Imperial College London

Dr Pablo Brito-Parada

Faculty of EngineeringDepartment of Earth Science & Engineering

Senior Lecturer



+44 (0)20 7594 9980p.brito-parada Website




2.55Royal School of MinesSouth Kensington Campus




Research Interests

My research activity focuses on the design and optimisation of multiphase separations, combining novel experimental techniques and numerical modelling as tools for process and equipment evaluation and design. I am also interested in fundamental aspects of foam physics and bubble-particle interaction phenomena, as well as the development and application of multicriteria decision-support methods for equipment selection.

Froth Flotation

My work on froth flotation includes the modelling of complex phenomena in the pulp and froth zones (using the Finite Element Method and developing Population Balance modelling capabilities in Fluidity) and the use of experimental techniques to characterise these systems. I have led optimisation testwork at flotation plants worldwide to enhance metallurgical recovery and assess flotation cell design. 

Froth flotation was the focus of one of the projects within the Rio Tinto Centre for Advanced Mineral Recovery and the study of two-phase foams and three-phase mineralised froths continues to be a key component of my research. A new H2020 project that will start later in 2019 will implement and scale up innovative technologies to enhance fine particle flotation and unlock fine grained deposits of critical raw materials.


I am interested in developing modelling tools for assessing the impact of metallurgical variability on mineral processing operations. This topic is a key component of Horizon 2020 project IMPaCT (€7 million funding), for which mineral processing flowsheets will be developed with an emphasis on low impact solutions with regards to water, energy and environmental impact.


I was a work package leader in PRODIAS ('Processing Diluted Aqueous Systems'), a €10 million project funded by the European Union with the aim of fostering competitiveness of the European process industry.  The project focused on unlocking the potential of renewable based products made via industrial biotechnology by significantly decreasing production costs, increasing productivity and efficiency, lowering energy consumption, and accelerating process developments. I am particularly interested in the use of small hydrocyclones for dewatering and classification, as well as in the application of decision support techniques for the design of downstream processes and equipment selection. 

Guest Lectures

The role of fine particles in the transition from first to zero order kinetics (invited talk), EIT Raw Materials - Expert forum on fine particle flotation and sustainable use of water in mineral processing, HZDR Dresden, 2019

Mineral Processing Research and Innovation in the Digital Age (invited workshop panellist), XXIX International Mineral Processing Congress, Moscow, Russia, 2018

Enhancing froth flotation – bench scale studies of the effect of operating conditions and cell design, University of the Witwatersrand, Johannesburg, South Africa, 2018

How to optimise flotation for increased mineral production using the Peak Air Recovery methodology (invited speaker), Mines & Technology, London, 2017

Developing CFD modelling frameworks for mineral processing (invited speaker), 1st Chinese Mineral Processing Congress (2017), Central South University, Changsha, China, 2017

Emerging Young Leaders Forum (invited plenary panellist), XXVIII International Mineral Processing Congress, Quebec, Canada, 2016

Froth Flotation Innovation and Research, The Minerals Engineering Society - Mineral Processing Symposium, UK, 2015

Introduction to froth flotation modelling, AMIDIQ 2015 pre-conference workshop, Mexico, 2015

Modelling flotation - the importance of the froth phase, Universidad de Antofagasta / CICITEM, Chile, 2013