Imperial College London

PROFESSOR PANTELIS (PJ) BEAGHTON

Faculty of EngineeringInstitute for Security Science & Technology

Professor of Practice and Security Science Fellow
 
 
 
//

Contact

 

p.beaghton Website

 
 
//

Location

 

Level 2 Admin OfficeAbdus Salam LibrarySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@unpublished{Beaghton:2021:10.1101/2021.11.11.468225,
author = {Beaghton, P and Burt, A},
doi = {10.1101/2021.11.11.468225},
publisher = {Cold Spring Harbor Laboratory},
title = {Gene drives and population persistence vs elimination: the impact of spatial structure and inbreeding at low density},
url = {http://dx.doi.org/10.1101/2021.11.11.468225},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - UNPB
AB - Synthetic gene drive constructs are being developed to control disease vectors, invasive species, and other pest species. In a well-mixed random mating population a sufficiently strong gene drive is expected to eliminate a target population, but it is not clear whether the same is true when spatial processes play a role. In species with an appropriate biology it is possible that drive-induced reductions in density might lead to increased inbreeding, reducing the efficacy of drive, eventually leading to suppression rather than elimination, regardless of how strong the drive is. To investigate this question we analyse a series of explicitly solvable stochastic models considering a range of scenarios for the relative timing of mating, reproduction, and dispersal and analyse the impact of two different types of gene drive, a Driving Y chromosome and a homing construct targeting an essential gene. We find in all cases a sufficiently strong Driving Y will go to fixation and the population will be eliminated, except in the one life history scenario (reproduction and mating in patches followed by dispersal) where low density leads to increased inbreeding, in which case the population persists indefinitely, tending to either a stable equilibrium or a limit cycle. These dynamics arise because Driving Y males have reduced mating success, particularly at low densities, due to having fewer sisters to mate with. Increased inbreeding at low densities can also prevent a homing construct from eliminating a population. For both types of drive, if there is strong inbreeding depression, then the population cannot be rescued by inbreeding and it is eliminated. These results highlight the potentially critical role that low-density-induced inbreeding and inbreeding depression (and, by extension, other sources of Allee effects) can have on the eventual impact of a gene drive on a target population.
AU - Beaghton,P
AU - Burt,A
DO - 10.1101/2021.11.11.468225
PB - Cold Spring Harbor Laboratory
PY - 2021///
TI - Gene drives and population persistence vs elimination: the impact of spatial structure and inbreeding at low density
UR - http://dx.doi.org/10.1101/2021.11.11.468225
UR - https://www.biorxiv.org/content/10.1101/2021.11.11.468225v2
UR - http://hdl.handle.net/10044/1/92968
ER -