Imperial College London

DrOliverWatson

Faculty of MedicineSchool of Public Health

Visiting Researcher
 
 
 
//

Contact

 

+44 (0)7747 434 948o.watson15

 
 
//

Location

 

Praed StreetSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

93 results found

Favas C, Jarrett P, Ratnayake R, Watson OJ, Checchi Fet al., 2022, Country differences in transmissibility, age distribution and case-fatality of SARS-CoV-2: a global ecological analysis., Int J Infect Dis, Vol: 114, Pages: 210-218

Objectives The first COVID-19 pandemic waves in many low-income countries appeared milder than initially forecasted. We conducted a country-level ecological study to describe patterns in key SARS-CoV-2 outcomes by country and region and explore associations with potential explanatory factors, including population age structure and prior exposure to endemic parasitic infections. Methods We collected publicly available data and compared them using standardisation techniques. We then explored the association between exposures and outcomes using random forest and linear regression. We adjusted for potential confounders and plausible effect modifications. Results While mean time-varying reproduction number was highest in the European and Americas regions, median age of death was lower in the Africa region, with a broadly similar case-fatality ratio. Population age was strongly associated with mean (β=0.01, 95% CI, 0.005, 0.011) and median age of cases (β=-0.40, 95% CI, -0.53, -0.26) and deaths (β= 0.40, 95% CI, 0.17, 0.62). Conclusions Population age seems an important country-level factor explaining both transmissibility and age distribution of observed cases and deaths. Endemic infections seem unlikely, from this analysis, to be key drivers of the variation in observed epidemic trends. Our study was limited by the availability of outcome data and its causally uncertain ecological design.

Journal article

Hogan A, Wu SL, Doohan P, Watson OJ, Winskill P, Charles G, Riley EM, Khoury D, Ferguson N, Ghani Aet al., 2021, Report 48: The value of vaccine booster doses to mitigate the global impact of the Omicron SARS-CoV-2 variant

Vaccines have played a central role in mitigating severe disease and death from COVID-19 in the past 12 months. However, efficacy wanes over time and this loss of protection will be compounded by the emergence of the Omicron variant. By fitting an immunological model to population-level vaccine effectiveness data, we estimate that neutralizing antibody titres for Omicron are reduced by 4.5-fold (95% CrI 3.1–7.1) compared to the Delta variant. This is predicted to result in a drop in vaccine efficacy against severe disease (hospitalisation) from 96.5% (95% CrI 96.1%–96.8%) against Delta to 80.1% (95% CrI 76.3%–83.2%) against Omicron for the Pfizer-BioNTech booster by 60 days post boost if NAT decay at the same rate following boosting as following the primary course, and from 97.6% (95% CrI 97.4%-97.9%) against Delta to 85.9% (95% CrI 83.1%-88.3%) against Omicron if NAT decay at half the rate observed after the primary course. Integrating this immunological model within a model of SARS-CoV-2 transmission, we show that booster doses will be critical to mitigate the impact of future Omicron waves in countries with high levels of circulating virus. They will also be needed in “zero-COVID” countries where there is little prior infection-induced immunity in order to open up safely. Where dose supply is limited, targeting boosters to the highest risk groups to ensure continued high protection in the face of waning immunity is of greater benefit than giving these doses as primary vaccination to younger age-groups. In all scenarios it is likely that health systems will be stretched. It may be essential, therefore, to maintain and/or reintroduce NPIs to mitigate the worst impacts of the Omicron variant as it replaces the Delta variant. Ultimately, Omicron variant-specific vaccines are likely to be required.

Report

McCabe R, Kont MD, Watson O, Schmit N, Whittaker C, Lochen A, Walker PGT, Ghani AC, Ferguson NM, White PJ, Donnelly CA, Watson OJet al., 2021, Communicating uncertainty in epidemic models, Epidemics: the journal of infectious disease dynamics, Vol: 37, Pages: 1-6, ISSN: 1755-4365

While mathematical models of disease transmission are widely used to inform public health decision-makers globally, the uncertainty inherent in results are often poorly communicated. We outline some potential sources of uncertainty in epidemic models, present traditional methods used to illustrate uncertainty and discuss alternative presentation formats used by modelling groups throughout the COVID-19 pandemic. Then, by drawing on the experience of our own recent modelling, we seek to contribute to the ongoing discussion of how to improve upon traditional methods used to visualise uncertainty by providing a suggestion of how this can be presented in a clear and simple manner.

Journal article

Mousa A, Winskill P, Watson OJ, Ratmann O, Monod M, Ajelli M, Diallo A, Dodd P, Grijalva CG, Kiti MC, Krishnan A, Kumar R, Kumar S, Kwok KO, Lanata C, Le Polain de Waroux O, Leung K, Mahikul W, Melegaro A, Morrow CD, Mossong J, Neal EFG, Nokes DJ, Pan-ngum W, Potter GE, Russel FM, Saha S, Sugimoto JD, Wei WI, Wood RR, Wu JT, Zhang J, Walker PGT, Whittaker Cet al., 2021, Social contact patterns and implications for infectious disease transmission: a systematic review and meta-analysis of contact surveys, eLife, Vol: 10, ISSN: 2050-084X

Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings.Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings.Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, with low-income settings characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made.Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions.

Journal article

Whittaker C, Walker PGT, Alhaffar M, Hamlet A, Djaafara BA, Ghani A, Ferguson N, Dahab M, Checchi F, Watson OJet al., 2021, Under-reporting of deaths limits our understanding of true burden of covid-19, BMJ-BRITISH MEDICAL JOURNAL, Vol: 375, ISSN: 0959-535X

Journal article

Whittaker C, Watson O, Alvarez-Moreno C, Angkasekwinai N, Boonyasiri A, Triana LC, Chanda D, Charoenpong L, Chayakulkeeree M, Cooke G, Croda J, Cucunubá ZM, Djaafara A, Estofolete CF, Grillet M-E, Faria N, Costa SF, Forero-Peña DA, Gibb DM, Gordon A, Hamers RL, Hamlet A, Irawany V, Jitmuang A, Keurueangkul N, Kimani TN, Lampo M, Levin A, Lopardo G, Mustafa R, Nayagam AS, Ngamprasertchai T, Njeri NIH, Nogueira ML, Ortiz-Prado E, Perroud Jr MW, Phillips AN, Promsin P, Qavi A, Rodger AJ, Sabino EC, Sangkaew S, Sari D, Sirijatuphat R, Sposito AC, Srisangthong P, Thompson H, Udwadia Z, Valderrama-Beltrán S, Winskill P, Ghani A, Walker P, Hallett Tet al., 2021, Understanding the Potential Impact of Different Drug Properties On SARS-CoV-2 Transmission and Disease Burden: A Modelling Analysis, Clinical Infectious Diseases, ISSN: 1058-4838

BackgroundThe public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear.MethodsUsing a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care.ResultsThe impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics.ConclusionsAdvances in the treatment of COVID-19 to date have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.

Journal article

Mangal T, Whittaker C, Nkhoma D, Ng'ambi W, Watson O, Walker P, Ghani A, Revill P, Colbourn T, Phillips A, Hallett T, Mfusto-Bengo Jet al., 2021, The potential impact of intervention strategies on COVID-19 transmission in Malawi: a mathematical modelling study, BMJ Open, Vol: 11, ISSN: 2044-6055

BackgroundCOVID-19 mitigation strategies have been challenging to implement in resource-limited settings due to the potential for widespread disruption to social and economic well-being. Here we predict the clinical severity of COVID-19 in Malawi, quantifying the potential impact of intervention strategies and increases in health system capacity.MethodsThe infection fatality ratios (IFR) were predicted by adjusting reported IFR for China accounting for demography, the current prevalence of comorbidities and health system capacity. These estimates were input into an age-structured deterministic model, which simulated the epidemic trajectory with non-pharmaceutical interventions and increases in health system capacity. Findings The predicted population-level IFR in Malawi, adjusted for age and comorbidity prevalence, is lower than estimated for China (0.26%, 95% uncertainty interval [UI] 0.12 – 0.69%, compared with 0.60%, 95% CI 0.4% – 1.3% in China), however the health system constraints increase the predicted IFR to 0.83%, 95% UI 0.49% – 1.39%. The interventions implemented in January 2021 could potentially avert 54,400 deaths (95% UI 26,900 – 97,300) over the course of the epidemic compared with an unmitigated outbreak. Enhanced shielding of people aged ≥ 60 years could avert a further 40,200 deaths (95% UI 25,300 – 69,700) and halve ICU admissions at the peak of the outbreak. A novel therapeutic agent, which reduces mortality by 0.65 and 0.8 for severe and critical cases respectively, in combination with increasing hospital capacity could reduce projected mortality to 2.5 deaths per 1,000 population (95% UI 1.9 – 3.6).ConclusionWe find the interventions currently used in Malawi are unlikely to effectively prevent SARS-CoV-2 transmission but will have a significant impact on mortality. Increases in health system capacity and the introduction of novel therapeutics are likely to further reduce the projected numbers of deaths.

Journal article

Imai N, Hogan AB, Williams L, Cori A, Mangal TD, Winskill P, Whittles LK, Watson OJ, Knock ES, Baguelin M, Perez-Guzman PN, Gaythorpe KAM, Sonabend R, Ghani AC, Ferguson NMet al., 2021, Interpreting estimates of coronavirus disease 2019 (COVID-19) vaccine efficacy and effectiveness to inform simulation studies of vaccine impact: a systematic review, Wellcome Open Research, Vol: 6, Pages: 185-185

<ns3:p><ns3:bold>Background:</ns3:bold> The multiple efficacious vaccines authorised for emergency use worldwide represent the first preventative intervention against coronavirus disease 2019 (COVID-19) that does not rely on social distancing measures. The speed at which data are emerging and the heterogeneities in study design, target populations, and implementation make it challenging to interpret and assess the likely impact of vaccine campaigns on local epidemics. We reviewed available vaccine efficacy and effectiveness studies to generate working estimates that can be used to parameterise simulation studies of vaccine impact.</ns3:p><ns3:p> <ns3:bold>Methods:</ns3:bold> We searched MEDLINE, the World Health Organization’s Institutional Repository for Information Sharing, medRxiv, and vaccine manufacturer websites for studies that evaluated the emerging data on COVID-19 vaccine efficacy and effectiveness. Studies providing an estimate of the efficacy or effectiveness of a COVID-19 vaccine using disaggregated data against SARS-CoV-2 infection, symptomatic disease, severe disease, death, or transmission were included. We extracted information on study population, variants of concern (VOC), vaccine platform, dose schedule, study endpoints, and measures of impact. We applied an evidence synthesis approach to capture a range of plausible and consistent parameters for vaccine efficacy and effectiveness that can be used to inform and explore a variety of vaccination strategies as the COVID-19 pandemic evolves.</ns3:p><ns3:p> <ns3:bold>Results:</ns3:bold> Of the 602 articles and reports identified, 53 were included in the analysis. The availability of vaccine efficacy and effectiveness estimates varied by vaccine and were limited for VOCs. Estimates for non-primary endpoints such as effectiveness against infection and onward transmission were sparse. Synthesised estimates were relatively consistent

Journal article

Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin Met al., 2021, Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England, Science Translational Medicine, Vol: 13, Pages: 1-12, ISSN: 1946-6234

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modelling framework allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rteff ) below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900-38,400). The infection fatality ratio decreased from 1.00% (95%CrI: 0.85%-1.21%) to 0.79% (95%CrI: 0.63%-0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7%-35.2%) than those residing in the community (7.9%, 95%CrI: 5.9%-10.3%). On 2nd December 2020 England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95%CrI: 5.4%-10.2%) and 22.3% (95%CrI: 19.4%-25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission.

Journal article

Brazeau NF, Mitchell CL, Morgan AP, Deutsch-Feldman M, Watson OJ, Thwai KL, Gelabert P, van Dorp L, Keeler CY, Waltmann A, Emch M, Gartner V, Redelings B, Wray GA, Mwandagalirwa MK, Tshefu AK, Likwela JL, Edwards JK, Verity R, Parr JB, Meshnick SR, Juliano JJet al., 2021, The epidemiology of Plasmodium vivax among adults in the Democratic Republic of the Congo, NATURE COMMUNICATIONS, Vol: 12, ISSN: 2041-1723

Journal article

Smith TP, Flaxman S, Gallinat AS, Kinosian SP, Stemkovski M, Unwin HJT, Watson OJ, Whittaker C, Cattarino L, Dorigatti I, Tristem M, Pearse WDet al., 2021, Temperature and population density influence SARS-CoV-2 transmission in the absence of nonpharmaceutical interventions, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Vol: 118, ISSN: 0027-8424

Journal article

Djaafara A, Whittaker C, Watson OJ, Verity R, Brazeau N, Widyastuti, Oktavia D, Adrian V, Salama N, Bhatia S, Nouvellet P, Sherrard-Smith E, Churcher T, Surendra H, Lina RN, Ekawati LL, Lestari KD, Andrianto A, Thwaites G, Baird JK, Ghani A, Elyazar IRF, Walker Pet al., 2021, Using syndromic measures of mortality to capture the dynamics of COVID-19 in Java, Indonesia in the context of vaccination roll-out, BMC Medicine, Vol: 19, ISSN: 1741-7015

Background: As in many countries, quantifying COVID-19 spread in Indonesia remains challenging due to testing limitations. In Java, non-pharmaceutical interventions (NPIs) were implemented throughout 2020. However, as a vaccination campaign launches, cases and deaths are rising across the island. Methods: We used modelling to explore the extent to which data on burials in Jakarta using strict COVID-19 protocols (C19P) provide additional insight into the transmissibility of the disease, epidemic trajectory, and the impact of NPIs. We assess how implementation of NPIs in early 2021 will shape the epidemic during the period of likely vaccine roll-out. Results: C19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than reported. Transmission estimates using these data suggest earlier, larger, and more sustained impact of NPIs. Measures to reduce sub-national spread, particularly during Ramadan, substantially mitigated spread to more vulnerable rural areas. Given current trajectory, daily cases and deaths are likely to increase in most regions as the vaccine is rolled-out. Transmission may peak in early 2021 in Jakarta if current levels of control are maintained. However, relaxation of control measures is likely to lead to a subsequent resurgence in the absence of an effective vaccination campaign. Conclusions: Syndromic measures of mortality provide a more complete picture of COVID-19 severity upon which to base decision-making. The high potential impact of the vaccine in Java is attributable to reductions in transmission to date and dependent on these being maintained. Increases in control in the relatively short-term will likely yield large, synergistic increases in vaccine impact.

Journal article

Mousa A, Winskill P, Watson OJ, Ratmann O, Monod M, Ajelli M, Diallo A, Dodd PJ, Grijalva CG, Kiti MC, Krishnan A, Kumar R, Kumar S, Kwok KO, Lanata CF, Le Polain de Waroux O, Leung K, Mahikul W, Melegaro A, Morrow CD, Mossong J, Neal EF, Nokes DJ, Pan-Ngum W, Potter GE, Russell FM, Saha S, Sugimoto JD, Wei WI, Wood RR, Wu JT, Zhang J, Walker PG, Whittaker Cet al., 2021, Social Contact Patterns and Implications for Infectious Disease Transmission: A Systematic Review and Meta-Analysis of Contact Surveys., medRxiv

Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings. Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings. Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, but low-income settings were characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made. Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions. Funding: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).

Journal article

McCabe R, Kont M, Schmit N, Whittaker C, Lochen A, Baguelin M, Knock E, Whittles L, Lees J, Brazeau N, Walker P, Ghani A, Ferguson N, White P, Donnelly C, Hauck K, Watson Oet al., 2021, Modelling ICU capacity under different epidemiological scenarios of the COVID-19 pandemic in three western European countries, International Journal of Epidemiology, Vol: 50, Pages: 753-767, ISSN: 0300-5771

Background: The coronavirus disease 2019 (COVID-19) pandemic has placed enormous strain on intensive care units (ICUs) in Europe. Ensuring access to care, irrespective of COVID-19 status, in winter 2020/21 is essential.Methods: An integrated model of hospital capacity planning and epidemiological projections of COVID-19 patients is used to estimate the demand for and resultant spare capacity of ICU beds, staff, and ventilators under different epidemic scenarios in France, Germany, and Italy across the 2020/21 winter period. The effect of implementing lockdowns triggered by different numbers of COVID-19 patients in ICU under varying levels of effectiveness is examined, using a ‘dual-demand’ (COVID-19 and non-COVID-19) patient model.Results: Without sufficient mitigation, we estimate that COVID-19 ICU patient numbers will exceed those seen in the first peak, resulting in substantial capacity deficits, with beds being consistently found to be the most constrained resource. Reactive lockdowns could lead to large improvements in ICU capacity during the winter season, with pressure being most effectively alleviated when lockdown is triggered early and sustained under a higher level of suppression. The success of such interventions also depends on baseline bed numbers and average non-COVID-19 patient occupancy.Conclusions: Reductions in capacity deficits under different scenarios must be weighed against the feasibility and drawbacks of further lockdowns. Careful, continuous decision-making by national policymakers will be required across the winter period 2020/21.

Journal article

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Vaccine, Vol: 39, Pages: 2995-3006, ISSN: 0264-410X

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Journal article

Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Brazeau N, Cuomo-Dannenburg G, Hamlet A, Thompson H, Baguelin M, Fitzjohn R, Knock E, Lees J, Whittles L, Mellan T, Winskill P, COVID-19 Response Team IC, Howard N, Clapham H, Checchi F, Ferguson N, Ghani A, Walker P, Beals Eet al., 2021, Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria, Nature Communications, Vol: 12, Pages: 1-10, ISSN: 2041-1723

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% – 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 – 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% – 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus.

Journal article

Ragonnet-Cronin M, Boyd O, Geidelberg L, Jorgensen D, Nascimento F, Siveroni I, Johnson R, Baguelin M, Cucunuba Z, Jauneikaite E, Mishra S, Watson O, Ferguson N, Cori A, Donnelly C, Volz Eet al., 2021, Genetic evidence for the association between COVID-19 epidemic severity and timing of non-pharmaceutical interventions, Nature Communications, Vol: 12, Pages: 1-7, ISSN: 2041-1723

Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non- pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were examined in relation to the dates of the most stringent interventions in each location as well as to the number of cumulative COVID-19 deaths and phylodynamic estimates of epidemic size. Here we report that the time elapsed between epidemic origin and maximum intervention is associated with different measures of epidemic severity and explains 11% of the variance in reported deaths one month after the most stringent intervention. Locations where strong non-pharmaceutical interventions were implemented earlier experienced 30 much less severe COVID-19 morbidity and mortality during the period of study.

Journal article

Watson OJ, Gao B, Nguyen TD, Tran TN-A, Penny MA, Smith DL, Okell L, Aguas R, Boni MFet al., 2021, Pre-existing partner-drug resistance facilitates the emergence and spread of artemisinin resistance: a consensus modelling study

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Artemisinin-resistant genotypes have now emerged a minimum of five times on three continents despite recommendations that all artemisinins be deployed as artemisinin combination therapies (ACTs). Widespread resistance to the non-artemisinin partner drugs in ACTs has the potential to limit the clinical and resistance benefits provided by combination therapy.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Using a consensus modelling approach with three individual-based mathematical models of <jats:italic>Plasmodium falciparum</jats:italic> transmission, we evaluate the effects of pre-existing partner-drug resistance and ACT deployment on artemisinin resistance evolution. We evaluate settings where dihydroartemisinin-piperaquine (DHA-PPQ), artesunate-amodiaquine (ASAQ), or artemether-lumefantrine (AL) are deployed as first-line therapy. We use time until 0.25 artemisinin resistance allele frequency (the establishment time) as the primary outcome measure.</jats:p></jats:sec><jats:sec><jats:title>Findings</jats:title><jats:p>Higher frequencies of pre-existing partner-drug resistant genotypes lead to earlier establishment of artemisinin resistance. Across all scenarios and pre-existing frequencies of partner-drug resistance explored, a 0.10 increase in partner-drug resistance frequency on average corresponded to 0.7 to 5.0 years loss of artemisinin efficacy. However, the majority of reductions in time to artemisinin establishment were observed after the first increment from 0.0 to 0.10 partner-drug resistance genotype frequency.</jats:p></jats:sec><jats:sec><jats:title>Interpretation</jats:title><jats:p>Partner-drug resistance in ACTs facilitates the early emergence of artemisinin resistance and is a major public

Journal article

Akala HM, Watson OJ, Mitei KK, Juma DW, Verity R, Ingasia LA, Opot BH, Okath RO, Chemwor GC, Juma JA, Mwakio EW, Brazeau N, Cheruiyot AC, Yeda RA, Maraka MN, Okello CO, Kateete DP, Managbanag JR, Andagalu B, Ogutu BR, Kamau Eet al., 2021, Plasmodium interspecies interactions during a period of increasing prevalence of Plasmodium ovale in symptomatic individuals seeking treatment: an observational study, LANCET MICROBE, Vol: 2, Pages: E141-E150, ISSN: 2666-5247

Journal article

Mesa DO, Hogan A, Watson O, Charles G, Hauck K, Ghani AC, Winskill Pet al., 2021, Quantifying the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 pandemic

<jats:title>Abstract</jats:title> <jats:p>Vaccine hesitancy – a delay in acceptance or refusal of vaccines despite availability – has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally. Here, we evaluate the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission with data on vaccine hesitancy from population surveys. Our findings suggest that the mortality over a 2-year period could be up to 8 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Addressing vaccine hesitancy with behavioural interventions is therefore an important priority in the control of the COVID-19 pandemic.</jats:p>

Journal article

Olivera Mesa D, Hogan A, Watson O, Charles G, Hauck K, Ghani A, Winskill Pet al., 2021, Report 43: Quantifying the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 pandemic

Vaccine hesitancy – a delay in acceptance or refusal of vaccines despite availability 1 – has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally 2 . Here, we evaluate the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission 3 with data on vaccine hesitancy from population surveys. Our findings suggest that the mortality over a 2-year period could be up to 8 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Addressing vaccine hesitancy with behavioural interventions is therefore an important priority in the control of the COVID-19 pandemic.

Report

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Publisher: Cold Spring Harbor Laboratory

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Working paper

Favas C, Jarrett P, Ratnayake R, Watson OJ, Checchi Fet al., 2021, Country differences in transmissibility, age distribution and case-fatality of SARS-CoV-2: a global ecological analysis

<jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>SARS-CoV-2 has spread rapidly across the world yet the first pandemic waves in many low-income countries appeared milder than initially forecasted through mathematical models. Hypotheses for this observed difference include under-ascertainment of cases and deaths, country population age structure, and immune modulation secondary to exposure to endemic parasitic infections. We conducted a country-level ecological study to describe patterns in key SARS-CoV-2 outcomes by country and region and to explore possible associations of the potential explanatory factors with these outcomes.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We collected publicly available data at country level and compared them using standardisation techniques. We then explored the association between exposures and outcomes using alternative approaches: random forest (RF) regression and linear (LM) regression. We adjusted for potential confounders and plausible effect modifications.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Altogether, data on the mean time-varying reproduction number (mean <jats:italic>R<jats:sub>t</jats:sub></jats:italic>) were available for 153 countries, but standardised averages for the age of cases and deaths and for the case-fatality ratio (CFR) could only be computed for 61, 39 and 31 countries respectively. While mean <jats:italic>R<jats:sub>t</jats:sub></jats:italic> was highest in the WHO Europe and Americas regions, median age of death was lower in the Africa region even after standardisation, with broadly similar CFR. Population age was strongly associated with mean <jats:italic>R<jats:sub>t</jats:sub></jats:italic> and the age-standardised median age of ob

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, NASCIMENTO F, Fitzjohn R, Gaythorpe K, Geidelberg L, green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2021, Reduction in mobility and COVID-19 transmission, Nature Communications, Vol: 12, ISSN: 2041-1723

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts.Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world.Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation.In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.

Journal article

Djaafara BA, Whittaker C, Watson OJ, Verity R, Brazeau NF, Oktavia D, Adrian V, Salama N, Bhatia S, Nouvellet P, Sherrard-Smith E, Churcher TS, Surendra H, Lina RN, Ekawati LL, Lestari KD, Andrianto A, Thwaites G, Baird JK, Ghani A, Elyazar IRF, Walker Pet al., 2021, Quantifying the Dynamics of COVID-19 Burden and Impact of Interventions in Java, Indonesia, SSRN Electronic Journal

Journal article

Barnett-Howell Z, Watson OJ, Mobarak AM, 2021, The benefits and costs of social distancing in high- and low-income countries, Transactions of the Royal Society of Tropical Medicine and Hygiene, Vol: traa140, ISSN: 0035-9203

BackgroundWidespread social distancing and lockdowns of everyday activity have been the primary policy prescription across many countries throughout the coronavirus disease 2019 (COVID-19) pandemic. Despite their uniformity, these measures may be differentially valuable for different countries.MethodsWe use a compartmental epidemiological model to project the spread of COVID-19 across policy scenarios in high- and low-income countries. We embed estimates of the welfare value of disease avoidance into the epidemiological projections to estimate the return to more stringent lockdown policies.ResultsSocial distancing measures that ‘flatten the curve’ of the disease provide immense welfare value in upper-income countries. However, social distancing policies deliver significantly less value in lower-income countries that have younger populations, which are less vulnerable to COVID-19. Equally important, social distancing mandates a trade-off between disease risk and economic activity. Poorer people are less able to make those economic sacrifices.ConclusionsThe epidemiological and welfare value of social distancing is smaller in lower-income countries and such policies may exact a heavy toll on the poorest and most vulnerable. Workers in the informal sector often lack the resources and social protections that enable them to isolate themselves until the virus passes. By limiting these households’ ability to earn a living, social distancing can lead to an increase in hunger, deprivation, and related mortality and morbidity.

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Witmer K, Dahalan F, Delves M, Yahiya S, Watson O, Straschil U, Chiwcharoen D, Sorboon B, Pukrittayakamee S, Pearson R, Howick V, Lawniczak M, White N, Dondorp A, Okell L, Chotivanich K, Ruecker A, Baum Jet al., 2021, Transmission of artemisinin-resistant malaria parasites to mosquitoes under antimalarial drug pressure, Antimicrobial Agents and Chemotherapy, Vol: 65, Pages: 1-17, ISSN: 0066-4804

Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. Whilst resistance manifests as delayed parasite clearance in patients the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilise sexual male gametocytes. Whether resistant parasites overcome this sterilising effect has not, however, been fully tested. Here, we analysed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in Kelch13 (PfK13var). As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, whilst sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favour acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favoured resistance transmission under ACT coverage could have profound implications for the spread of multidrug resistant malaria beyond Southeast Asia.

Journal article

Knock E, Whittles L, Lees J, Perez Guzman P, Verity R, Fitzjohn R, Gaythorpe K, Imai N, Hinsley W, Okell L, Rosello A, Kantas N, Walters C, Bhatia S, Watson O, Whittaker C, Cattarino L, Boonyasiri A, Djaafara A, Fraser K, Fu H, Wang H, Xi X, Donnelly C, Jauneikaite E, Laydon D, White P, Ghani A, Ferguson N, Cori A, Baguelin Met al., 2020, Report 41: The 2020 SARS-CoV-2 epidemic in England: key epidemiological drivers and impact of interventions

England has been severely affected by COVID-19. We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional 2020 surveillance data. Only national lockdown brought the reproduction number below 1 consistently; introduced one week earlier in the first wave it could have reduced mortality by 23,300 deaths on average. The mean infection fatality ratio was initially ~1.3% across all regions except London and halved following clinical care improvements. The infection fatality ratio was two-fold lower throughout in London, even when adjusting for demographics. The infection fatality ratio in care homes was 2.5-times that in the elderly in the community. Population-level infection-induced immunity in England is still far from herd immunity, with regional mean cumulative attack rates ranging between 4.4% and 15.8%.

Report

Unwin H, Mishra S, Bradley V, Gandy A, Mellan T, Coupland H, Ish-Horowicz J, Vollmer M, Whittaker C, Filippi S, Xi X, Monod M, Ratmann O, Hutchinson M, Valka F, Zhu H, Hawryluk I, Milton P, Ainslie K, Baguelin M, Boonyasiri A, Brazeau N, Cattarino L, Cucunuba Z, Cuomo-Dannenburg G, Dorigatti I, Eales O, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Siveroni I, Thompson H, Walker P, Walters C, Watson O, Whittles L, Ghani A, Ferguson N, Riley S, Donnelly C, Bhatt S, Flaxman Set al., 2020, State-level tracking of COVID-19 in the United States, Nature Communications, Vol: 11, Pages: 1-9, ISSN: 2041-1723

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available deathdata within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on therate of transmission of SARS-CoV-2. We estimate thatRtwas only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00900627&limit=30&person=true