 31.9% per study-specific log increase of HCB). No significant associations between PCB-153, PFOA, PFOS, or pentaPBDEs with childhood BMI were found in meta-analyses. In individual studies, there was inconclusive evidence that POP levels were positively associated with other obesity indicators (e.g., waist circumference).

Journal article

de Prado-Bert P, Ruiz-Arenas C, Vives-Usano M, Andrusaityte S, Cadiou S, Carracedo Á, Casas M, Chatzi L, Dadvand P, González JR, Grazuleviciene R, Gutzkow KB, Haug LS, Hernandez-Ferrer C, Keun HC, Lepeule J, Maitre L, McEachan R, Nieuwenhuijsen MJ, Pelegrí D, Robinson O, Slama R, Vafeiadi M, Sunyer J, Vrijheid M, Bustamante Met al., 2021, The early-life exposome and epigenetic age acceleration in children, Environment International, Vol: 155, ISSN: 0160-4120

The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath’s Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early age.

Journal article

Stratakis N, Siskos AP, Papadopoulou E, Nguyen AN, Zhao Y, Margetaki K, Lau C-HE, Coen M, Maitre L, Fernández-Barrés S, Agier L, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fossati S, Grazuleviciene R, Heude B, McEachan RRC, Meltzer HM, Millett C, Rauber F, Robinson O, Roumeliotaki T, Borràs E, Sabidó E, Urquiza J, Vafeiadi M, Vineis P, Voortman T, Wright J, Conti DV, Vrijheid M, Keun HC, Chatzi Let al., 2021, Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health, Publisher: Cold Spring Harbor Laboratory

<jats:title>Abstract</jats:title><jats:p>Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used <jats:sup>1</jats:sup>H-NMR spectroscopy in a multi-country study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, <jats:italic>N</jats:italic>-methylnicotinic acid, urea and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food (UPF) consumption and also had higher capacity in discriminating children’s diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.</jats:p>

Working paper

Julvez J, Robinson O, 2021, Early life multiple exposures and child cognitive function: a multi-centric birth cohort study in six European countries, Environmental Pollution, Vol: 284, Pages: 1-11, ISSN: 0269-7491

Epidemiological studies mostly focus on single environmental exposures. This study aims to systematically assess associations between a wide range of prenatal and childhood environmental exposures and cognition. The study sample included data of 1298 mother-child pairs, children were 6–11 years-old, from six European birth cohorts. We measured 87 exposures during pregnancy and 122 cross-sectionally during childhood, including air pollution, built environment, meteorology, natural spaces, traffic, noise, chemicals and life styles. The measured cognitive domains were fluid intelligence (Raven's Coloured Progressive Matrices test, CPM), attention (Attention Network Test, ANT) and working memory (N-Back task). We used two statistical approaches to assess associations between exposure and child cognition: the exposome-wide association study (ExWAS) considering each exposure independently, and the deletion-substitution-addition algorithm (DSA) considering all exposures simultaneously to build a final multiexposure model. Based on this multiexposure model that included the exposure variables selected by ExWAS and DSA models, child organic food intake was associated with higher fluid intelligence (CPM) scores (beta = 1.18; 95% CI = 0.50, 1.87) and higher working memory (N-Back) scores (0.23; 0.05, 0.41), and child fast food intake (−1.25; −2.10, −0.40), house crowding (−0.39; −0.62, −0.16), and child environmental tobacco smoke (ETS) (−0.89; −1.42, −0.35), were all associated with lower CPM scores. Indoor PM2.5 exposure was associated with lower N-Back scores (−0.09; −0.16, −0.02). Additional associations in the unexpected direction were found: Higher prenatal mercury levels, maternal alcohol consumption and child higher perfluorooctane sulfonic acid (PFOS) levels were associated with better cognitive performance; and higher green exposure during pregnancy with lower cognitive performance. This fi

Journal article

Stratakis N, Golden-Mason L, Margetaki K, Zhao Y, Valvi D, Garcia E, Maitre L, Andrusaityte S, Basagana X, Borràs E, Bustamante M, Casas M, Fossati S, Grazuleviciene R, Haug LS, Heude B, McEachan RRC, Meltzer HM, Papadopoulou E, Roumeliotaki T, Robinson O, Sabidó E, Urquiza J, Vafeiadi M, Varo N, Wright J, Vos MB, Hu H, Vrijheid M, Berhane KT, Conti DV, McConnell R, Rosen HR, Chatzi Let al., 2021, In utero exposure to mercury is associated with increased susceptibility to liver injury and inflammation in childhood, Hepatology, Vol: 74, Pages: 1546-1559, ISSN: 0270-9139

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of liver disease in children. Mercury (Hg), a ubiquitous toxic metal, has been proposed as an environmental factor contributing to toxicant‐associated fatty liver disease. We investigated the effect of prenatal exposure to Hg on childhood liver injury by combining epidemiological results from a multicenter mother‐child cohort with complementary in vitro experiments on monocyte cells that are known to play a key role in liver immune homeostasis and NAFLD. We used data from 872 mothers and their children (median age, 8.1 years; interquartile range [IQR], 6.5‐8.7) from the European Human Early‐Life Exposome (HELIX) cohort. We measured Hg concentration in maternal blood during pregnancy (median, 2.0 μg/L; IQR, 1.1‐3.6). We also assessed serum levels of alanine aminotransferase (ALT), a common screening tool for pediatric NAFLD, and plasma concentrations of inflammation‐related cytokines in children. We found that prenatal Hg exposure was associated with a phenotype in children that was characterized by elevated ALT (≥22.1 U/L for females and ≥25.8 U/L for males) and increased concentrations of circulating interleukin (IL)‐1β, IL‐6, IL‐8, and tumor necrosis factor α (TNF‐α). Consistently, inflammatory monocytes exposed in vitro to a physiologically relevant dose of Hg demonstrated significant up‐regulation of genes encoding these four cytokines and increased concentrations of IL‐8 and TNF‐α in the supernatants.Conclusion:These findings suggest that developmental exposure to Hg can contribute to inflammation and increased NAFLD risk in early life.

Journal article

Maitre L, Julvez J, López-Vicente M, Warembourg C, Tamayo-Uria I, Philippat C, Gützkow KB, Guxens M, Andrusaityte S, Basagaña X, Casas M, de Castro M, Chatzi L, Evandt J, Gonzalez JR, Gražulevičienė R, Smastuen Haug L, Heude B, Hernandez-Ferrer C, Kampouri M, Manson D, Marquez S, McEachan R, Nieuwenhuijsen M, Robinson O, Slama R, Thomsen C, Urquiza J, Vafeidi M, Wright J, Vrijheid Met al., 2021, Early-life environmental exposure determinants of child behavior in Europe: a longitudinal, population-based study, Environment International, Vol: 153, ISSN: 0160-4120

BackgroundEnvironmental exposures in early life influence the development of behavioral outcomes in children, but research has not considered multiple exposures. We therefore aimed to investigate the impact of a broad spectrum of pre- and postnatal environmental exposures on child behavior.Methods and findingsWe used data from the HELIX (Human Early Life Exposome) project, which was based on six longitudinal population-based birth cohorts in Europe. At 6–11 years, children underwent a follow-up to characterize their exposures and assess behavioral problems. We measured 88 prenatal and 123 childhood environmental factors, including outdoor, indoor, chemical, lifestyle and social exposures. Parent-reported behavioral problems included (1) internalizing, (2) externalizing scores, using the child behavior checklist (CBCL), and (3) the Conner’s Attention Deficit Hyperactivity Disorder (ADHD) index, all outcomes being discrete raw counts. We applied LASSO penalized negative binomial regression models to identify which exposures were associated with the outcomes, while adjusting for co-exposures. In the 1287 children (mean age 8.0 years), 7.3% had a neuropsychiatric medical diagnosis according to parent’s reports. During pregnancy, smoking and car traffic showing the strongest associations (e.g. smoking with ADHD index, aMR:1.31 [1.09; 1.59]) among the 13 exposures selected by LASSO, for at least one of the outcomes. During childhood, longer sleep duration, healthy diet and higher family social capital were associated with reduced scores whereas higher exposure to lead, copper, indoor air pollution, unhealthy diet were associated with increased scores. Unexpected decreases in behavioral scores were found with polychlorinated biphenyls (PCBs) and organophosphate (OP) pesticides.ConclusionsOur systematic exposome approach identified several environmental contaminants and healthy lifestyle habits that may influence behavioral problems in children. Modifying

Journal article

Handakas E, Keski-Rahkonen P, Chatzi L, Alfano R, Roumeliotaki T, Plusquin M, Maitre L, Richiardi L, Brescianini S, Scalbert A, Robinot N, Nawrot T, Sassi F, Vrijheid M, Vineis P, Robinson Oet al., 2021, Cord blood metabolic signatures predictive of childhood overweight and rapid growth, International Journal of Obesity, Vol: 45, Pages: 2252-2260, ISSN: 0307-0565

INTRODUCTION:Metabolomics may identify biological pathways predisposing children to risk of overweight and obesity. In this study, we have investigated the cord blood metabolic signatures of rapid growth in infancy and overweight in early childhood in four European birth cohorts.METHODS:Untargeted liquid chromatography-mass spectrometry metabolomic profiles were measured in cord blood from 399 newborns from four European cohorts (ENVIRONAGE, Rhea, INMA and Piccolipiu). Rapid growth in the first year of life and overweight in childhood were defined with reference to WHO growth charts. Metabolome-wide association scans for rapid growth and overweight on over 4500 metabolic features were performed using multiple adjusted logistic mixed effect models and controlling the false discovery rate (FDR) at 5%. Additionally, we performed a look-up analysis of 43 pre-annotated metabolites, previously associated with birthweight or rapid growth. RESULTS:In the MWAS analysis, we identified three and eight metabolites associated with rapid growth and overweight respectively, after FDR correction. Higher levels of cholestenone, a cholesterol derivative produced by microbial catabolism, was predictive of rapid growth (p=1.6x10-3). Lower levels of the branched chain amino acid (BCAA) valine (p=8.6x10-6) was predictive of overweight in childhood. The area under the receiver operator curve for multivariate prediction models including these metabolites and traditional risk factors was 0.77 for rapid growth and 0.82 for overweight, compared to 0.69 and 0.69 respectively for models using traditional risk factors alone. Among the 43 pre-annotated metabolites, seven and five metabolites were nominally associated (P<0.05) with rapid growth and overweight respectively. The BCAA leucine, remained associated (1.6x 0-3) with overweight after FDR correction.CONCLUSION:The metabolites identified here may assist in the identification of children at risk of developing obesity and improve understa

Journal article

McCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo P-L, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai P-C, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué P-A, Durda P, Elliott HR, Gieger C, Genetics of DNA Methylation Consortium, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, NHLBI Trans-Omics for Precision Medicine TOPMed Consortium, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA, van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath S, Marioni REet al., 2021, Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging, Genome Biology, Vol: 22, ISSN: 1474-7596

Background:Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field.Results:Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels.Conclusion:This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.

Journal article

Robinson O, Lau C, 2021, DNA methylation age as a biomarker for cancer, International Journal of Cancer, Vol: 148, Pages: 2652-2663, ISSN: 0020-7136

Cancer is well established as an age‐associated disease, and there is substantial overlap in the molecular, cellular and physiological changes observed with both ageing and the progression of cancer. Age‐specific declines in resilience mechanisms such as DNA repair or epigenetic maintenance may contribute to the development of cancer. These declines may be assessed through biomarkers that measure biological age and through the related concept of “age acceleration”. Epigenetic clocks, assessed through DNA methylation levels, are among the most widely used biological age markers in cancer studies. In this review, we discuss the use of DNA methylation ageing measures to predict population cancer incidence, mortality and survival. Blood‐based DNA methylation age estimators appear to be promising measures of increased cancer risk and mortality, although their reported effects are generally weak, thus its clinical relevance remains to be validated in large case‐cohort and longitudinal studies. Future development of epigenetic and other biological age biomarkers will likely further elucidate the links between ageing and cancer.

Journal article

Robinson O, Carter AR, Aola-Korpela M, Casas JP, Chaturvedi N, Engmann J, Howe LD, Hughes A, Jarvelin MJ, Kahonen M, Karhunen V, Kuh D, Shah T, Ben-Shlomo Y, Sofat R, Lau CE, Lehtimaki T, Menon U, Raitakari O, Ryan A, Providencia R, Smith S, Taylor J, Tillin T, Viikari J, Wong A, Hingorani AD, Kivimaki M, Vineis Pet al., 2021, Metabolic profiles of socioeconomic position: a multi-cohort analysis, International Journal of Epidemiology, Vol: 50, Pages: 768-782, ISSN: 0300-5771

BackgroundLow socioeconomic position (SEP) is a risk factor for multiple health outcomes, but its molecular imprints in the body remain unclear. MethodsWe examined SEP as a determinant of serum nuclear magnetic resonance metabolic profiles, in approximately 30,000 adults and 4,000 children across ten UK and Finnish cohort studies. ResultsIn risk factor-adjusted analysis of 233 metabolic measures, low educational attainment was associated with 37 measures including higher levels of triglycerides in small high-density lipoproteins (HDL) and lower levels of docosahexaenoic acid (DHA), omega-3 fatty acids, apolipoprotein A1, large and very large HDL particles (including levels of their respective lipid constituents), and cholesterol measures across different density lipoproteins. Among adults whose father worked in manual occupations, associations with apolipoprotein A1, large and very large HDL particles and HDL-2 cholesterol remained after adjustment for SEP in later life. Among manual workers, levels of glutamine were higher compared to non-manual workers. All three indicators of low SEP were associated with lower DHA, omega-3 fatty acids and HDL diameter. At all ages, children of manual workers had lower levels of DHA as a proportion of total fatty acids.ConclusionsOur work indicates that social and economic factors have a measurable impact on human physiology. Lower SEP was independently associated with a generally unfavorable metabolic profile, consistent across ages and cohorts. The metabolites we found associated with SEP, including DHA, are known to predict cardiovascular disease and cognitive decline in later life and may contribute to health inequalities.

Journal article

Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau C-H, Siskos A, Vives-Usano M, Ruiz-Arenas C, Robinson O, Mason D, Wright J, Cadiou S, Slama R, Heude B, Gallego-Paüls M, Casas M, Sunyer J, Papadopoulou EZ, Gutzkow KB, Andrusaityte S, Grazuleviciene R, Vafeiadi M, Chatzi L, Sakhi AK, Thomsen C, Tamayo I, Nieuwenhuijsen M, Urquiza J, Borràs E, Sabidó E, Quintela I, Carracedo Á, Estivill X, Coen M, González JR, Keun HC, Vrijheid Met al., 2021, Multi-omics signatures of the human early life exposome

<jats:title>Summary</jats:title><jats:p>Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1,301 mother-child pairs, we associated individual exposomes consisting of &gt;100 chemical, physical and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, metabolome and proteins) in childhood. We identified 1,170 associations, 249 in pregnancy and 921 in childhood, which revealed potential biological responses and sources of exposure. The methylome best captures the persistent influence of pregnancy exposures, including maternal smoking; while childhood exposures were associated with features from all omics layers, revealing novel signatures for indoor air quality, essential trace elements, endocrine disruptors and weather conditions. This study provides a unique resource (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://helixomics.isglobal.org/">https://helixomics.isglobal.org/</jats:ext-link>) to guide future investigation on the biological effects of the early life exposome.</jats:p>

Journal article

Warembourg C, Nieuwenhuijsen M, Ballester F, de Castro M, Chatzi L, Esplugues A, Heude B, Maitre L, McEachan R, Robinson O, Slama R, Sunyer J, Urquiza J, Wright J, Basagaña X, Vrijheid Met al., 2021, Urban environment during early-life and blood pressure in young children, Environment International, Vol: 146, ISSN: 0160-4120

BackgroundThe urban environment is characterised by many exposures that may influence hypertension development from early life onwards, but there is no systematic evaluation of their impact on child blood pressure (BP).MethodsSystolic and diastolic blood pressure were measured in 4,279 children aged 4–5 years from a multi-centre European cohort (France, Greece, Spain, and UK). Urban environment exposures were estimated during pregnancy and childhood, including air pollution, built environment, natural spaces, traffic, noise, meteorology, and socioeconomic deprivation index. Single- and multiple-exposure linear regression models and a cluster analysis were carried out.ResultsIn multiple exposure models, higher child BP, in particular diastolic BP, was observed in association with higher exposure to air pollution, noise and ambient temperature during pregnancy, and with higher exposure to air pollution and higher building density during childhood (e.g., mean change [95% confidence interval] for an interquartile range increase in prenatal NO2 = 0.7 mmHg[0.3;1.2]). Lower BP was observed in association with higher temperature and better street connectivity during childhood (e.g., temperature = -1.1[-1.6;-0.6]). Some of these associations were not robust in the sensitivity analyses. Mother-child pairs were grouped into six urban environment exposure clusters. Compared to the cluster representing the least harmful urban environment, the two clusters representing the most harmful environment (high in air pollution, traffic, noise, and low in green space) were both associated with higher diastolic BP (1.3[0.1;2.6] and 1.5[0.5;2.5]).ConclusionThis first large systematic study suggests that living in a harmful urban environment may impact BP regulation in children. These findings reinforce the importance of designing cities that promote healthy environments to reduce long-term risk of hypertension and other cardiovascular diseases.

Journal article

Robinson O, Lau C, 2020, Measuring biological age using metabolomics, Aging, Vol: 12, Pages: 22352-22353, ISSN: 1945-4589

Journal article

Laine JE, Bodinier B, Robinson O, Plusquin M, Scalbert A, Keski-Rahkonen P, Robinot N, Vermeulen R, Pizzi C, Asta F, Nawrot T, Gulliver J, Chatzi L, Kogevinas M, Nieuwenhuijsen M, Sunyer J, Vrijheid M, Chadeau-Hyam M, Vineis Pet al., 2020, Prenatal exposure to multiple air pollutants, mediating molecular mechanisms, and shifts in birthweight., Environmental Science and Technology (Washington), Vol: 54, Pages: 14502-14513, ISSN: 0013-936X

Mechanisms underlying adverse birth and later in life health effects from exposure to air pollution during the prenatal period have not been not fully elucidated, especially in the context of mixtures. We assessed the effects of prenatal exposure to mixtures of air pollutants of particulate matter (PM), PM2.5, PM10, nitrogen oxides, NO2, NO x , ultrafine particles (UFP), and oxidative potential (OP) of PM2.5 on infant birthweight in four European birth cohorts and the mechanistic underpinnings through cross-omics of metabolites and inflammatory proteins. The association between mixtures of air pollutants and birthweight z-scores (standardized for gestational age) was assessed for three different mixture models, using Bayesian machine kernel regression (BKMR). We determined the direct effect for PM2.5, PM10, NO2, and mediation by cross-omic signatures (identified using sparse partial least-squares regression) using causal mediation BKMR models. There was a negative association with birthweight z-scores and exposure to mixtures of air pollutants, where up to -0.21 or approximately a 96 g decrease in birthweight, comparing the 75th percentile to the median level of exposure to the air pollutant mixture could occur. Shifts in birthweight z-scores from prenatal exposure to PM2.5, PM10, and NO2 were mediated by molecular mechanisms, represented by cross-omics scores. Interleukin-17 and epidermal growth factor were identified as important inflammatory responses underlyingair pollution-associated shifts in birthweight. Our results signify that by identifying mechanisms through which mixtures of air pollutants operate, the causality of air pollution-associated shifts in birthweight is better supported, substantiating the need for reducing exposure in vulnerable populations.

Journal article

Granum B, Oftedal B, Agier L, Siroux V, Bird P, Casas M, Warembourg C, Wright J, Chatzi L, de Castro M, Donaire D, Grazuleviciene R, Småstuen Haug L, Maitre L, Robinson O, Tamayo-Uria I, Urquiza J, Nieuwenhuijsen M, Slama R, Thomsen C, Vrijheid Met al., 2020, Multiple environmental exposures in early-life and allergy-related outcomes in childhood, Environment International, Vol: 144, Pages: 1-9, ISSN: 0160-4120

IntroductionEarly onset and high prevalence of allergic diseases result in high individual and socio-economic burdens. Several studies provide evidence for possible effects of environmental factors on allergic diseases, but these are mainly single-exposure studies. The exposome provides a novel holistic approach by simultaneously studying a large set of exposures. The aim of the study was to evaluate the association between a broad range of prenatal and childhood environmental exposures and allergy-related outcomes in children.Material and MethodsAnalyses of associations between 90 prenatal and 107 childhood exposures and allergy-related outcomes (last 12 months: rhinitis and itchy rash; ever: doctor-diagnosed eczema and food allergy) in 6–11 years old children (n = 1270) from the European Human Early-Life Exposome cohort were performed. Initially, we used an exposome-wide association study (ExWAS) considering the exposures independently, followed by a deletion-substitution-addition selection (DSA) algorithm considering all exposures simultaneously. All the exposure variables selected in the DSA were included in a final multi-exposure model using binomial general linear model (GLM).ResultsIn ExWAS, no exposures were associated with the outcomes after correction for multiple comparison. In multi-exposure models for prenatal exposures, lower distance of residence to nearest road and higher di-iso-nonyl phthalate level were associated with increased risk of rhinitis, and particulate matter absorbance (PMabs) was associated with a decreased risk. Furthermore, traffic density on nearest road was associated with increased risk of itchy rash and diethyl phthalate with a reduced risk. DSA selected no associations of childhood exposures, or between prenatal exposures and eczema or food allergy.DiscussionThis first comprehensive and systematic analysis of many environmental exposures suggests that prenatal exposure to traffic-related variables, PMabs and phthalates are

Journal article

Robinson O, 2020, Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver Injury in children, Hepatology, Vol: 72, Pages: 1758-1770, ISSN: 0270-9139

Background and AimsPer‐ and polyfluoroalkyl substances (PFAS) are widespread and persistent pollutants that have been shown to have hepatotoxic effects in animal models. However, human evidence is scarce. We evaluated how prenatal exposure to PFAS associates with established serum biomarkers of liver injury and alterations in serum metabolome in children.Approach and ResultsWe used data from 1,105 mothers and their children (median age, 8.2 years; interquartile range, 6.6‐9.1) from the European Human Early‐Life Exposome cohort (consisting of six existing population‐based birth cohorts in France, Greece, Lithuania, Norway, Spain, and the United Kingdom). We measured concentrations of perfluorooctane sulfonate, perfluorooctanoate, perfluorononanoate, perfluorohexane sulfonate, and perfluoroundecanoate in maternal blood. We assessed concentrations of alanine aminotransferase, aspartate aminotransferase, and gamma‐glutamyltransferase in child serum. Using Bayesian kernel machine regression, we found that higher exposure to PFAS during pregnancy was associated with higher liver enzyme levels in children. We also measured child serum metabolomics through a targeted assay and found significant perturbations in amino acid and glycerophospholipid metabolism associated with prenatal PFAS. A latent variable analysis identified a profile of children at high risk of liver injury (odds ratio, 1.56; 95% confidence interval, 1.21‐1.92) that was characterized by high prenatal exposure to PFAS and increased serum levels of branched‐chain amino acids (valine, leucine, and isoleucine), aromatic amino acids (tryptophan and phenylalanine), and glycerophospholipids (phosphatidylcholine [PC] aa C36:1 and Lyso‐PC a C18:1).ConclusionsDevelopmental exposure to PFAS can contribute to pediatric liver injury.

Journal article

Vineis P, Chadeau M, Dagnino S, Mudway I, Robinson O, Dehghan Aet al., 2020, What's new in the Exposome?, Environment International, Vol: 143, Pages: 1-13, ISSN: 0160-4120

The exposome concept refers to the totality of exposures from a variety of external and internal sources including chemical agents, biological agents, or radiation, from conception onward, over a complete lifetime. It encompasses also “psychosocial components” including the impact of social relations and socio-economic position on health. In this review we provide examples of recent contributions from exposome research, where we believe their application will be of the greatest value for moving forward. So far, environmental epidemiology has mainly focused on hard outcomes, such as mortality, disease exacerbation and hospitalizations. However, there are many subtle outcomes that can be related to environmental exposures, and investigations can be facilitated by an improved understanding of internal biomarkers of exposure and response, through the application of omic technologies. Second, though we have a wealth of studies on environmental pollutants, the assessment of causality is often difficult because of confounding, reverse causation and other uncertainties. Biomarkers and omic technologies may allow better causal attribution, for example using instrumental variables in triangulation, as we discuss here. Even more complex is the understanding of how social relationships (in particular socio-economic differences) influence health and imprint on the fundamental biology of the individual. The identification of molecular changes that are intermediate between social determinants and disease status is a way to fill the gap. Another field in which biomarkers and omics are relevant is the study of mixtures. Epidemiology often deals with complex mixtures (e.g. ambient air pollution, food, smoking) without fully disentangling the compositional complexity of the mixture, or with rudimentary approaches to reflect the overall effect of multiple exposures or components.From the point of view of disease mechanisms, most models hypothesize that several stages need t

Journal article

Chadeau M, Alfano R, Ghantous A, Keski-Rahkonen P, Chatzi L, Espin Perez A, Herceg Z, Kogevinas M, de Kok T, Nawrot T, Novoloaca A, Patel C, Pizzi C, Robinot N, Rusconi F, Scalbert A, Sunyer J, Vermeulen R, Vrijheid M, Vineis P, Robinson O, Plusquin Met al., 2020, A multi-omic analysis of birthweight in newborn cord blood reveals new underlying mechanisms related to cholesterol metabolism, Metabolism: clinical and experimental, Vol: 110, Pages: 1-12, ISSN: 0026-0495

BackgroundBirthweight reflects in utero exposures and later health evolution. Despite existing studies employing high-dimensional molecular measurements, the understanding of underlying mechanisms of birthweight remains limited.MethodsTo investigate the systems biology of birthweight, we cross-sectionally integrated the methylome, the transcriptome, the metabolome and a set of inflammatory proteins measured in cord blood samples, collected from four birth-cohorts (n = 489). We focused on two sets of 68 metabolites and 903 CpGs previously related to birthweight and investigated the correlation structures existing between these two sets and all other omic features via bipartite Pearson correlations.ResultsThis dataset revealed that the set of metabolome and methylome signatures of birthweight have seven signals in common, including three metabolites [PC(34:2), plasmalogen PC(36:4)/PC(O-36:5), and a compound with m/z of 781.0545], two CpGs (on the DHCR24 and SC4MOL gene), and two proteins (periostin and CCL22). CCL22, a macrophage-derived chemokine has not been previously identified in relation to birthweight. Since the results of the omics integration indicated the central role of cholesterol metabolism, we explored the association of cholesterol levels in cord blood with birthweight in the ENVIRONAGE cohort (n = 1097), finding that higher birthweight was associated with increased high-density lipoprotein cholesterol and that high-density lipoprotein cholesterol was lower in small versus large for gestational age newborns.ConclusionsOur data suggests that an integration of different omic-layers in addition to single omics studies is a useful approach to generate new hypotheses regarding biological mechanisms. CCL22 and cholesterol metabolism in cord blood play a mechanistic role in birthweight.

Journal article

Robinson O, 2020, In utero and childhood exposure to tobacco smoke and multi-layer molecular signatures in children, BMC Medicine, Vol: 18, Pages: 1-19, ISSN: 1741-7015

BackgroundThe adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows.MethodsWe investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites.ResultsMaternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure.ConclusionIn this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to

Journal article

Vrijheid M, Fossati S, Maitre L, Márquez S, Roumeliotaki T, Agier L, Andrusaityte S, Cadiou S, Casas M, de Castro M, Dedele A, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, McEachan R, Meltzer HM, Papadopouplou E, Robinson O, Sakhi AK, Siroux V, Sunyer J, Schwarze PE, Tamayo-Uria I, Urquiza J, Vafeiadi M, Valentin A, Warembourg C, Wright J, Nieuwenhuijsen MJ, Thomsen C, Basagaña X, Slama R, Chatzi Let al., 2020, Early-life environmental exposures and childhood obesity: An exposome-wide approach, Environmental Health Perspectives, Vol: 128, ISSN: 0091-6765

Background:Chemical and nonchemical environmental exposures are increasingly suspected to influence the development of obesity, especially during early life, but studies mostly consider single exposure groups.Objectives:Our study aimed to systematically assess the association between a wide array of early-life environmental exposures and childhood obesity, using an exposome-wide approach.Methods:The HELIX (Human Early Life Exposome) study measured child body mass index (BMI), waist circumference, skinfold thickness, and body fat mass in 1,301 children from six European birth cohorts age 6–11 y. We estimated 77 prenatal exposures and 96 childhood exposures (cross-sectionally), including indoor and outdoor air pollutants, built environment, green spaces, tobacco smoking, and biomarkers of chemical pollutants (persistent organic pollutants, metals, phthalates, phenols, and pesticides). We used an exposure-wide association study (ExWAS) to screen all exposure–outcome associations independently and used the deletion-substitution-addition (DSA) variable selection algorithm to build a final multiexposure model.Results:The prevalence of overweight and obesity combined was 28.8%. Maternal smoking was the only prenatal exposure variable associated with higher child BMI (z-score increase of 0.28, 95% confidence interval: 0.09, 0.48, for active vs. no smoking). For childhood exposures, the multiexposure model identified particulate and nitrogen dioxide air pollution inside the home, urine cotinine levels indicative of secondhand smoke exposure, and residence in more densely populated areas and in areas with fewer facilities to be associated with increased child BMI. Child blood levels of copper and cesium were associated with higher BMI, and levels of organochlorine pollutants, cobalt, and molybdenum were associated with lower BMI. Similar results were found for the other adiposity outcomes.Discussion:This first comprehensive and systematic analysis of many suspecte

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00535749&limit=30&person=true