Imperial College London

ProfessorPavelBerloff

Faculty of Natural SciencesDepartment of Mathematics

Professor in Applied Mathematics
 
 
 
//

Contact

 

+44 (0)20 7594 9662p.berloff Website

 
 
//

Location

 

745Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Kondrashov:2018:10.3390/fluids3010021,
author = {Kondrashov, D and Chekroun, MD and Berloff, P},
doi = {10.3390/fluids3010021},
journal = {Fluids},
title = {Multiscale Stuart-Landau emulators: application to wind-driven ocean gyres},
url = {http://dx.doi.org/10.3390/fluids3010021},
volume = {3},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The multiscale variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper demonstrates how the data-adaptive harmonic (DAH) decomposition and inverse stochastic modeling techniques introduced in (Chekroun and Kondrashov, (2017), Chaos, 27), allow for reproducing with high fidelity the main statistical properties of multiscale variability in a coarse-grained eddy-resolving ocean flow. This fully-data-driven approach relies on extraction of frequency-ranked time-dependent coefficients describing the evolution of spatio-temporal DAH modes (DAHMs) in the oceanic flow data. In turn, the time series of these coefficients are efficiently modeled by a family of low-order stochastic differential equations (SDEs) stacked per frequency, involving a fixed set of predictor functions and a small number of model coefficients. These SDEs take the form of stochastic oscillators, identified as multilayer Stuart–Landau models (MSLMs), and their use is justified by relying on the theory of Ruelle–Pollicott resonances. The good modeling skills shown by the resulting DAH-MSLM emulators demonstrates the feasibility of using a network of stochastic oscillators for the modeling of geophysical turbulence. In a certain sense, the original quasiperiodic Landau view of turbulence, with the amendment of the inclusion of stochasticity, may be well suited to describe turbulence.
AU - Kondrashov,D
AU - Chekroun,MD
AU - Berloff,P
DO - 10.3390/fluids3010021
PY - 2018///
SN - 2311-5521
TI - Multiscale Stuart-Landau emulators: application to wind-driven ocean gyres
T2 - Fluids
UR - http://dx.doi.org/10.3390/fluids3010021
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000428555500021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/61666
VL - 3
ER -