Imperial College London

Panagiotis Angeloudis

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 5986p.angeloudis Website

 
 
//

Location

 

337Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

60 results found

Hsu P-Y, Aurisicchio M, Angeloudis P, 2019, Risk-averse supply chain for modular construction projects, Automation in Construction, Vol: 106, Pages: 1-12, ISSN: 0926-5805

The traditional in-situ construction method is currently being replaced by modular building systems, that take advantage of modern manufacturing, transportation, and assembly methods. This transformation poses a challenge to construction supply chains, which have, thus far, been concentrated on raw material transportation only. A mathematical model is conceived in this study for the design and optimisation of risk-averse logistics configurations for modular construction projects under operational uncertainty. The model considers the manufacturing, storage, and assembly stages, along with the selection of optimal warehouse locations. Using robust optimisation, the model accounts for common causes of schedule deviations in construction sites, including inclement weather, late deliveries, labour productivity fluctuations and crane malfunctions. A school dormitory construction project is used as a case study, demonstrating that the proposed model outperforms existing techniques in settings with multiple sources of uncertainty.

Journal article

Karamanis R, Anastasiadis E, Angeloudis P, Stettler Met al., 2019, Assignment and pricing of shared rides in ride-sourcing using combinatorial double auctions, Publisher: arXiv

Transportation Network Companies employ dynamic pricing methods at periods ofpeak travel to incentivise driver participation and balance supply and demandfor rides. Surge pricing multipliers are commonly used and are appliedfollowing demand and estimates of customer and driver trip valuations.Combinatorial double auctions have been identified as a suitable alternative,as they can achieve maximum social welfare in the allocation by relying oncustomers and drivers stating their valuations. A shortcoming of currentmodels, however, is that they fail to account for the effects of trip detoursthat take place in shared trips and their impact on the accuracy of pricingestimates. To resolve this, we formulate a new shared-ride assignment andpricing algorithm using combinatorial double auctions. We demonstrate that thismodel is reduced to a maximum weighted independent set model, which is known tobe APX-hard. A fast local search heuristic is also presented, which is capableof producing results that lie within 1% of the exact approach. Our proposedalgorithm could be used as a fast and reliable assignment and pricing mechanismof ride-sharing requests to vehicles during peak travel times.

Working paper

Goldbeck N, Angeloudis P, Ochieng WY, 2019, Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models, Reliability Engineering and System Safety, Vol: 188, Pages: 62-79, ISSN: 0951-8320

© 2019 Elsevier Ltd Critical infrastructure systems are becoming increasingly interdependent, which can exacerbate the impacts of disruptive events through cascading failures, hindered asset repairs and network congestion. Current resilience assessment methods fall short of fully capturing such interdependency effects as they tend to model asset reliability and network flows separately and often rely on static flow assignment methods. In this paper, we develop an integrated, dynamic modelling and simulation framework that combines network and asset representations of infrastructure systems and models the optimal response to disruptions using a rolling planning horizon. The framework considers dependencies pertaining to failure propagation, system-of-systems architecture and resources required for operating and repairing assets. Stochastic asset failure is captured by a scenario tree generation algorithm whereas the redistribution of network flows and the optimal deployment of repair resources are modelled using a minimum cost flow approach. A case study on London's metro and electric power networks shows how the proposed methodology can be used to assess the resilience of city-scale infrastructure systems to a local flooding incident and estimate the value of the resilience loss triangle for different levels of hazard exposure and repair capabilities.

Journal article

Achurra-Gonzalez PE, Angeloudis P, Goldbeck N, Graham D, Zavitsas K, Stettler Met al., Evaluation of port disruption impacts in the global liner shipping network, Journal of Shipping and Trade, ISSN: 2364-4575

The global container shipping network is vital to international trade. Current techniques for its vulnerability assessment are constrained due to the lack of historical disruption data and computational limitations due to typical network sizes. We address these modelling challenges by developing a new framework, composed by a game-theoretic attacker-defender model and a cost-based container assignment model that can identify systemic vulnerabilities in the network. Given its focus on logic and structure, the proposed framework has minimal input data requirements and does not rely on the presence of extensive historical disruption data. Numerical implementations are carried in a global-scale liner network where disruptions occur in Europe’s main container ports. Model outputs are used to establish performance baselines for the network and illus-trate the differences in regional vulnerability levels and port criticality rankings with different disruption magnitudes and flow diversion strategies. Sensitivity analysis of these outputs identifies network compo-nents that are more susceptible to lower levels of disruption which are more common in practice and to assess the effectiveness of component-level interventions seeking to increase the resilience of the system.

Journal article

Achurra-Gonzalez PE, Novati M, Foulser-Piggott R, Graham DJ, Bowman G, Bell MGH, Angeloudis Pet al., 2019, Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application, Accident Analysis & Prevention, Vol: 123, Pages: 399-410

Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity.

Journal article

Karamanis R, Angeloudis P, Sivakumar A, Stettler Met al., 2018, Dynamic Pricing in One-Sided Autonomous Ride-Sourcing Markets, 21st IEEE International Conference on Intelligent Transportation Systems (ITSC), Publisher: IEEE, Pages: 3645-3650, ISSN: 2153-0009

Conference paper

Hsu P-Y, Angeloudis P, Aurisicchio M, 2018, Optimal logistics planning for modular construction using two-stage stochastic programming, AUTOMATION IN CONSTRUCTION, Vol: 94, Pages: 47-61, ISSN: 0926-5805

Journal article

Haughton TW, Angeloudis P, Parpas P, Aurisicchio Met al., Optimal Component Modularisation of Process Plants for Modular Construction, EURO 2018

Conference paper

Ainalis D, Achurra-Gonzalez P, Gaudin A, Garcia de la Cruz JM, Angeloudis P, Ochieng WY, Stettler MEJet al., Ultra-Capacitor based kinetic energy recovery system for heavy goods vheicles, 15th International Symposium on Heavy Vehicle Transport Technology

The Climate Change Act 2008 commits the UK to reduce the Greenhouse Gas emissions by 80% by 2050 relative to 1990 levels. While Heavy Goods Vehicles and buses contribute about 4% of the total Greenhouse Gas emissions in the UK, these emissions only decrease by 10% between 1990 and 2015. Urban areas are particularly susceptible to emissions and can have a significant impact upon the health of residents. For Heavy Goods Vehicles, braking losses are one of the most significant losses. A Kinetic Energy Recovery System can help reduce these emissions, and increase fuel efficiency by up to 30 %. This paper describes an InnovateUK funded project aimed at evaluating the technical and economic feasibility of a retrofitted Kinetic Energy Recovery System on Heavy Goods Vehicles through an operational trial, controlled emissions and fuel tests, and numerical modelling. A series of preliminary results using a numerical vehicle model is compared with operational data, along with simulations comparing the fuel efficiency of a Heavy Goods Vehicle with and without the KERS.

Conference paper

Karamanis R, Angeloudis P, Sivakumar A, Stettler Met al., Market dynamics between public transport and competitive ride-sourcing providers, 7th Symposium of the European Association for Research in Transportation, Publisher: hEART

Conference paper

Escribano Macias J, Angeloudis P, Ochieng W, AIAA Integrated Trajectory-Location-Routing for Rapid Humanitarian Deliveries using Unmanned Aerial Vehicles, 2018 Aviation Technology, Integration, and Operations Conference

Conference paper

Achurra Gonzalez PE, Angeloudis P, Zavitsas K, Niknejad S, Graham Det al., 2017, Attacker-defender modelling of vulnerability in maritime logistics corridors, Advances in Shipping Data Analysis and Modeling: Tracking and Mapping Maritime Flows in the Age of Big Data, Editors: Ducruet, ISBN: 9781351985093

Book chapter

Hsu P-Y, Aurisicchio MARCO, Angeloudis P, 2017, Establishing outsourcing and supply chain plans for prefabricated construction projects under uncertain productivity, International Conference on Computational Logistics - 2017, Publisher: Springer, Pages: 529-543, ISSN: 1611-3349

Conference paper

Goldbeck N, Angeloudis P, Ochieng W, A Dynamic Network Flow Model for Interdependent Infrastructure and Supply Chain Networks with Uncertain Asset Operability, International Conference on Computational Logistics

Conference paper

Hsu P-Y, Aurisicchio M, Angeloudis P, 2017, Supply chain design for modular construction projects, 25th Annual Conference of the International Group for Lean Construction (IGLC), Publisher: IGLC, ISSN: 2309-0979

The construction sector is currently undergoing a shift from stick-built construction techniques to modular building systems. If construction supply chains are to support this transformation, they need to be modified and strengthened using an adapted logistics system. The aim of this study is to establish a mathematical model for the logistics of modular construction covering the three common tiers of operations: manufacturing, storage and construction. Previous studies have indicated that construction site delays constitute the largest cause of schedule deviations. Using the model outlined in this paper we seek to determine how factory manufacturing and inventory management should be adapted to variations in demand on the construction site. We propose a Mixed Integer Linear Programming model that captures construction scenarios with demands for modular products that are either foreseeable or abruptly disrupted. The use of the model is illustrated through a case study of bathroom pods for a building project. The model outputs include supply chain configurations that reduce total costs across a range of scenarios. The model could serve as a decision support tool for modular construction logistics.

Conference paper

Nikhalat-Jahromi H, Angeloudis P, Bell MGH, Cochrane RAet al., 2017, Global LNG trade: A comprehensive up to date analysis, Maritime Economics & Logistics, Vol: 19, Pages: 160-181

Journal article

Karamanis R, Niknejad A, Angeloudis P, A Fleet Sizing Algorithm for Autonomous Car Sharing, Transportation Research Board 96th Annual Meeting

Conference paper

Goldbeck N, Angeloudis P, 2017, Civil Engineering: Unlocking the potential of future cities through sustainable and resilient infrastructure, Defining the Urban: Interdisciplinary and Professional Perspectives, Editors: Iossifova, Gasparatos, Doll, Publisher: Routledge, ISBN: 978-1472449498

Book chapter

Anvari B, Angeloudis P, Ochieng WY, 2016, A multi-objective GA-based optimisation for holistic Manufacturing, transportation and Assembly of precast construction, Automation in Construction, Vol: 71, Pages: 226-241, ISSN: 0926-5805

Resource scheduling of construction proposals allows project managers to assess resource requirements, provide costs and analyse potential delays. The Manufacturing, transportation and Assembly (MtA) sectors of precast construction projects are strongly linked, but considered separately during the scheduling phase. However, it is important to evaluate the cost and time impacts of consequential decisions from manufacturing up to assembly. In this paper, a multi-objective Genetic Algorithm-based (GA-based) searching technique is proposed to solve unified MtA resource scheduling problems (which are equivalent to extended Flexible Job Shop Scheduling Problems). To the best of the authors' knowledge, this is the first time that a GA-based optimisation approach is applied to a holistic MtA problem with the aim of minimising time and cost while maximising safety. The model is evaluated and compared to other exact and non-exact models using instances from the literature and scenarios inspired from real precast constructions.

Journal article

Nikhalat-Jahromi H, Bell MGH, Fontes DBMM, Cochrane RA, Angeloudis Pet al., 2016, Spot sale of uncommitted LNG from Middle East: Japan or the UK?, Energy Policy, Vol: 96, Pages: 717-725

Journal article

Shang W, Han K, Ochieng W, Angeloudis Pet al., 2016, Agent-based day-to-day traffic network model with information percolation, Transportmetrica A-Transport Science, Vol: 13, Pages: 38-66, ISSN: 2324-9935

This paper explores the impact of travel information sharing on road networks using a two-layer, agent-based, day-to-day traffic network model. The first layer (cyber layer) represents a conceptual communication network where travel information is shared among drivers. The second layer (physical layer) captures the day-to-day evolution in a traffic network where individual drivers seek to minimize their own travel costs by making route choices. A key hypothesis in this model is that instead of having perfect information, the drivers form individual groups, among which travel information is shared and utilized for routing decisions. The formation of groups occurs in the cyber layer according to the notion of percolation, which describes the formation of connected clusters (groups) in a random graph. We apply the novel notion of percolation to capture the disaggregated and distributed nature of travel information sharing. We present a numerical study on the convergence of the transport network, when a range of percolation rates are considered. The findings suggest a positive correlation between the percolation rate and the speed of convergence, which is validated through statistical analysis. A sensitivity analysis is also presented which shows a bifurcation phenomenon with regard to certain model parameters.

Journal article

Angeloudis P, Greco L, Bell MGH, 2016, Strategic maritime container service design in oligopolistic markets, Transportation Research Part B: Methodological, Vol: 90, Pages: 22-37

Journal article

Goldbeck N, Angeloudis P, Ochieng W, 2016, Analysing the resilience of metro systems under consideration of interdependencies: A combined Dynamic Bayesian Network and network flow approach, 14th World Conference on Transport Research (WCTR)

Conference paper

Anvari B, Bell MGH, Angeloudis P, Ochieng WYet al., 2016, Calibration and validation of a shared space model: case study, Transportation Research Record, Vol: 2588, Pages: 43-52

Journal article

Goldbeck N, Angeloudis P, Ochieng W, 2016, Joint Vulnerability Analysis of Urban Rail Transit and Utility Networks, Transportation Research Board 95th Annual Meeting, Publisher: Transportation Research Board

As climate change is expected to increase the frequency of extreme weather events, cities around the world develop strategies to improve their disaster resilience. A key issue is the protection of critical urban infrastructure systems, such as transport networks. Rail transit networks are particularly exposed to flood risks and additional vulnerabilities arise from interdependencies with other infrastructure systems. This paper aims to improve modelling techniques that help to understand the conditions under which cascading failure can occur in interdependent urban infrastructure systems. Building on existing network flow models, a novel method for the coupling of networks is introduced, using binary connector variables and mixed integer linear programming. The coupling is modelled as additional commodity demand that is induced in one network depending on the commodity flows in another network. An example problem consisting of a rail transit network, a control system, an electric power network and a water supply network illustrates the practicability of the proposed modelling technique.

Conference paper

Briskorn D, Angeloudis P, 2015, Scheduling co-operating stacking cranes with predetermined container sequences, Discrete Applied Mathematics, Vol: 201, Pages: 70-85, ISSN: 1872-6771

Crane scheduling in container terminals is known as a difficult optimization problem that has become even more challenging in recent years with the proliferation of multi-gantry automated stacking cranes. In this paper we present an efficient algorithm solving a subproblem arising in this context, namely deciding the priority of cranes after transportation tasks have been assigned. We tackle this problem for both, twin crane setting and crossover crane setting, and develop graphical models and strongly polynomial algorithms accordingly. A series of experiments is carried out where it is shown that the method can produce optimum solutions within exceptionally small run times.

Journal article

Anvari B, angeloudis, ochieng, Multi-Objective GA-based Optimisation for Manufacturing, Transportation and Assembly of Precast Construction, 17th British-French-German Conference on Optimization

Conference paper

Zis T, Angeloudis P, North R, Ochieng W, Bell MGHet al., 2015, The environmental balance of vessel emission strategies, TRB

Conference paper

Novati M, Achurra-Gonzalez P, Foulser-Piggott R, Bowman G, Bell MGH, Angeloudis Pet al., 2015, Modelling the effects of port disruptions: assessment of disaster impacts using a cost-based container flow assignment in liner shipping networks

Conference paper

Goldbeck N, Angeloudis P, Ochieng W, 2015, Analysis of cascading failures across interdependent dynamic networks, 27th European Conference on Operational Research

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00337165&limit=30&person=true