Imperial College London

DrPaulBarton

Faculty of MedicineNational Heart & Lung Institute

Honorary Senior Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7351 8140p.barton Website

 
 
//

Location

 

2054Sydney StreetRoyal Brompton Campus

//

Summary

 

Publications

Publication Type
Year
to

228 results found

Ochoa JP, Lalaguna L, Mirelis JG, Dominguez F, Gonzalez-Lopez E, Salas C, Roustan G, McGurk KA, Zheng SL, Barton PJR, Ware JS, Gómez-Gaviro MV, Lara-Pezzi E, Garcia-Pavia Pet al., 2024, Biallelic Loss of Function Variants in Myocardial Zonula Adherens Protein Gene (MYZAP) Cause a Severe Recessive Form of Dilated Cardiomyopathy., Circ Heart Fail, Vol: 17

Journal article

Owen R, Buchan R, Frenneaux M, Jarman JWE, Baruah R, Lota AS, Halliday BP, Roberts AM, Izgi C, Van Spall H, Michos ED, McMurray J, Januzzi JL, Pennell DJ, Cook SA, Ware JS, Barton PJ, Gregson J, Prasad SK, Tayal Uet al., 2024, Sex differences in the clinical presentation and natural history of dilated cardiomyopathy, JACC: Heart Failure, Vol: 12, Pages: 352-363, ISSN: 2213-1787

Background: Biological sex has a diverse impact on the cardiovascular system. Its influence on dilated cardiomyopathy (DCM) remains unresolved.Objective: To investigate sex-specific differences in DCM presentation, natural history, and prognostic factors.Methods We conducted a prospective observational cohort study of DCM patients, assessing baseline characteristics, CMR-imaging, biomarkers and genotype. The composite outcome was cardiovascular mortality or major heart-failure (HF) events. Results: Overall, 206 females and 398 males with DCM were followed for a median of 3.9 years. At baseline female patients had higher left ventricular ejection fraction (LVEF), smaller left ventricular volumes, less prevalent mid-wall myocardial fibrosis (23% vs 42%) and lower high sensitivity cardiac troponin (hs-cTnI) than males (all p<0.05), with no difference in time from diagnosis, age at enrollment, NT-proBNP levels, pathogenic DCM genetic variants, myocardial fibrosis extent or medications used for HF. Despite a more favourable profile, the risk of the primary outcome at 2 years was higher in females than males (8.6% vs 4.4%, adjusted hazard ratio 3.14, 95% CI 1.55 to 6.35, p=0.001). Between 2-5 years, the effect of sex as a prognostic modifier attenuated. Age, mid-wall myocardial fibrosis, LVEF, left atrial volume, NT-proBNP, hs-cTnI, left bundle branch block and NYHA class were not sex specific prognostic factors. Conclusions: We identify a novel paradox in prognosis for females with DCM. Female DCM patients have a paradoxical early increase in major HF events despite less prevalent myocardial fibrosis and a milder phenotype at presentation. Future studies should interrogate the mechanistic basis for these sex differences.

Journal article

Allouba M, Walsh R, Afify A, Hosny M, Halawa S, Galal A, Fathy M, Theotokis PI, Boraey A, Ellithy A, Buchan R, Govind R, Whiffin N, Anwer S, ElGuindy A, Ware JS, Barton PJR, Yacoub M, Aguib Yet al., 2023, Ethnicity, consanguinity, and genetic architecture of hypertrophic cardiomyopathy, European Heart Journal, Vol: 44, Pages: 5146-5158, ISSN: 0195-668X

AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS: Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION: Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM.

Journal article

McGurk K, Zhang X, Theotokis P, Thomson K, Harper A, Buchan R, Mazaika E, Ormondroyd E, Wright W, Macaya D, Chee Jian P, Funke B, MacArthur D, Prasad S, Cook S, Allouba M, Aguib Y, Yacoub M, O'Regan D, Barton P, Watkins H, Bottolo L, Ware Jet al., 2023, The penetrance of rare variants in cardiomyopathy-associated genes: a cross-sectional approach to estimate penetrance for secondary findings, American Journal of Human Genetics, Vol: 110, Pages: 1482-1495, ISSN: 0002-9297

Understanding the penetrance of pathogenic variants identified as secondary findings (SFs) is of paramount importance with the growing availability of genetic testing. We estimated penetrance through large-scale analyses of individuals referred for diagnostic sequencing for hypertrophic cardiomyopathy (HCM; 10,400 affected individuals, 1,332 variants) and dilated cardiomyopathy (DCM; 2,564 affected individuals, 663 variants), using a cross-sectional approach comparing allele frequencies against reference populations (293,226 participants from UK Biobank and gnomAD). We generated updated prevalence estimates for HCM (1:543) and DCM (1:220). In aggregate, the penetrance by late adulthood of rare, pathogenic variants (23% for HCM, 35% for DCM) and likely pathogenic variants (7% for HCM, 10% for DCM) was substantial for dominant cardiomyopathy (CM). Penetrance was significantly higher for variant subgroups annotated as loss of function or ultra-rare and for males compared to females for variants in HCM-associated genes. We estimated variant-specific penetrance for 316 recurrent variants most likely to be identified as SFs (found in 51% of HCM- and 17% of DCM-affected individuals). 49 variants were observed at least ten times (14% of affected individuals) in HCM-associated genes. Median penetrance was 14.6% (±14.4% SD). We explore estimates of penetrance by age, sex, and ancestry and simulate the impact of including future cohorts. This dataset reports penetrance of individual variants at scale and will inform the management of individuals undergoing genetic screening for SFs. While most variants had low penetrance and the costs and harms of screening are unclear, some individuals with highly penetrant variants may benefit from SFs.

Journal article

Sweeney M, O'Fee K, Villanueva-Hayes C, Rahman E, Lee M, Vanezis K, Andrew I, Lim W-W, Widjaja A, Barton P, Cook Set al., 2023, Cardiomyocyte-restricted expression of IL11 causes cardiac fibrosis, inflammation, and dysfunction, International Journal of Molecular Sciences, Vol: 24, Pages: 1-14, ISSN: 1422-0067

Cardiac fibrosis is a common pathological process in heart disease, representing a therapeutic target. Transforming growth factor β (TGFβ) is the canonical driver of cardiac fibrosis and was recently shown to be dependent on interleukin 11 (IL11) for its profibrotic effects in fibroblasts. In the opposite direction, recombinant human IL11 has been reported as anti-fibrotic and anti-inflammatory in the mouse heart. In this study, we determined the effects of IL11 expression in cardiomyocytes on cardiac pathobiology and function. We used the Cre-loxP system to generate a tamoxifen-inducible mouse with cardiomyocyte-restricted murine Il11 expression. Using protein assays, bulk RNA-sequencing, and in vivo imaging, we analyzed the effects of IL11 on myocardial fibrosis, inflammation, and cardiac function, challenging previous reports suggesting the cardioprotective potential of IL11. TGFβ stimulation of cardiomyocytes caused Il11 upregulation. Compared to wild-type controls, Il11-expressing hearts demonstrated severe cardiac fibrosis and inflammation that was associated with the upregulation of cytokines, chemokines, complement factors, and increased inflammatory cells. IL11 expression also activated a program of endothelial-to-mesenchymal transition and resulted in left ventricular dysfunction. Our data define species-matched IL11 as strongly profibrotic and proinflammatory when secreted from cardiomyocytes and further establish IL11 as a disease factor.

Journal article

Allouba M, Walsh R, Afify A, Halawa S, Galal A, Hosny M, Fathy M, Theotokis P, Ellithy A, Buchan R, Govind R, Whiffin N, Anwer S, El Guindy A, Ware J, Barton P, Aguib Y, Yacoub MHet al., 2023, Homozygosity predominantly affects hypertrophic cardiomyopathy minor genes in an Egyptian clinical cohort, 55th European-Society-of-Human-Genetics (ESHG) Conference, Publisher: SPRINGERNATURE, Pages: 648-648, ISSN: 1018-4813

Conference paper

Sweeney M, O'fee K, Rahman E, Villanueva-Hayes C, Lee M, Vanezis K, Lim WW, Widjaja A, Barton PJR, Cook SAet al., 2023, Unexpected acute negatively inotropic and proinflammatory effects of interleukin-11 on the myocardium, Publisher: WILEY, Pages: 14-15, ISSN: 1388-9842

Conference paper

Tadros R, Zheng SL, Grace C, Jordà P, Francis C, Jurgens SJ, Thomson KL, Harper AR, Ormondroyd E, West DM, Xu X, Theotokis PI, Buchan RJ, McGurk KA, Mazzarotto F, Boschi B, Pelo E, Lee M, Noseda M, Varnava A, Vermeer AM, Walsh R, Amin AS, van Slegtenhorst MA, Roslin N, Strug LJ, Salvi E, Lanzani C, de Marvao A, Hypergenes InterOmics Collaborators, Roberts JD, Tremblay-Gravel M, Giraldeau G, Cadrin-Tourigny J, L'Allier PL, Garceau P, Talajic M, Pinto YM, Rakowski H, Pantazis A, Baksi J, Halliday BP, Prasad SK, Barton PJ, O'Regan DP, Cook SA, de Boer RA, Christiaans I, Michels M, Kramer CM, Ho CY, Neubauer S, HCMR Investigators, Matthews PM, Wilde AA, Tardif J-C, Olivotto I, Adler A, Goel A, Ware JS, Bezzina CR, Watkins Het al., 2023, Large scale genome-wide association analyses identify novel genetic loci and mechanisms in hypertrophic cardiomyopathy., medRxiv

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.

Journal article

Quaife NM, Chothani S, Schulz JF, Lindberg EL, Vanezis K, Adami E, O'Fee K, Greiner J, Litviňuková M, van Heesch S, Whiffin N, Hubner N, Schafer S, Rackham O, Cook SA, Barton PJRet al., 2023, LINC01013 is a determinant of fibroblast activation and encodes a novel fibroblast-activating micropeptide, Journal of Cardiovascular Translational Research, Vol: 16, Pages: 77-85, ISSN: 1937-5387

Myocardial fibrosis confers an almost threefold mortality risk in heart disease. There are no prognostic therapies and novel therapeutic targets are needed. Many thousands of unannotated small open reading frames (smORFs) have been identified across the genome with potential to produce micropeptides (< 100 amino acids). We sought to investigate the role of smORFs in myocardial fibroblast activation.Analysis of human cardiac atrial fibroblasts (HCFs) stimulated with profibrotic TGFβ1 using RNA sequencing (RNA-Seq) and ribosome profiling (Ribo-Seq) identified long intergenic non-coding RNA LINC01013 as TGFβ1 responsive and containing an actively translated smORF. Knockdown of LINC01013 using siRNA reduced expression of profibrotic markers at baseline and blunted their response to TGFβ1. In contrast, overexpression of a codon-optimised smORF invoked a profibrotic response comparable to that seen with TGFβ1 treatment, whilst FLAG-tagged peptide associated with the mitochondria.Together, these data support a novel LINC01013 smORF micropeptide-mediated mechanism of fibroblast activation.

Journal article

Lota A, Hazebroek M, Theotokis P, Wassall R, Salmi S, Halliday B, Tayal U, Verdonschot J, Meena D, Owen R, de Marvao A, Iacob A, Yazdani M, Hammersley D, Jones R, Wage R, Buchan R, Vivian F, Hafouda Y, Noseda M, Gregson J, Mittal T, Wong J, Robertus JL, Baksi AJ, Vassiliou V, Tzoulaki I, Pantazis A, Cleland J, Barton P, Cook S, Pennell D, Cooper L, Garcia-Pavia P, Heymans S, Ware J, Prasad Set al., 2022, Genetic architecture of acute myocarditis and the overlap with inherited cardiomyopathy, Circulation, Vol: 146, Pages: 1123-1134, ISSN: 0009-7322

Background: Acute myocarditis is an inflammatory condition that may herald the onset of dilated (DCM) or arrhythmogenic cardiomyopathy (ACM). We investigated the frequency and clinical consequences of DCM and ACM genetic variants in a population-based cohort of patients with acute myocarditis. Methods: Population-based cohort of 336 consecutive patients with acute myocarditis enrolled in London and Maastricht. All participants underwent targeted DNA-sequencing for well-characterised cardiomyopathy-associated genes with comparison to healthy controls (n=1053) sequenced on the same platform. Case ascertainment in England was assessed against national hospital admission data. The primary outcome was all-cause mortality. Results: Variants that would be considered pathogenic if found in a patient with DCM or ACM were identified in 8% of myocarditis cases compared to <1% of healthy controls (p=0.0097). In the London cohort (n=230; median age 33years; 84% men), patients were representative of national myocarditis admissions (median age 32years; 71% men; 66% case ascertainment), and there was enrichment of rare truncating variants (tv) in ACM-associated genes (3.1% cases vs 0.4% controls; odds ratio 8.2; p=0.001). This was driven predominantly by desmoplakin (DSP)-tv in patients with normal LV ejection fraction and ventricular arrhythmia. In Maastricht (n=106; median age 54years; 61% men), there was enrichment of rare truncating variants in DCM-associated genes, particularly TTN-tv found in 7% (all with LVEF<50%) compared to 1% in controls (OR 3.6; p=0.0116). Across both cohorts over a median of 5.0 years (IQR 3.9-7.8), all-cause mortality was 5.4%. Two thirds of deaths were cardiovascular, due to worsening heart failure (92%) or sudden cardiac death (8%). The 5-year mortality risk was 3.3% in genotype negative patients versus 11.1% for genotype positive patients (Padjusted=0.08). Conclusions: We identified DCM- or ACM-associated genetic variants in 8% of patients wit

Journal article

Reichart D, Lindberg EL, Maatz H, Miranda AMA, Viveiros A, Shvetsov N, Gaertner A, Nadelmann ER, Lee M, Kanemaru K, Ruiz-Orera J, Strohmenger V, DeLaughter DM, Patone G, Zhang H, Woehler A, Lippert C, Kim Y, Adami E, Gorham JM, Barnett SN, Brown K, Buchan RJ, Chowdhury RA, Constantinou C, Cranley J, Felkin LE, Fox H, Ghauri A, Gummert J, Kanda M, Li R, Mach L, McDonough B, Samari S, Shahriaran F, Yapp C, Stanasiuk C, Theotokis P, Theis FJ, van den Bogaerdt A, Wakimoto H, Ware JS, Worth CL, Barton PJR, Lee Y-A, Teichmann SA, Milting H, Noseda M, Oudit GY, Heinig M, Seidman JG, Hubner N, Seidman CEet al., 2022, Pathogenic variants damage cell composition and single-cell transcription in cardiomyopathies, Science, Vol: 377, Pages: 1-13, ISSN: 0036-8075

INTRODUCTIONHuman heart failure is a highly morbid condition that affects 23 million individuals worldwide. It emerges in the setting of an array of different cardiovascular disorders, which has propelled the notion that diverse stimuli converge on a common final pathway. Consistent with this, initiating etiologies do not direct heart failure treatments, which are often inadequate and necessitate mechanical interventions and cardiac transplantation.The recent application of single-nucleus RNA sequencing (snRNAseq) transcriptional analyses to characterize the cellular composition and molecular states in the healthy adult human heart provides an emerging benchmark by which disease-related changes can be assessed. Moreover, the discovery of human pathogenic variants that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM), disorders associated with high rates of heart failure, provides direct opportunities to evaluate whether genotype influences heart failure pathways.RATIONALEA systematic identification of shared and distinct molecules and pathways involved in heart failure is lacking, and knowledge of these fundamental data could propel the development of more effective treatments. To enable these discoveries, we performed snRNAseq of explanted ventricular tissues from 18 healthy donors and 61 heart failure patients. By focusing analyses on multiple samples with pathogenic variants in DCM genes (LMNA, RBM20, and TTN), ACM genes (PKP2), or pathogenic variant–negative (PV negative) samples, we characterized genotype-stratified and common heart failure responses.RESULTSFrom 881,081 nuclei isolated from left and right diseased and healthy ventricles, we identified 10 major cell types and 71 distinct transcriptional states. DCM and ACM tissues showed significant depletion of cardiomyocytes and increased endothelial and immune cells. Fibrosis was expanded in disease hearts, but, unexpectedly, fibroblasts were not increased, and instead showed a

Journal article

Tayal U, Verdonschot JAJ, Hazebroek MR, Howard J, Gregson J, Newsome S, Gulati A, Pua CJ, Halliday BP, Lota AS, Buchan RJ, Whiffin N, Kanapeckaite L, Baruah R, Jarman JWE, O'Regan DP, Barton PJR, Ware JS, Pennell DJ, Adriaans BP, Bekkers SCAM, Donovan J, Frenneaux M, Cooper LT, Januzzi JL, Cleland JGF, Cook SA, Deo RC, Heymans SRB, Prasad SKet al., 2022, Precision phenotyping of dilated cardiomyopathy using multidimensional data., Journal of the American College of Cardiology, Vol: 79, Pages: 2219-2232, ISSN: 0735-1097

BACKGROUND: Dilated cardiomyopathy (DCM) is a final common manifestation of heterogenous etiologies. Adverse outcomes highlight the need for disease stratification beyond ejection fraction. OBJECTIVES: The purpose of this study was to identify novel, reproducible subphenotypes of DCM using multiparametric data for improved patient stratification. METHODS: Longitudinal, observational UK-derivation (n = 426; median age 54 years; 67% men) and Dutch-validation (n = 239; median age 56 years; 64% men) cohorts of DCM patients (enrolled 2009-2016) with clinical, genetic, cardiovascular magnetic resonance, and proteomic assessments. Machine learning with profile regression identified novel disease subtypes. Penalized multinomial logistic regression was used for validation. Nested Cox models compared novel groupings to conventional risk measures. Primary composite outcome was cardiovascular death, heart failure, or arrhythmia events (median follow-up 4 years). RESULTS: In total, 3 novel DCM subtypes were identified: profibrotic metabolic, mild nonfibrotic, and biventricular impairment. Prognosis differed between subtypes in both the derivation (P < 0.0001) and validation cohorts. The novel profibrotic metabolic subtype had more diabetes, universal myocardial fibrosis, preserved right ventricular function, and elevated creatinine. For clinical application, 5 variables were sufficient for classification (left and right ventricular end-systolic volumes, left atrial volume, myocardial fibrosis, and creatinine). Adding the novel DCM subtype improved the C-statistic from 0.60 to 0.76. Interleukin-4 receptor-alpha was identified as a novel prognostic biomarker in derivation (HR: 3.6; 95% CI: 1.9-6.5; P = 0.00002) and validation cohorts (HR: 1.94; 95% CI: 1.3-2.8; P = 0.00005). CONCLUSIONS: Three reproducible, mechanistically distinct DCM subtypes were identified using widely available clinical and biological data, adding prognostic value to trad

Journal article

Tayal U, gregson J, Buchan R, Whiffin N, Halliday B, Lota A, Roberts A, Baksi A, Voges I, Jarman J, Baruah R, Frenneaux M, Cleland J, Barton P, Pennell D, Ware J, Cook S, Prasad Set al., 2022, Moderate excess alcohol consumption and adverse cardiac remodelling in dilated cardiomyopathy, Heart, Vol: 108, Pages: 619-625, ISSN: 1355-6037

Objective The effect of moderate excess alcohol consumption is widely debated and has not been well defined in dilated cardiomyopathy (DCM). There is need for a greater evidence base to help advise patients. We sought to evaluate the effect of moderate excess alcohol consumption on cardiovascular structure, function and outcomes in DCM. Methods Prospective longitudinal observational cohort study. Patients with DCM (n=604) were evaluated for a history of moderate excess alcohol consumption (UK government guidelines; >14 units/week for women, >21 units/week for men) at cohort enrollment, had cardiovascular magnetic resonance and were followed up for the composite endpoint of cardiovascular death, heart failure and arrhythmic events. Patients meeting criteria for alcoholic cardiomyopathy were not recruited. ResultsDCM patients with a history of moderate excess alcohol consumption (n=98, 16%) had lower biventricular function and increased chamber dilatation of the left ventricle, right ventricle and left atrium, as well as increased left ventricular hypertrophy compared to patients without moderate alcohol consumption. They were more likely to be male (alcohol excess group– n =92, 94% vs n =306, 61%, p=<0.001). After adjustment for biological sex, moderate excess alcohol was not associated with adverse cardiac structure. There was no difference in mid-wall myocardial fibrosis between groups. Prior moderate excess alcohol consumption did not affect prognosis (HR 1.29, 0.73 to 2.26, p=0.38) during median follow up of 3.9 years. ConclusionDilated cardiomyopathy patients with moderate excess alcohol consumption have adverse cardiac structure and function at presentation but this is largely due to biological sex. Alcohol may contribute to sex-specific phenotypic differences in DCM. These findings help to inform lifestyle discussions for patients with dilated cardiomyopathy.

Journal article

Clerk A, Meijles DN, Hardyman MA, Fuller SJ, Chothani SP, Cull JJ, Cooper STE, Alharbi HO, Vanezis K, Felkin LE, Markou T, Leonard SJ, Shaw SW, Rackham OJL, Cook SA, Glennon PE, Sheppard MN, Sembrat JC, Rojas M, McTiernan CF, Barton PJ, Sugden PHet al., 2022, Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo, Biochemical Journal, Vol: 479, Pages: 401-424, ISSN: 0264-6021

The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.

Journal article

Simoes Monteiro de Marvao A, McGurk K, Zheng S, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F, Statton B, Dawes T, Savioli N, Halliday B, Xu X, Buchan R, Baksi A, Quinlan M, Tokarczuk P, Tayal U, Francis C, Whiffin N, Theotokis A, Zhang X, Jang M, Berry A, Pantazis A, Barton P, Rueckert D, Prasad S, Walsh R, Ho C, Cook S, Ware J, O'Regan Det al., 2021, Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy, Journal of the American College of Cardiology, Vol: 78, Pages: 1097-1110, ISSN: 0735-1097

Background: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomereencoding genes, but little is known about the clinical significance of these variants in thegeneral population.Objectives: To compare lifetime outcomes and cardiovascular phenotypes according to thepresence of rare variants in sarcomere-encoding genes amongst middle-aged adults.Methods: We analysed whole exome sequencing and cardiac magnetic resonance (CMR)imaging in UK Biobank participants stratified by sarcomere-encoding variant status.Results: The prevalence of rare variants (allele frequency <0.00004) in HCM-associatedsarcomere-encoding genes in 200,584 participants was 2.9% (n=5,712; 1 in 35), and theprevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was0.25% (n=493, 1 in 407). SARC-HCM-P/LP variants were associated with increased risk ofdeath or major adverse cardiac events compared to controls (HR 1.69, 95% CI 1.38 to 2.07,p<0.001), mainly due to heart failure endpoints (HR 4.23, 95% CI 3.07 to 5.83, p<0.001). In21,322 participants with CMR, SARC-HCM-P/LP were associated with asymmetric increasein left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p<0.001) buthypertrophy (≥13mm) was only present in 18.4% (n=9/49, 95% CI 9 to 32%). SARC-HCMP/LP were still associated with heart failure after adjustment for wall thickness (HR 6.74,95% CI 2.43 to 18.7, p<0.001).Conclusions: In this population of middle-aged adults, SARC-HCM-P/LP variants have lowaggregate penetrance for overt HCM but are associated with increased risk of adversecardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absoluteevent rates are low, identification of these variants may enhance risk stratification beyondfamilial disease.

Journal article

Aguib Y, Allouba M, Walsh R, Ibrahim AM, Halawa S, Afify A, Hosny M, Theotokis PI, Galal A, Elshorbagy S, Roshdy M, Kassem HS, Ellithy A, Buchan R, Whiffin N, Anwer S, Cook S, Moustafa A, ElGuindy A, Ware J, Barton P, Yacoub Met al., 2021, New variant with a previously unrecognized mechanism of pathogenicity in hypertrophic cardiomyopathy, Circulation, Vol: 144, Pages: 754-757, ISSN: 0009-7322

Journal article

Patel PN, Ito K, Willcox JAL, Haghighi A, Jang MY, Gorham JM, DePalma SR, Lam L, McDonough B, Johnson R, Lakdawala NK, Roberts A, Barton PJR, Cook SA, Fatkin D, Seidman CE, Seidman JGet al., 2021, Contribution of noncanonical splice variants to TTN truncating variants cardiomyopathy, Circulation: Genomic and Precision Medicine, Vol: 14, Pages: 1-10, ISSN: 2574-8300

Background:Heterozygous TTN truncating variants cause 10% to 20% of idiopathic dilated cardiomyopathy (DCM). Although variants which disrupt canonical splice signals (ie, invariant dinucleotide of splice donor site, invariant dinucleotide of the splice acceptor site) at exon-intron junctions are readily recognized as TTN truncating variants, the effects of other nearby sequence variations on splicing and their contribution to disease is uncertain.Methods:Rare variants of unknown significance located in the splice regions of highly expressed TTN exons from 203 DCM cases, 3329 normal subjects, and clinical variant databases were identified. The effects of these variants on splicing were assessed using an in vitro splice assay.Results:Splice-altering variants of unknown significance were enriched in DCM cases over controls and present in 2% of DCM patients (P=0.002). Application of this method to clinical variant databases demonstrated 20% of similar variants of unknown significance in TTN splice regions affect splicing. Noncanonical splice-altering variants were most frequently located at position +5 of the donor site (P=4.4×107) and position -3 of the acceptor site (P=0.002). SpliceAI, an emerging in silico prediction tool, had a high positive predictive value (86%–95%) but poor sensitivity (15%–50%) for the detection of splice-altering variants. Alternate exons spliced out of most TTN transcripts frequently lacked the consensus base at +5 donor and −3 acceptor positions.Conclusions:Noncanonical splice-altering variants in TTN explain 1-2% of DCM and offer a 10-20% increase in the diagnostic power of TTN sequencing in this disease. These data suggest rules that may improve efforts to detect splice-altering variants in other genes and may explain the low percent splicing observed for many alternate TTN exons.

Journal article

Wright CF, Quaife NM, Ramos-Hernández L, Danecek P, Ferla MP, Samocha KE, Kaplanis J, Gardner EJ, Eberhardt RY, Chao KR, Karczewski KJ, Morales J, Gallone G, Balasubramanian M, Banka S, Gompertz L, Kerr B, Kirby A, Lynch SA, Morton JEV, Pinz H, Sansbury FH, Stewart H, Zuccarelli BD, Genomics England Research Consortium, Cook SA, Taylor JC, Juusola J, Retterer K, Firth HV, Hurles ME, Lara-Pezzi E, Barton PJR, Whiffin Net al., 2021, Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms, American Journal of Human Genetics, Vol: 108, Pages: 1083-1094, ISSN: 0002-9297

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.

Journal article

Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG, Roberts AM, Quaife NM, Schafer S, Rackham O, Alfoeldi J, O'Donnell-Luria AH, Francioli LC, Armean IM, Aguilar Salinas CA, Cook SA, Barton PJR, MacArthur DG, Ware JSet al., 2021, Characterising the loss-of-function impact of 5 ' untranslated region variants in 15,708 individuals (vol 11, 2523, 2020), Nature Communications, Vol: 12, Pages: 1-1, ISSN: 2041-1723

Journal article

Mazzarotto F, Hawley MH, Beltrami M, Beekman L, De Marvao A, McGurk K, Statton B, Boschi B, Girolami F, Roberts AM, Lodder EM, Allouba M, Romeih S, Aguib Y, Baksi J, Pantazis A, Prasad SK, Cerbai E, Yacoub M, O'Regan D, Cook S, Ware J, Funke B, Olivotto I, Bezzina C, Barton P, Walsh Ret al., 2021, Systematic large-scale assessment of the genetic architecture of left ventricular non-compaction reveals diverse aetiologies, Genetics in Medicine, Vol: 23, Pages: 856-864, ISSN: 1098-3600

Purpose: To characterise the genetic architecture of left ventricular non-compaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases.Methods: We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Results: We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants (TV) in MYH7, ACTN2 and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC aetiology. In particular, MYH7 TV, generally considered non-pathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7 TV heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater non-compaction compared to matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes.Conclusions: LVNC is characterised by substantial genetic overlap with DCM/HCM but is also associated with distinct non-compaction and arrhythmia aetiologies. These results will enable enhanced application of LVNC genetic testing and help to distinguish pathological from physiological non-compaction.

Journal article

de Marvao A, McGurk KA, Zheng SL, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F, Statton B, Dawes TJW, Savioli N, Halliday BP, Xu X, Buchan RJ, Baksi AJ, Quinlan M, Tokarczuk P, Tayal U, Francis C, Whiffin N, Theotokis PI, Zhang X, Jang M, Berry A, Pantazis A, Barton PJR, Rueckert D, Prasad SK, Walsh R, Ho CY, Cook SA, Ware JS, ORegan DPet al., 2021, Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We compared outcomes and cardiovascular phenotypes in UK Biobank participants with whole exome sequencing stratified by sarcomere-encoding variant status.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The prevalence of rare variants (allele frequency &lt;0.00004) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n=5,727; 1 in 35), of which 0.24% (n=474, 1 in 423) were pathogenic or likely pathogenic variants (SARC-P/LP). SARC-P/LP variants were associated with increased risk of death or major adverse cardiac events compared to controls (HR 1.68, 95% CI 1.37-2.06, p&lt;0.001), mainly due to heart failure (HR 4.40, 95% CI 3.22-6.02, p&lt;0.001) and arrhythmia (HR 1.55, 95% CI 1.18-2.03, p=0.002). In 21,322 participants with cardiac magnetic resonance imaging, SARC-P/LP were associated with increased left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p&lt;0.001) and concentric remodelling (mass/volume ratio: 0.63±0.12 vs 0.58±0.09 g/mL, p&lt;0.001), but hypertrophy (≥13mm) was only present in 16% (n=7/43, 95% CI 7-31%). Other rare sarcomere-encoding variants had a weak effect on wall thickness (9.5±1.7 vs 9.4±1.6 mm, p=0.002) with no combined excess cardiovascular risk (HR 1.00 95% CI 0.92-1.08, p=0.9).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>In the general population, SARC-P/LP variants have low aggregate penetrance for overt HCM bu

Working paper

Ware J, Tadros R, Francis C, Xu X, Matthews P, watkins H, Bezzina Cet al., 2021, Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect, Nature Genetics, Vol: 53, Pages: 128-134, ISSN: 1061-4036

The heart muscle diseases hypertrophic (HCM) and dilated (DCM) cardiomyopathies are leading causes of sudden death and heart failure in young otherwise healthy individuals. We conducted genome-wide association studies (GWAS) and multi-trait analyses in HCM (1,733 cases), DCM (5,521 cases), and nine left ventricular (LV) traits in 19,260 UK Biobank participants with structurally-normal hearts. We identified 16 loci associated with HCM, 13 with DCM, and 23 with LV traits. We show strong genetic correlations between LV traits and cardiomyopathies, with opposing effects in HCM and DCM. Two-sample Mendelian randomization supports a causal association linking increased contractility with HCM risk. A polygenic risk score (PRS) explains a significant portion of phenotypic variability in carriers of HCM-causing rare variants. Our findings thus provide evidence that PRS may account for variability in Mendelian diseases. More broadly, we provide insights into how genetic pathways may lead to distinct disorders through opposing genetic effects.

Journal article

Zhang X, Walsh R, Whiffin N, Buchan R, Midwinter W, Wilk A, Govind R, Li N, Ahmad M, Mazzarotto F, Roberts A, Theotokis P, Mazaika E, Allouba M, de Marvao A, Pua CJ, Day SM, Ashley E, Colan SD, Michels M, Pereira AC, Jacoby D, Ho CY, Olivotto I, Gunnarsson GT, Jefferies J, Semsarian C, Ingles J, ORegan DP, Aguib Y, Yacoub MH, Cook SA, Barton PJR, Bottolo L, Ware JSet al., 2021, Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions, Genetics in Medicine, Vol: 23, Pages: 69-79, ISSN: 1098-3600

Background: Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical genome interpretation. State-of-the-art machine learning tools are useful for genome-wide variant prioritisation but remain imprecise. Since the relationship between molecular consequence and likelihood of pathogenicity varies between genes with distinct molecular mechanisms, we hypothesised that a disease-specific classifier may outperform existing genome-wide tools. Methods: We present a novel disease-specific variant classification tool, CardioBoost, that estimates the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and arrhythmias, trained with variants of known clinical effect. To benchmark against state-of-the-art genome-wide pathogenicity classification tools, we assessed classification of hold-out test variants using both overall performance metrics, and metrics of high-confidence (&gt;90%) classifications relevant to variant interpretation. We further evaluated the prioritisation of variants associated with disease and patient clinical outcomes, providing validations that are robust to potential mis-classification in gold-standard reference datasets.Results: CardioBoost has higher discriminating power than published genome-wide variant classification tools in distinguishing between pathogenic and benign variants based on overall classification performance measures with the highest area under the Precision-Recall Curve as 91% for cardiomyopathies and as 96% for inherited arrhythmias. When assessed at high-confidence (&gt;90%) classification thresholds, prediction accuracy is improved by at least 120% over existing tools for both cardiomyopathies and arrhythmias, with significantly improved sensitivity and specificity. Finally, CardioBoost improves prioritisation of variants significantly associated with disease, and stratifies survival of patients with cardiomyopathies, confirming biologically relevant vari

Journal article

Aguib Y, Allouba M, Afify A, Halawa S, El-Khatib M, Sous M, Galal A, Abdelrahman E, Shehata N, El Sawy A, Elmaghawry M, Anwer S, Kamel O, El Mozy W, Khedr H, Kharabish A, Thabet N, Theotokis P, Buchan R, Govind R, Whiffin N, Walsh R, Aguib H, ElGuindy A, O'Regan D, Cook S, Barton P, Ware J, Yacoub Met al., 2020, The Egyptian collaborative cardiac genomics (ECCO-GEN) Project: defining a healthy volunteer cohort, npj Genomic Medicine, Vol: 5, Pages: 1-8, ISSN: 2056-7944

The integration of comprehensive genomic and phenotypic data from diverse ethnic populations offers unprecedented opportunities towards advancements in precision medicine and novel diagnostic technologies. Current reference genomic databases are not representative of the global human population, making variant interpretation challenging, especially in underrepresented populations such as the North African population. To address this, the Egyptian Collaborative Cardiac Genomics (ECCO-GEN) Project launched a study comprising 1,000 individuals free of cardiovascular disease (CVD). Here, we present the first 391 Egyptian healthy volunteers (EHVols) recruited to establish a pilot phenotyped control cohort. All individuals underwent detailed clinical investigation, including cardiac MRI, and were sequenced using a targeted panel of 174 genes with reported roles in inherited cardiac conditions (ICC). We identified 1,262 variants in 27 cardiomyopathy genes of which 15.1% were not captured in current global and regional genetic reference databases (here: gnomAD and Great Middle Eastern (GME) Variome). The ECCO-GEN project aims at defining the genetic landscape of an understudied population and providing individual-level genetic and phenotypic data to support future studies in CVD and population genetics.

Journal article

Pua CJ, Tham N, Chin CW, Walsh R, Khor CC, Toepfer CN, Repetti GG, Garfinkel AC, Ewoldt JF, Cloonan P, Chen CS, Lim SQ, Cai J, Loo LY, Kong SC, Chiang CWK, Whiffin N, de Marvao A, Lio PM, Hii AA, Yang CX, Le TT, Bylstra Y, Lim WK, Teo JX, Padilha K, Venturini G, Pan B, Govind R, Buchan RJ, Barton PJ, Tan P, Foo R, Yip JWL, Wong RCC, Chan WX, Pereira AC, Tang HC, Jamuar SS, Ware JS, Seidman JG, Seidman CE, Cook SAet al., 2020, Genetic studies of hypertrophic cardiomyopathy in Singaporeans identify variants in TNNI3 and TNNT2 that are common in Chinese patients, Circulation: Genomic and Precision Medicine, Vol: 13, Pages: 424-434, ISSN: 2574-8300

Background - To assess the genetic architecture of hypertrophic cardiomyopathy (HCM) in patients of predominantly Chinese ancestry.Methods - We sequenced HCM disease genes in Singaporean patients (n=224) and Singaporean controls (n=3,634), compared findings with additional populations and Caucasian HCM cohorts (n=6,179) and performed in vitro functional studies.Results - Singaporean HCM patients had significantly fewer confidently interpreted HCM disease variants (Pathogenic (P)/Likely Pathogenic (LP):18%, p<0.0001) but an excess of variants of unknown significance (exVUS: 24%, p<0.0001), as compared to Caucasians (P/LP: 31%, exVUS: 7%). Two missense variants in thin filament encoding genes were commonly seen in Singaporean HCM (TNNI3:p.R79C, disease allele frequency (AF)=0.018; TNNT2:p.R286H, disease AF=0.022) and are enriched in Singaporean HCM when compared with Asian controls (TNNI3:p.R79C, Singaporean controls AF=0.0055, p=0.0057, gnomAD-East Asian (gnomAD-EA) AF=0.0062, p=0.0086; TNNT2:p.R286H, Singaporean controls AF=0.0017, p<0.0001, gnomAD-EA AF=0.0009, p<0.0001). Both these variants have conflicting annotations in ClinVar and are of low penetrance (TNNI3:p.R79C, 0.7%; TNNT2:p.R286H, 2.7%) but are predicted to be deleterious by computational tools. In population controls, TNNI3:p.R79C carriers had significantly thicker left ventricular walls compared to non-carriers while its etiological fraction is limited (0.70, 95% CI: 0.35-0.86) and thus TNNI3:p.R79C is considered a VUS. Mutant TNNT2:p.R286H iPSC-CMs show hypercontractility, increased metabolic requirements and cellular hypertrophy and the etiological fraction (0.93, 95% CI: 0.83-0.97) support the likely pathogenicity of TNNT2:p.R286H.Conclusions - As compared to Caucasians, Chinese HCM patients commonly have low penetrance risk alleles in TNNT2 or TNNI3 but exhibit few clinically actionable HCM variants overall. This highlights the need for greater study of HCM genetics in non-Caucasian pop

Journal article

Lopez-Sainz A, Dominguez F, Rocha Lopes L, Pablo Ochoa J, Barriales-Villa R, Climent V, Linschoten M, Tiron C, Chiriatti C, Marques N, Rasmussen TB, Angeles Espinosa M, Beinart R, Quarta G, Cesar S, Field E, Garcia-Pinilla JM, Bilinska Z, Muir AR, Roberts AM, Santas E, Zorio E, Pena-Pena ML, Navarro M, Fernandez A, Palomino-Doza J, Azevedo O, Lorenzini M, Garcia-Alvarez MI, Bento D, Jensen MK, Mendez I, Pezzoli L, Sarquella-Brugada G, Campuzano O, Gonzalez-Lopez E, Mogensen J, Kaski JP, Arad M, Brugada R, Asselbergs FW, Monserrat L, Olivotto I, Elliott PM, Garcia-Pavia Pet al., 2020, Clinical features and natural history of PRKAG2 variant cardiac glycogenosis, Journal of the American College of Cardiology, Vol: 76, Pages: 186-197, ISSN: 0735-1097

BackgroundPRKAG2 gene variants cause a syndrome characterized by cardiomyopathy, conduction disease, and ventricular pre-excitation. Only a small number of cases have been reported to date, and the natural history of the disease is poorly understood.ObjectivesThe aim of this study was to describe phenotype and natural history of PRKAG2 variants in a large multicenter European cohort.MethodsClinical, electrocardiographic, and echocardiographic data from 90 subjects with PRKAG2 variants (53% men; median age 33 years; interquartile range [IQR]: 15 to 50 years) recruited from 27 centers were retrospectively studied.ResultsAt first evaluation, 93% of patients were in New York Heart Association functional class I or II. Maximum left ventricular wall thickness was 18 ± 8 mm, and left ventricular ejection fraction was 61 ± 12%. Left ventricular hypertrophy (LVH) was present in 60 subjects (67%) at baseline. Thirty patients (33%) had ventricular pre-excitation or had undergone accessory pathway ablation; 17 (19%) had pacemakers (median age at implantation 36 years; IQR: 27 to 46 years), and 16 (18%) had atrial fibrillation (median age 43 years; IQR: 31 to 54 years). After a median follow-up period of 6 years (IQR: 2.3 to 13.9 years), 71% of subjects had LVH, 29% had AF, 21% required de novo pacemakers (median age at implantation 37 years; IQR: 29 to 48 years), 14% required admission for heart failure, 8% experienced sudden cardiac death or equivalent, 4% required heart transplantation, and 13% died.ConclusionsPRKAG2 syndrome is a progressive cardiomyopathy characterized by high rates of atrial fibrillation, conduction disease, advanced heart failure, and life-threatening arrhythmias. Classical features of pre-excitation and severe LVH are not uniformly present, and diagnosis should be considered in patients with LVH who develop atrial fibrillation or require permanent pacemakers at a young age.

Journal article

Mazzarotto F, Olivotto I, Boschi B, Girolami F, Poggesi C, Barton P, Walsh Ret al., 2020, Contemporary insights into the genetics of hypertrophic cardiomyopathy: towards a new era in clinical testing?, Journal of the American Heart Association, Vol: 21, Pages: 1-22, ISSN: 2047-9980

Genetic testing for hypertrophic cardiomyopathy (HCM) is an established clinical technique, supported by30 years of research into its genetic aetiology. Although pathogenic variants are often detected in patientsand used to identify at-risk relatives, the effectiveness of genetic testing has been hampered by ambiguousgenetic associations (yielding uncertain and potentially false-positive results), difficulties in classifyingvariants and uncertainty about genotype-negative patients. Recent case-control studies on rare variation,improved data sharing and meta-analysis of case cohorts contributed to new insights into the genetic basisof HCM. In particular, while research into new genes and mechanisms remains essential, re-assessment ofMendelian genetic associations in HCM argues that current clinical genetic testing should be limited to asmall number of validated disease genes that yield informative and interpretable results. Accurate andconsistent variant interpretation has benefitted from new standardised variant interpretation guidelines andinnovative approaches to improve classification. Most cases lacking a pathogenic variant are now believedto indicate non-Mendelian HCM, with more benign prognosis and minimal risk to relatives.Here, we discuss recent advances in the genetics of HCM and their application to clinical genetic testingtogether with practical issues regarding implementation. While this review focuses on HCM, many of theissues discussed are also relevant to other inherited cardiac diseases.

Journal article

Allouba M, Aguib Y, Walsh R, Afify A, Theotokis P, Galal A, Halawa S, Shorbagy S, Ibrahim AM, Kassem HS, Ellithy A, Buchan R, Hosny M, Whiffin N, Elguindy A, Anwer S, Cook SA, Ware JS, Barton PJ, Yacoub Met al., 2020, Analysis of HCM in an understudied population reveals a new mechanism of pathogenicity, Publisher: Cold Spring Harbor Laboratory

Hypertrophic Cardiomyopathy (HCM) is an inherited disease characterized by genetic and phenotypic heterogeneity. MYH7 represents one of the main sarcomere-encoding genes associated with HCM. Missense variants in this gene cause HCM through gain-of-function actions, whereby variants produce an abnormal activated protein which incorporates into the sarcomere as a "poison peptide". Here we report a frameshift variant in MYH7, c.5769delG, that is associated with HCM in an Egyptian cohort (3.3%) compared with ethnically-matched controls. This variant is absent from previously published large-scale Caucasian HCM cohorts. We further demonstrate strong evidence of co-segregation of c.5769delG with HCM in a large family (LOD score: 3.01). The predicted sequence of the variant MYH7 transcript shows that the frameshift results in a premature termination codon (PTC) downstream of the last exon-exon junction of the gene that is expected to escape nonsense-mediated decay (NMD). RNA sequencing of myocardial tissue obtained from a patient with the variant during surgical myectomy confirmed the expression of the variant MYH7 transcript. Our analysis reveals a new mechanism of pathogenicity in the understudied Egyptian population whereby distal PTC in MYH7 may lead to the expression of an abnormal protein.

Working paper

Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, de Marvao A, Dawes TJW, Felkin LE, Ahmad M, Theotokis PI, Edwards E, Ing AY, Thomson KL, Chan LLH, Sim D, Baksi AJ, Pantazis A, Roberts AM, Watkins H, Funke B, O'Regan DP, Olivotto I, Barton PJR, Prasad SK, Cook SA, Ware JS, Walsh Ret al., 2020, Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy., Circulation, Vol: 141, Pages: 387-398

BACKGROUND: Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 patients with DCM across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60 706 individuals to identify clinically interpretable genes robustly associated with dominant monogenic DCM. METHODS: We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 patients with DCM and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 patients with DCM sequenced in diagnostic laboratories and the Exome Aggregation Consortium database for replication and meta-analysis. RESULTS: Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1, and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult patients with DCM and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Although the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value because novel variants will be uninterpretable and their diagnostic yield is minimal. CONCLUSIONS: In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating in

Journal article

Chothani S, Schäfer S, Adami E, Viswanathan S, Widjaja AA, Langley SR, Tan J, Wang M, Quaife NM, Pua CJ, D'Agostino G, Shekeran SG, George BL, Lim S, Cao EY, van Heesch S, Witte F, Felkin LE, Christodoulou EG, Dong J, Blachut S, Patone G, Barton PJR, Hubner N, Cook SA, Rackham OJLet al., 2019, Widespread translational control of fibrosis in the human heart by RNA-binding proteins, Circulation, Vol: 140, Pages: 937-951, ISSN: 0009-7322

BACKGROUND: Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global post-transcriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored. METHODS: Genome-wide changes of RNA transcription and translation during human cardiac fibroblast activation were monitored with RNA sequencing and ribosome profiling. We then used an RNA-binding protein-based analyses to identify translational regulators of fibrogenic genes. The integration with cardiac ribosome occupancy levels of 30 dilated cardiomyopathy patients demonstrates that these post-transcriptional mechanisms are also active in the diseased fibrotic human heart. RESULTS: We generated nucleotide-resolution translatome data during the TGFβ1-driven cellular transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of RNA transcription and translation at several time points during the fibrotic response, revealing transient and early-responder genes. Remarkably, about one-third of all changes in gene expression in activated fibroblasts are subject to translational regulation and dynamic variation in ribosome occupancy affects protein abundance independent of RNA levels. Targets of RNA-binding proteins were strongly enriched in post-transcriptionally regulated genes, suggesting genes such as MBNL2 can act as translational activators or repressors. Ribosome occupancy in the hearts of patients with dilated cardiomyopathy suggested the same post-transcriptional regulatory network was underlying cardiac fibrosis. Key network hubs include RNA-binding proteins such as PUM2 and QKI that work in concert to regulate the translation of target transcripts in human diseased hearts. Furthermore, silencing of both PUM2 and QKI inhibits the transition of fibroblasts toward pro-fibrotic myofibroblasts in response to TGFβ1. CONCLUSIONS: We reveal widespread translational effects of

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00155490&limit=30&person=true