Imperial College London

DrPatrickDunne

Faculty of Natural SciencesDepartment of Physics

Lecturer (Future Leader Fellow)
 
 
 
//

Contact

 

p.dunne12

 
 
//

Location

 

531aBlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

391 results found

Abe K, Akhlaq N, Akutsu R, Alarakia-Charles H, Ali A, Alj Hakim YI, Alonso Monsalve S, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Casado MP, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Dasgupta P, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Fiorentini Aguirre GA, Fiorillo G, Fitton MD, Franco Patiño JM, Friend M, Fujii Y, Fukuda Y, Furui Y, Fusshoeller K, Giannessi L, Giganti C, Glagolev V, Gonin M, González Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DRet al., 2023, First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K, Physical Review D, Vol: 108, ISSN: 2470-0010

This paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV, respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result.

Journal article

Ritchie-Yates A, Deisting A, Barker G, Boyd S, Brailsford D, Chen-Wishart Z, Cremonesi L, Dunne P, Eeles J, Hamilton P, Kaboth AC, Khan N, Klustová A, Monroe J, Nowak J, Singh P, Waldron AV, Walding J, Warsame L, Wascko MO, Xiotidis Iet al., 2023, First operation of an ALICE OROC operated in high pressure Ar-CO <inf>2</inf> and Ar-CH <inf>4</inf>, European Physical Journal C, Vol: 83, ISSN: 1434-6044

New neutrino–nucleus interaction cross-section measurements are required to improve nuclear models sufficiently for future long baseline neutrino experiments to meet their sensitivity goals. A time projection chamber (TPC) filled with a high-pressure gas is a promising detector to characterise the neutrino sources used for such experiments. A gas-filled TPC is ideal for measuring low-energy particles, which travel further in gas than in solid or liquid detectors and using high-pressure increases the target density, resulting in more neutrino interactions. We examine the suitability of multiwire proportional chambers (MWPCs) from the ALICE TPC for use as the readout chambers of a high-pressure gas TPC. These chambers were previously operated at atmospheric pressure. We report the successful operation of an ALICE TPC outer readout chamber (OROC) at pressures up to 4.2 bar absolute (barA) with Ar-CH 4 mixtures with a CH 4 content between 2.8 and 5.0%, and so far up to 4 bar absolute with Ar-CO 2 (90-10). The charge gain of the OROC was measured with signals induced by an 55Fe source. The largest gain achieved at 4.2 bar was (29 ± 1) · 10 3 in Ar-CH 4 with 4.0% CH 4 with an anode voltage of 2975V . In Ar-CO 2 with 10% CO 2 at 4 barA, a gain of (4.2 ± 0.1) · 10 3 was observed with anode voltage 2975V . We extrapolate that at 10 barA, an interesting pressure for future neutrino experiments, a gain of 5000 in Ar-CO 2 with 10% CO 2 (10,000 in Ar-CH 4 with ∼4%CH 4) may be achieved with anode voltage of 4.6kV (∼3.6kV).

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alonso Monsalve S, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Casado MP, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Fiorentini Aguirre GA, Fiorillo G, Fitton MD, Franco Patiño JM, Friend M, Fujii Y, Fukuda Y, Furui Y, Giannessi L, Giganti C, Glagolev V, Gonin M, González Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa Tet al., 2023, Measurements of the νμ and ν ¯ μ -induced coherent charged pion production cross sections on C 12 by the T2K experiment, Physical Review D, Vol: 108, ISSN: 2470-0010

We report an updated measurement of the νμ-induced, and the first measurement of the ν¯μ-induced coherent charged pion production cross section on C12 nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2 GeV, cos(θμ)>0.8 and cos(θπ)>0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ charged current coherent pion production flux-averaged cross section on C12 is (2.98±0.37(stat)±0.31(syst)-0.00+0.49(Q2 model))×10-40 cm2. The new measurement of the ν¯μ-induced cross section on C12 is (3.05±0.71(stat)±0.39(syst)-0.00+0.74(Q2 model))×10-40 cm2. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions.

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alonso Monsalve S, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Casado MP, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Fiorentini Aguirre GA, Fiorillo G, Fitton MD, Franco Patiño JM, Friend M, Fujii Y, Fukuda Y, Furui Y, Fusshoeller K, Giannessi L, Giganti C, Glagolev V, Gonin M, González Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DAet al., 2023, Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6×1021 protons on target, Physical Review D, Vol: 108, ISSN: 2470-0010

Muon neutrino and antineutrino disappearance probabilities are identical in the standard three-flavor neutrino oscillation framework, but CPT violation and nonstandard interactions can violate this symmetry. In this work we report the measurements of sin2θ23 and Δm322 independently for neutrinos and antineutrinos. The aforementioned symmetry violation would manifest as an inconsistency in the neutrino and antineutrino oscillation parameters. The analysis discussed here uses a total of 1.97×1021 and 1.63×1021 protons on target taken with a neutrino and antineutrino beam respectively, and benefits from improved flux and cross section models, new near-detector samples and more than double the data reducing the overall uncertainty of the result. No significant deviation is observed, consistent with the standard neutrino oscillation picture.

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Monsalve SA, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Avanzini MB, Caballero JA, Calabria NF, Cao S, Carabadjac D, Carter AJ, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Chong PS, Christodoulou G, Chvirova A, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Dalmazzone C, Daret T, Davydov YI, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Erofeev G, Ershova A, Eurin G, Fedorova D, Fedotov S, Feltre M, Finch AJ, Aguirre GAF, Fiorillo G, Fitton MD, Franco Patino JM, Friend M, Fujii Y, Fukuda Y, Fusshoeller K, Giannessi L, Giganti C, Glagolev V, Gonin M, Gonzalez Rosa J, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayato Y, Henaff D, Hiramoto A, Hogan M, Holeczek J, Holin A, Holvey T, Van NTH, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Israel HT, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesus-Valls C, Jiang JJ, Jonsson P, Joshi S, Jung CK, Jurj PB, Kabirnezhad M, Kaboth AC, Kajita T, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kawaue M, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kiseeva V, Kisiel J, Kobata T, Kobayashi H, Kobayashi T, Koch L, Kodama S, Konaka A, Kormos LL, Koshio Y, Kostin A, Koto T, Kowalik K, Kudenko Y, Kudo Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, La Commara M, Labarga L, Lachner K, Lagoda J, Lakshmi SM, James ML, Lamoureux M, Langella A, Laporte J-F, Last D, Latham N, Laveder M, Lavitola L, Lawe M, Lee Y, Lin C, Lin S-K, Liet al., 2023, Measurements of neutrino oscillation parameters from the T2K experiment using 3.6 x 10<SUP>21</SUP> protons on target, EUROPEAN PHYSICAL JOURNAL C, Vol: 83, ISSN: 1434-6044

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolfi M, Adriano C, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Aimard B, Akbar F, Ali-Mohammadzadeh B, Allison K, Monsalve SA, AlRashed M, Alt C, Alton A, Alvarez R, Amedo P, Anderson J, Andreopoulos C, Andreotti M, Andrews M, Andrianala F, Andringa S, Anfimov N, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Arellano L, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala Lara V, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Backhouse C, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Barker G, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Batchelor C, Battat J, Battisti F, Bay F, Bazetto MCQ, Bazo Alba JL, Beacom JF, Bechetoille E, Behera B, das Chagas EBB, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Benitez Montiel C, Bento Neves F, Berger J, Berkman S, Bernardini P, Berner RM, Bersani A, Bertolucci S, Betancourt M, Rodriguez AB, Bevan A, Bezawada Y, Bezerra AT, Bezerra TJ, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhattarai D, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Brew C, Brice SJ, Brizzolari C, Bromberg C, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Butorov I, Cagnoli I, Cai T, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Caminata A, Campos Benitez A, Caratelli D, Carber D, Carceller JM, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranza H, Carroll T, Forero JFC, Castillo A, Castromonte Cet al., 2023, Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora, EUROPEAN PHYSICAL JOURNAL C, Vol: 83, ISSN: 1434-6044

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolfi M, Adriano C, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Aimard B, Akbar F, Allison K, Monsalve SA, Alrashed M, Alton A, Alvarez R, Amedo P, Anderson J, Andrade DA, Andreopoulos C, Andreotti M, Andrews MP, Andrianala F, Andringa S, Anfimov N, Campanelli WLA, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Aranda-Fernandez A, Arellano L, Arnold LO, Arroyave MA, Asaadi J, Ashkenazi A, Asquith L, Atkin E, Auguste D, Aurisano A, Aushev V, Autiero D, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baldini W, Baller B, Bambah B, Banerjee R, Barenboim G, Alzas PB, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Batchelor C, Battat JBR, Battisti F, Bay F, Bazetto MCQ, Alba JLLB, Beacom JF, Bechetoille E, Behera B, Belchior E, Bell G, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Montiel CB, Benjamin D, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Bersani A, Bertolucci S, Betancourt M, Rodriguez AB, Bevan A, Bezawada Y, Bezerra AT, Bezerra TJ, Bhambure J, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhattacharya M, Bhattarai D, Bhuller S, Bhuyan B, Biagi S, Bian J, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk FD, Blazey GC, Blend D, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bravo-Moreno M, Bremer J, Brew C, Brice SJ, Brio V, Brizzolari C, Bromberg C, Brooke CJ, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Buergi J, Caceres G, Cagnoli I, Cai T, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calivers L, Calvez S, Calvo E, Caminata A, Benitez AC, Caratelli D, Carber D, Carceller JM, Carini G, Carlus B, Carneiro MF, Carnitiet al., 2023, Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment, PHYSICAL REVIEW D, Vol: 107, ISSN: 2470-0010

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolfi M, Adriano C, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Aimard B, Akbar F, Allison K, Monsalve SA, Alrashed M, Alt C, Alton A, Alvarez R, Amedo P, Anderson J, Andrade DA, Andreopoulos C, Andreotti M, Andrews MP, Andrianala F, Andringa S, Anfimov N, Anicezio Campanelli WL, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Arellano L, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Batchelor C, Battat JBR, Battisti F, Bay F, Bazetto MCQ, Bazo Alba JLL, Beacom JF, Bechetoille E, Behera B, Belchior E, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Benitez Montiel C, Benjamin D, Bento Neves F, Berger J, Berkman S, Bernardini P, Berner RM, Bersani A, Bertolucci S, Betancourt M, Betancur Rodriguez A, Bevan A, Bezawada Y, Bezerra AT, Bezerra TJ, Bhambure J, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhattarai D, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bisignani V, Bitadze A, Blake A, Blaszczyk FD, Blazey GC, Blend D, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Brew C, Brice SJ, Brizzolari C, Bromberg C, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Buergi J, Caceres G, Cagnoli I, Cai T, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calivers L, Calvez S, Calvo E, Caminata A, Caratelli D, Carber D, Carceller JC, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranzaet al., 2023, Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector, PHYSICAL REVIEW D, Vol: 107, ISSN: 2470-0010

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolf M, Adriano C, Aduszkiewicz A, Aguila J, Ahmad Z, Ahmed J, Aimard B, Akbar F, Allison K, Monsalve SA, Alrashed M, Alt C, Alton A, Alvarez R, Amedo P, Anderson J, Andrade DA, Andreopoulos C, Andreotti M, Andrews MP, Andrianala F, Andringa S, Anfimov N, Campanelli WLA, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Arellano L, Arnold LO, Arroyave MA, Asaadi J, Ashkenazi A, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baldini W, Baller B, Bambah B, Barao F, Barenboim G, Alzas PB, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Batchelor C, Battat JBR, Battisti F, Bay F, Bazetto MCQ, Alba JLLB, Beacom JF, Bechetoille E, Behera B, Belchior E, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Montiel CB, Benjamin D, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Bersani A, Bertolucci S, Betancourt M, Rodriguez AB, Bevan A, Bezawada Y, Bezerra AT, Bezerra TJ, Bhambure J, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhattacharya M, Bhattarai D, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bisignani V, Bitadze A, Blake A, Blaszczyk FD, Blazey GC, Blend D, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bravo-Moreno M, Bremer J, Brew C, Brice SJ, Brizzolari C, Bromberg C, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Buergi J, Caceres G, Cagnoli I, Cai T, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calivers L, Calvez S, Calvo E, Caminata A, Caratelli D, Carber D, Carceller JC, Carini G, Carlus B, Carneiro MF, Carnitiet al., 2023, Highly-parallelized simulation of a pixelated LArTPC on a GPU, JOURNAL OF INSTRUMENTATION, Vol: 18, ISSN: 1748-0221

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Ban S, Barbi M, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bordoni S, Boyd SB, Bravar A, Bronner C, Bron S, Bubak A, Avanzini MB, Calabria NF, Cao S, Carter AJ, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Christodoulou G, Cicerchia M, Coleman J, Collazuol G, Cook L, Cudd A, Davydov Y, De Roeck A, De Rosa G, Dealtry T, Delogu CC, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Drapier O, Duffy KE, Dumarchez J, Dunne P, Dygnarowicz K, Eguchi A, Emery-Schrenk S, Ershova A, Fedotov S, Fernandez P, Finch AJ, Aguirre GAF, Fiorillo G, Friend M, Fujii Y, Fukuda Y, Fusshoeller K, Giganti C, Glagolev V, Gonin M, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hatzikoutelis A, Hayato Y, Hiramoto A, Hogan M, Holeczek J, Holin A, Holvey TJ, Van NTH, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Israel HT, Ives SJ, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesus-Valls C, Jiang JJ, Jonsson P, Jung CK, Jurj PB, Kabirnezhad M, Kaboth AC, Kajita T, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kawaue M, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kisiel J, Knight A, Kobata T, Kobayashi T, Koch L, Kogan G, Konaka A, Kormos LL, Koshio Y, Kostin A, Kowalik K, Kudenko Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, La Commara M, Labarga L, Lachner K, Lagoda J, Lakshmi SM, James ML, Lamont I, Lamoureux M, Last D, Latham N, Laveder M, Lawe M, Lee Y, Lin C, Lindner T, Lin S-K, Litchfield RP, Liu SL, Longhin A, Long KR, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Mandal M, Manly S, Marino AD, Marti-Magro L, Martin DGR, Martini M, Martin JF, Maruyama Tet al., 2022, Scintillator ageing of the T2K near detectors fro 2010 to 2021, Journal of Instrumentation, Vol: 17, Pages: 1-36, ISSN: 1748-0221

The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation.

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolfi M, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Aimard B, Ali-Mohammadzadeh B, Alion T, Allison K, Monsalve SA, AlRashed M, Alt C, Alton A, Alvarez R, Amedo P, Anderson J, Andreopoulos C, Andreotti M, Andrews M, Andrianala F, Andringa S, Anfimov N, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Arellano L, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Lara VA, Ayala-Torres M, Azfar F, Babicz M, Back A, Back H, Back JJ, Backhouse C, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Barker G, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Batchelor C, das Chagas EB, Battat J, Battisti F, Bay F, Bazetto MCQ, Bazo Alba J, Beacom JF, Bechetoille E, Behera B, Beigbeder C, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Benitez Montiel C, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Bersani A, Bertolucci S, Betancourt M, Betancur Rodriguez A, Bevan A, Bezawada Y, Bezerra TS, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhattarai D, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk F, Blazey G, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bongrand M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Bourgeois C, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Breton D, Brew C, Brice SJ, Brizzolari C, Bromberg C, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Butorov I, Cagnoli I, Cai T, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Caminata A, Campanelli M, Caratelli D, Carber D, Carceller J, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranza H, Carroll T, Castanoet al., 2022, Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network, European Physical Journal C: Particles and Fields, Vol: 82, Pages: 1-19, ISSN: 1124-1861

Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adamowski M, Adams D, Adinolfi M, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Aimard B, Ali-Mohammadzadeh B, Alion T, Allison K, Monsalve SA, AlRashed M, Alt C, Alton A, Alvarez R, Amedo P, Anderson J, Andreopoulos C, Andreotti M, Andrews M, Andrianala F, Andringa S, Anfimov N, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Arellano L, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala Lara V, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Backhouse C, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Alzas PB, Barker G, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Batchelor C, das Chagas EB, Battat JBR, Battisti F, Bay F, Bazetto MCQ, Bazo Alba JLL, Beacom JF, Bechetoille E, Behera B, Beigbeder C, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Montiel CB, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Bersani A, Bertolucci S, Betancourt M, Betancur Rodriguez A, Bevan A, Bezawada Y, Bezerra TJC, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhattarai D, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk F, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bongrand M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Bourgeois C, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Breton D, Brew C, Brice SJ, Brizzolari C, Bromberg C, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Butorov I, Cagnoli I, Cai T, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Caminata A, Campanelli M, Caratelli D, Carber D, Carceller JC, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranza H, Carroll T, Caset al., 2022, Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC, European Physical Journal C: Particles and Fields, Vol: 82, ISSN: 1124-1861

DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adams D, Adinolfi M, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Aimard B, Ali-Mohammadzadeh B, Alion T, Allison K, Monsalve SA, AlRashed M, Alt C, Alton A, Amedo P, Anderson J, Andreopoulos C, Andreotti M, Andrews MP, Andrianala F, Andringa S, Anfimov N, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Backhouse C, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Belchior E, Battat JBR, Battisti F, Bay F, Bazo Alba JL, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Benekos N, Benitez Montiel C, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Bertolucci S, Betancourt M, Betancur Rodriguez A, Bevan A, Bezawada Y, Bezerra TJC, Bhardwaj A, Bhatnagar V, Bhattacharjee M, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bongrand M, Bonilla-Diaz C, Bonini F, Booth A, Boran F, Bordoni S, Borkum A, Bostan N, Bour P, Bourgeois C, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Brew C, Brice SJ, Brizzolari C, Bromberg C, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Butorov I, Cagnoli I, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranza H, Carroll T, Castano Forero JF, Castillo A, Castromonte C, Catano-Mur E, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Cervera Villanueva A, Chalifouret al., 2022, Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 105, ISSN: 1550-2368

The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE’s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4σ (5σ) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3σ for almost all true δCP values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-CY exposure for the maximally CP-violating values δCP=±π/2. Additionally, the dependence of DUNE’s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest.

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adams D, Adinolfi M, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Ali-Mohammadzadeh B, Alion T, Allison K, Monsalve SA, Alrashed M, Alt C, Alton A, Amedo P, Anderson J, Andreopoulos C, Andreotti M, Andrews MP, Andrianala F, Andringa S, Anfimov N, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Backhouse C, Baesso P, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Belchior E, Battat JBR, Battisti F, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Montiel CB, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Betancur Rodriguez A, Bevan A, Bezerra TJC, Bhattacharjee M, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Boran F, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Bourgeois C, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Butorov I, Cagnoli I, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Caminata A, Campanelli M, Cankocak K, Caratelli D, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranza H, Carroll T, Casta JF, Castillo A, Castromonte C, Catano-Mur E, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Cervera Villet al., 2022, Design, construction and operation of the ProtoDUNE-SP liquid argon TPC, Journal of Instrumentation, Vol: 17, ISSN: 1748-0221

The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.

Journal article

Abud AA, Abi B, Acciarri R, Acero MA, Adames MR, Adamov G, Adams D, Adinolfi M, Aduszkiewicz A, Aguilar J, Ahmad Z, Ahmed J, Ali-Mohammadzadeh B, Alion T, Allison K, Monsalve SA, Alrashed M, Alt C, Alton A, Amedo P, Anderson J, Andreopoulos C, Andreotti M, Andrews MP, Andrianala F, Andringa S, Anfimov N, Ankowski A, Antoniassi M, Antonova M, Antoshkin A, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Asquith L, Aurisano A, Aushev V, Autiero D, Ayala-Torres M, Azfar F, Back A, Back H, Back JJ, Backhouse C, Baesso P, Bagaturia I, Bagby L, Balashov N, Balasubramanian S, Baldi P, Baller B, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros A, Barros N, Barrow JL, Basharina-Freshville A, Bashyal A, Basque V, Belchior E, Battat JBR, Battisti F, Bay F, Bazo Alba JL, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Benitez Montiel C, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Betancur Rodriguez A, Bevan A, Bezerra TJC, Bhatnagar V, Bhattacharjee M, Bhuller S, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bomben L, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Boran F, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Bourgeois C, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Branca A, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Brunetti M, Buchanan N, Budd H, Butorov I, Cagnoli I, Caiulo D, Calabrese R, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Caminata A, Campanelli M, Cankocak K, Caratelli D, Carini G, Carlus B, Carneiro MF, Carniti P, Terrazas IC, Carranza H, Carroll T, Castano Forero JF, Castillo A, Castromonte C, Catano-Mur E, Cattadori C, Cavalier F, Cavanna F, Centro S Cet al., 2021, Searching for solar KDAR with DUNE, Journal of Cosmology and Astroparticle Physics, Vol: 2021, ISSN: 1475-7516

The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.

Journal article

Manly S, Kordosky M, On behalf of the DUNE Collaboration, 2021, Deep Underground Neutrino Experiment (DUNE) near detector conceptual design report, Instruments, Vol: 5, Pages: 1-250, ISSN: 2410-390X

The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents.

Journal article

Abe K, Adrich P, Aihara H, Akutsu R, Alekseev I, Ali A, Ameli F, Anghel I, Anthony LH, Antonova M, Araya A, Asaoka Y, Ashida Y, Aushev V, Ballester F, Bandac I, Barbi M, Barker GJ, Barr G, Batkiewicz-Kwasniak M, Bellato M, Berardi V, Bergevin M, Bernard L, Bernardini E, Berns L, Bhadra S, Bian J, Blanchet A, Blaszczyk FDM, Blondel A, Boiano A, Bolognesi S, Bonavera L, Booth N, Borjabad S, Boschi T, Bose D, Bozza C, Bravar A, Bravo-Berguno D, Bronner C, Brown L, Bubak A, Buchowicz A, Avanzini MB, Cafagna FS, Calabria NF, Calvo-Mozota JM, Cao S, Cartwright SL, Carroll A, Catanesi MG, Cebrian S, Chabera M, Chakraborty S, Checchia C, Choi JH, Choubey S, Cicerchia M, Coleman J, Collazuol G, Cook L, Cowan G, Cuen-Rochin S, Danilov M, Daz Lopez G, De la Fuente E, de Perio P, De Rosa G, Dealtry T, Densham CJ, Dergacheva A, Deshmukh N, Devi MM, Di Lodovico F, Di Meo P, Di Palma I, Doyle TA, Drakopoulou E, Drapier O, Dumarchez J, Dunne P, Dziewiecki M, Eklund L, El Hedri S, Ellis J, Emery S, Esmaili A, Esteve R, Evangelisti A, Feely M, Fedotov S, Feng J, Fernandez P, Fernandez-Martinez E, Ferrario P, Ferrazzi B, Feusels T, Finch A, Finley C, Fiorentini A, Fiorillo G, Fitton M, Frankiewicz K, Friend M, Fujii Y, Fukuda Y, Galinski G, Gao J, Garde C, Garfagnini A, Garode S, Gialanella L, Giganti C, Gomez-Cadenas JJ, Gonin M, Gonzalez-Nuevo J, Gorin A, Gornea R, Gousy-Leblanc V, Gramegna F, Grassi M, Grella G, Guigue M, Gumplinger P, Hadley DR, Harada M, Hartfiel B, Hartz M, Hassani S, Hastings NC, Hayato Y, Hernando-Morata JA, Herrero V, Hill J, Hiraide K, Hirota S, Holin A, Horiuchi S, Hoshina K, Hultqvist K, Iacob F, Ichikawa AK, Ibnsalih WI, Iijima T, Ikeda M, Inomoto M, Inoue K, Insler J, Ioannisian A, Ishida T, Ishidoshiro K, Ishino H, Ishitsuka M, Ito H, Ito S, Itow Y, Iwamoto K, Izmaylov A, Izumi N, Izumiyama S, Jakkapu M, Jamieson B, Jang H, Jang JS, Jenkins SJ, Jeon SH, Jiang M, Jo HS, Jonsson P, Joo KK, Kajita T, Kakuno H, Kameda J, Kano Y, Kalaczynski P, Karlen D, Kaset al., 2021, Supernova Model Discrimination with Hyper-Kamiokande, ASTROPHYSICAL JOURNAL, Vol: 916, ISSN: 0004-637X

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Awataguchi Y, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Beloshapkin A, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bourguille B, Boyd SB, Bravar A, Bravo Berguño D, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Cao S, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Christodoulou G, Cicerchia M, Coleman J, Collazuol G, Cook L, Coplowe D, Cudd A, De Rosa G, Dealtry T, Delogu CC, Dennis SR, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Dumarchez J, Dunne P, Eguchi A, Eklund L, Emery-Schrenk S, Ereditato A, Finch AJ, Fiorillo G, Francois C, Friend M, Fujii Y, Fukuda R, Fukuda Y, Fusshoeller K, Giganti C, Gonin M, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayato Y, Hiramoto A, Hogan M, Holeczek J, Hong Van NT, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesús-Valls C, Jiang JJ, Jonsson P, Jung CK, Jurj PB, Kabirnezhad M, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kisiel J, Kobata T, Kobayashi T, Koch L, Konaka A, Kormos LL, Koshio Y, Kostin A, Kowalik K, Kudenko Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, Labarga L, Lagoda J, Lamoureux M, Last D, Laveder M, Lawe M, Lin S-K, Litchfield RP, Liu SL, Longhin A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Manly S, Maret L, Marino AD, Marti-Magro L, Maruyama T, Matsubara T, Matsushita K, Mauger C, Maurel A, Mavrokoridis K, Mazzucato E, McCauley N, McElwee J, McFarland KS, McGrew C, Mefodiev A, Megias GD, Mellet L, Mezzetto M, Minamino A, Mineev O, Mine S, Miura M, Molina Bueno L, Moriyama S, Mueller TA, Munford D, Munteanu L, Nagai Y, Nakadet al., 2021, First T2K measurement of transverse kinematic imbalance in the muon-neutrino charged-current single-π+ production channel containing at least one proton, Physical Review D, Vol: 103, Pages: 1-27, ISSN: 2470-0010

This paper reports the first T2K measurement of the transverse kinematic imbalance in the single-π+ production channel of neutrino interactions. We measure the differential cross sections in the muon-neutrino charged-current interaction on hydrocarbon with a single π+ and at least one proton in the final state, at the ND280 off axis near detector of the T2K experiment. The extracted cross sections are compared to the predictions from different neutrino-nucleus interaction event generators. Overall, the results show a preference for models that have a more realistic treatment of nuclear medium effects including the initial nuclear state and final-state interactions.

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Awataguchi Y, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Beloshapkin A, Bench F, Berardi V, Berns L, Bhadra S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bourguille B, Boyd SB, Bravar A, Bravo Berguño D, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Cao S, Cartwright SL, Catanesi MG, Cervera A, Chakrani J, Cherdack D, Christodoulou G, Cicerchia M, Coleman J, Collazuol G, Cook L, Coplowe D, Cudd A, De Rosa G, Dealtry T, Delogu CC, Dennis SR, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Douqa D, Doyle TA, Dumarchez J, Dunne P, Eguchi A, Eklund L, Emery-Schrenk S, Ereditato A, Finch AJ, Fiorillo G, Francois C, Friend M, Fujii Y, Fukuda R, Fukuda Y, Fusshoeller K, Giganti C, Gonin M, Goodman EAG, Gorin A, Grassi M, Guigue M, Hadley DR, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayato Y, Hiramoto A, Hogan M, Holeczek J, Hong Van NT, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesús-Valls C, Jiang JJ, Jonsson P, Jung CK, Jurj PB, Kabirnezhad M, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kisiel J, Kobata T, Kobayashi T, Koch L, Konaka A, Kormos LL, Koshio Y, Kostin A, Kowalik K, Kudenko Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, Labarga L, Lagoda J, Lamoureux M, Last D, Laveder M, Lawe M, Lin S-K, Litchfield RP, Liu SL, Longhin A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Manly S, Maret L, Marino AD, Marti-Magro L, Maruyama T, Matsubara T, Matsushita K, Mauger C, Maurel A, Mavrokoridis K, Mazzucato E, McCauley N, McElwee J, McFarland KS, McGrew C, Mefodiev A, Megias GD, Mellet L, Mezzetto M, Minamino A, Mineev O, Mine S, Miura M, Molina Bueno L, Moriyama S, Mueller TA, Munford D, Munteanu L, Nagai Y, Nakadet al., 2021, Improved constraints on neutrino mixing from the T2K experiment with 3.13×1021 protons on target, Physical Review D, Vol: 103, Pages: 1-59, ISSN: 2470-0010

The T2K experiment reports updated measurements of neutrino and antineutrino oscillations using both appearance and disappearance channels. This result comes from an exposure of 14.9(16.4)×1020 protons on target in neutrino (antineutrino) mode. Significant improvements have been made to the neutrino interaction model and far detector reconstruction. An extensive set of simulated data studies have also been performed to quantify the effect interaction model uncertainties have on the T2K oscillation parameter sensitivity. T2K performs multiple oscillation analyses that present both frequentist and Bayesian intervals for the Pontecorvo-Maki-Nakagawa-Sakata parameters. For fits including a constraint on sin2θ13 from reactor data and assuming normal mass ordering T2K measures sin2θ23=0.53+0.03−0.04 and Δm232=(2.45±0.07)×10−3  eV2 c−4. The Bayesian analyses show a weak preference for normal mass ordering (89% posterior probability) and the upper sin2θ23 octant (80% posterior probability), with a uniform prior probability assumed in both cases. The T2K data exclude CP conservation in neutrino oscillations at the 2σ level.

Journal article

Deisting A, Waldron A, Atkin E, Barker G, Basharina-Freshville A, Betancourt C, Boyd S, Brailsford D, Chen-Wishart Z, Cremonesi L, Dias A, Dunne P, Haigh J, Hamacher-Baumann P, Jones S, Kaboth A, Korzenev A, Ma W, Mermod P, Mironova M, Monroe J, Nichol R, Nonnenmacher T, Nowak J, Parker W, Ritchie-Yates H, Roth S, Saakyan R, Serra N, Shitov Y, Steinmann J, Tarrant A, Uchida M, Valder S, Ward M, Wascko Met al., 2021, Commissioning of a high pressure time projection chamber with optical readout, Instruments, Vol: 5, ISSN: 2410-390X

The measurements of proton–nucleus scattering and high resolution neutrino–nucleus interaction imaging are key in reducing neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at the Royal Holloway University of London and CERN as a first step in the development of a HPTPC that is capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment, such as the Deep Underground Neutrino Experiment. In this paper, we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout using four CCD cameras of signals from 241Am sources.

Journal article

Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Bazo Alba JL, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Cervera Villanueva A, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadon J, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, da Motta H, Peres LDS, David C, Davidet al., 2021, Supernova neutrino burst detection with the Deep Underground Neutrino Experiment, European Physical Journal C: Particles and Fields, Vol: 81, Pages: 1-26, ISSN: 1124-1861

The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the νe spectral parameters of the neutrino burst will be considered.

Journal article

Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Villanueva AC, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadon JI, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, da Motta H, Peres LDS, David C, David Q, Davies GS, Daviet al., 2021, Prospects for beyond the standard model physics searches at the deep underground neutrino experiment DUNE collaboration, European Physical Journal C: Particles and Fields, Vol: 81, Pages: 1-51, ISSN: 1124-1861

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alt C, Andreopoulos C, Anthony L, Antonova M, Aoki S, Ariga A, Arihara T, Asada Y, Ashida Y, Atkin ET, Awataguchi Y, Ban S, Barbi M, Barker GJ, Barr G, Barrow D, Barry C, Batkiewicz-Kwasniak M, Beloshapkin A, Bench F, Berardi V, Berkman S, Berns L, Bhadra S, Bienstock S, Blanchet A, Blondel A, Bolognesi S, Bonus T, Bourguille B, Boyd SB, Brailsford D, Bravar A, Berguno DB, Bronner C, Bron S, Bubak A, Avanzini MB, Calcutt J, Campbell T, Cao S, Cartwright SL, Catanesi MG, Cervera A, Chappell A, Checchia C, Cherdack D, Chikuma N, Christodoulou G, Cicerchia M, Coleman J, Collazuol G, Cook L, Coplowe D, Cudd A, Dabrowska A, De Rosa G, Dealtry T, Denner PF, Dennis SR, Densham C, Dergacheva A, Di Lodovico F, Dokania N, Dolan S, Doyle TA, Drapier O, Dumarchez J, Dunne P, Eguchi A, Eklund L, Emery-Schrenk S, Ereditato A, Fernandez P, Feusels T, Finch AJ, Fiorentini GA, Fiorillo G, Francois C, Friend M, Fujii Y, Fujita R, Fukuda D, Fukuda R, Fukuda Y, Fusshoeller K, Gameil K, Giganti C, Golan T, Gonin M, Gorin A, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Harris DA, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayashino T, Hayato Y, Hiramoto A, Hogan M, Holeczek J, Van NTH, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishii T, Ishitsuka M, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesus-Valls C, Jiang M, Johnson S, Jonsson P, Jung CK, Jurj PB, Kabirnezhad M, Kaboth AC, Kajita T, Kakuno H, Kameda J, Karlen D, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kato Y, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, Kim H, Kim J, King S, Kisiel J, Knight A, Knox A, Kobata T, Kobayashi T, Koch L, Koga T, Konaka A, Kormos LL, Koshio Y, Kostin A, Kowalik K, Kubo H, Kudenko Y, Kukita N, Kuribayashi S, Kurjata R, Kutter T, Kuze M, Labarga L, Lagoda J, Lamoureux M, Last D, Laveder M, Lawe M, Licciardi M, Lindner T, Litchfield RP, Liu SL, Li X, Longhin A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Maet al., 2021, Measurements of (nu)over-bar(mu) and (nu)over-bar(mu) + nu(mu) charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV, Progress of Theoretical and Experimental Physics, Vol: 2021, ISSN: 0033-068X

We report measurements of the flux-integrated ν̅μ and ν̅μ + νμ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced μ± and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, pμ>400 MeV/c and θμ<30∘⁠, in the laboratory frame. An absence of pions and protons in the detectable phase spaces of pπ>200 MeV/c⁠, θπ<70∘ and pp>600 MeV/c⁠, θp<70∘ is required. In this paper, both the ν¯¯¯μ cross-sections and ν¯¯¯μ+νμ cross-sections on water and hydrocarbon targets and their ratios are provided by using the D’Agostini unfolding method. The results of the integrated ν¯¯¯μ cross-section measurements over this phase space are σH2O=(1.082±0.068(stat.)+0.145−0.128(syst.))×10−39cm2/nucleon⁠, σCH=(1.096±0.054(stat.)+0.132−0.117(syst.))×10−39cm2/nucleon⁠, and σH2O/σCH=0.987±0.078(stat.)+0.093−0.090(syst.)⁠. The ν¯¯¯μ+νμ cross-section is σH2O=(1.155±0.064(stat.)+0.148−0.129(syst.))×10−39cm2/nucleon⁠, σCH=(1.159±0.049(stat.)+0.129−0.115(syst.))×10−39cm2/nucleon⁠, and σH2O/σCH=0.996±0.069(stat.)+0.083−0.078(syst.)⁠.

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alt C, Andreopoulos C, Antonova M, Aoki S, Arihara T, Asada Y, Ashida Y, Atkin ET, Awataguchi Y, Barker GJ, Barr G, Barrow D, Batkiewicz-Kwasniak M, Beloshapkin A, Bench F, Berardi V, Berns L, Bhadra S, Blondel A, Bolognesi S, Bonus T, Bourguille B, Boyd SB, Bravar A, Berguno DB, Bronner C, Bron S, Bubak A, Avanzini MB, Cao S, Cartwright SL, Catanesi MG, Cervera A, Cherdack D, Christodoulou G, Cicerchia M, Coleman J, Collazuol G, Cook L, Coplowe D, Cudd A, De Rosa G, Dealtry T, Delogu CC, Dennis SR, Densham C, Dergacheva A, Di Lodovico F, Dolan S, Doyle TA, Dumarchez J, Dunne P, Eguchi A, Eklund L, Emery-Schrenk S, Ereditato A, Finch AJ, Fiorentini GA, Francois C, Friend M, Fujii Y, Fukuda R, Fukuda Y, Fusshoeller K, Giganti C, Gonin M, Gorin A, Guigue M, Hadley DR, Hamacher-Baumann P, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayato Y, Hiramoto A, Hogan M, Holeczek J, Van NTH, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishitsuka M, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesus-Valls C, Jonsson P, Jung CK, Jurj PB, Kabirnezhad M, Kakuno H, Kameda J, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, King S, Kisiel J, Kobata T, Kobayashi T, Koch L, Konaka A, Kormos LL, Koshio Y, Kostin A, Kowalik K, Kudenko Y, Kuribayashi S, Kurjata R, Kutter T, Kuze M, Labarga L, Lagoda J, Lamoureux M, Last D, Laveder M, Lawe M, Litchfield RP, Liu SL, Longhin A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Manly S, Maret L, Marino AD, Marti-Magro L, Maruyama T, Matsubara T, Matsushita K, Mauger C, Mavrokoridis K, Mazzucato E, McCauley N, McElwee J, McFarland KS, McGrew C, Mefodiev A, Mezzetto M, Minamino A, Mineev O, Mine S, Miura M, Bueno LM, Moriyama S, Mueller TA, Munteanu L, Nagai Y, Nakadaira T, Nakahata M, Nakajima Y, Nakamura A, Nakamura K, Nakano Y, Nakayama S, Nakaya T, Nakayoshi K, Naseby CER, Ngoc T, Nguyen VQ, Niewczas K, Niet al., 2021, T2K measurements of muon neutrino and antineutrino disappearance using 3.13 x 10(21) protons on target, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 103, Pages: 1-9, ISSN: 1550-2368

We report measurements by the T2K experiment of the parameters θ23 and Δm232, which govern the disappearance of muon neutrinos and antineutrinos in the three-flavor PMNS neutrino oscillation model at T2K’s neutrino energy and propagation distance. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, muon-like events from each beam mode are used to measure these parameters separately for neutrino and antineutrino oscillations. Data taken from 1.49×1021 protons on target (POT) in neutrino mode and 1.64×1021 POT in antineutrino mode are used. The best-fit values obtained by T2K were sin2(θ23)=0.51+0.06−0.07(0.43+0.21−0.05) and Δm232=2.47+0.08−0.09(2.50+0.18−0.13)×10−3  eV2/c4 for neutrinos (antineutrinos). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed. An analysis using an effective two-flavor neutrino oscillation model where the sine of the mixing angle is allowed to take nonphysical values larger than 1 is also performed to check the consistency of our data with the three-flavor model. Our data were found to be consistent with a physical value for the mixing angle.

Journal article

Abi B, Abud AA, Acciarri R, Acero MA, Adamov G, Adamowski M, Adams D, Adrien P, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Villanueva AC, Chalifour M, Chang C, Chardonnet E, Charitonidis N, Chatterjee A, Chattopadhyay S, Chatzidaki P, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadon J, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowsket al., 2020, First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform, Journal of Instrumentation, Vol: 15, Pages: 1-100, ISSN: 1748-0221

The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.

Journal article

Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Bento Neves F, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Blanco Siffert B, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Cervera Villanueva A, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadon JI, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, da Motta H, Peres LDS, David C, Davidet al., 2020, Neutrino interaction classification with a convolutional neural network in the DUNE far detector, Physical Review D: Particles, Fields, Gravitation and Cosmology, Vol: 102, Pages: 092003 – 1-092003 – 20, ISSN: 1550-2368

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.

Journal article

Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews MP, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker GJ, Barkhouse W, Barnes C, Barr G, Monarca JB, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Alba JLB, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk FDM, Blazey GC, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd SB, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Villanueva AC, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho JAB, Conley E, Conrad JM, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadón JI, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, Motta HD, Da Silva Peres L, David C, David Q, Davies GSet al., 2020, Long-baseline neutrino oscillation physics potential of the DUNE experiment, The European Physical Journal C, Vol: 80, Pages: 1-34, ISSN: 1434-6044

The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments.

Journal article

Abe K, Akhlaq N, Akutsu R, Ali A, Alt C, Andreopoulos C, Anthony L, Antonova M, Aoki S, Ariga A, Arihara T, Asada Y, Ashida Y, Atkin ET, Awataguchi Y, Ban S, Barbi M, Barker GJ, Barr G, Barrow D, Barry C, Batkiewicz-Kwasniak M, Beloshapkin A, Bench F, Berardi V, Berns L, Bhadra S, Bienstock S, Blondel A, Bolognesi S, Bonus T, Bourguille B, Boyd SB, Brailsford D, Bravar A, Bravo Berguño D, Bronner C, Bron S, Bubak A, Buizza Avanzini M, Calcutt J, Campbell T, Cao S, Cartwright SL, Catanesi MG, Cervera A, Chappell A, Checchia C, Cherdack D, Chikuma N, Christodoulou G, Cicerchia M, Coleman J, Collazuol G, Cook L, Coplowe D, Cudd A, Dabrowska A, De Rosa G, Dealtry T, Denner PF, Dennis SR, Densham C, Di Lodovico F, Dokania N, Dolan S, Doyle TA, Drapier O, Dumarchez J, Dunne P, Eguchi A, Eklund L, Emery-Schrenk S, Ereditato A, Fernandez P, Feusels T, Finch AJ, Fiorentini GA, Fiorillo G, Francois C, Friend M, Fujii Y, Fujita R, Fukuda D, Fukuda R, Fukuda Y, Fusshoeller K, Giganti C, Golan T, Gonin M, Gorin A, Guigue M, Hadley DR, Haigh JT, Hamacher-Baumann P, Hartz M, Hasegawa T, Hassani S, Hastings NC, Hayashino T, Hayato Y, Hiramoto A, Hogan M, Holeczek J, Hong Van NT, Honjo T, Iacob F, Ichikawa AK, Ikeda M, Ishida T, Ishii T, Ishitsuka M, Iwamoto K, Izmaylov A, Izumi N, Jakkapu M, Jamieson B, Jenkins SJ, Jesús-Valls C, Jiang M, Johnson S, Jonsson P, Jung CK, Junjie X, Jurj PB, Kabirnezhad M, Kaboth AC, Kajita T, Kakuno H, Kameda J, Karlen D, Kasetti SP, Kataoka Y, Katayama Y, Katori T, Kato Y, Kearns E, Khabibullin M, Khotjantsev A, Kikawa T, Kikutani H, Kim H, King S, Kisiel J, Knight A, Knox A, Kobata T, Kobayashi T, Koch L, Koga T, Konaka A, Kormos LL, Koshio Y, Kostin A, Kowalik K, Kubo H, Kudenko Y, Kukita N, Kuribayashi S, Kurjata R, Kutter T, Kuze M, Labarga L, Lagoda J, Lamoureux M, Last D, Laveder M, Lawe M, Licciardi M, Lindner T, Litchfield RP, Liu SL, Li X, Longhin A, Ludovici L, Lu X, Lux T, Machado LN, Magaletti L, Mahn K, Malek M, Manly S, Maret L, Marinoet al., 2020, Measurement of the charged-current electron (anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280, The Journal of High Energy Physics, Vol: 2020, Pages: 1-43, ISSN: 1029-8479

The electron (anti-)neutrino component of the T2K neutrino beam constitutes the largest background in the measurement of electron (anti-)neutrino appearance at the far detector. The electron neutrino scattering is measured directly with the T2K off-axis near detector, ND280. The selection of the electron (anti-)neutrino events in the plastic scintillator target from both neutrino and anti-neutrino mode beams is discussed in this paper. The flux integrated single differential charged-current inclusive electron (anti-)neutrino cross-sections, dσ/dp and dσ/d cos(θ), and the total cross-sections in a limited phase-space in momentum and scattering angle (p > 300 MeV/c and θ ≤ 45°) are measured using a binned maximum likelihood fit and compared to the neutrino Monte Carlo generator predictions, resulting in good agreement.

Journal article

Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews M, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker G, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Bazo Alba J, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk F, Blazey G, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd S, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Cervera Villanueva A, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho J, Conley E, Conrad J, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadon J, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, Da Motta H, Peres LDS, David Q, Davies GS, Davinet al., 2020, Volume III DUNE far detector technical coordination, Journal of Instrumentation, Vol: 15, Pages: 1-193, ISSN: 1748-0221

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.

Journal article

Abi B, Acciarri R, Acero MA, Adamov G, Adams D, Adinolfi M, Ahmad Z, Ahmed J, Alion T, Monsalve SA, Alt C, Anderson J, Andreopoulos C, Andrews M, Andrianala F, Andringa S, Ankowski A, Antonova M, Antusch S, Aranda-Fernandez A, Ariga A, Arnold LO, Arroyave MA, Asaadi J, Aurisano A, Aushev V, Autiero D, Azfar F, Back H, Back JJ, Backhouse C, Baesso P, Bagby L, Bajou R, Balasubramanian S, Baldi P, Bambah B, Barao F, Barenboim G, Barker G, Barkhouse W, Barnes C, Barr G, Barranco Monarca J, Barros N, Barrow JL, Bashyal A, Basque V, Bay F, Bazo Alba J, Beacom JF, Bechetoille E, Behera B, Bellantoni L, Bellettini G, Bellini V, Beltramello O, Belver D, Benekos N, Neves FB, Berger J, Berkman S, Bernardini P, Berner RM, Berns H, Bertolucci S, Betancourt M, Bezawada Y, Bhattacharjee M, Bhuyan B, Biagi S, Bian J, Biassoni M, Biery K, Bilki B, Bishai M, Bitadze A, Blake A, Siffert BB, Blaszczyk F, Blazey G, Blucher E, Boissevain J, Bolognesi S, Bolton T, Bonesini M, Bongrand M, Bonini F, Booth A, Booth C, Bordoni S, Borkum A, Boschi T, Bostan N, Bour P, Boyd S, Boyden D, Bracinik J, Braga D, Brailsford D, Brandt A, Bremer J, Brew C, Brianne E, Brice SJ, Brizzolari C, Bromberg C, Brooijmans G, Brooke J, Bross A, Brunetti G, Buchanan N, Budd H, Caiulo D, Calafiura P, Calcutt J, Calin M, Calvez S, Calvo E, Camilleri L, Caminata A, Campanelli M, Caratelli D, Carini G, Carlus B, Carniti P, Terrazas IC, Carranza H, Castillo A, Castromonte C, Cattadori C, Cavalier F, Cavanna F, Centro S, Cerati G, Cervelli A, Cervera Villanueva A, Chalifour M, Chang C, Chardonnet E, Chatterjee A, Chattopadhyay S, Chaves J, Chen H, Chen M, Chen Y, Cherdack D, Chi C, Childress S, Chiriacescu A, Cho K, Choubey S, Christensen A, Christian D, Christodoulou G, Church E, Clarke P, Coan TE, Cocco AG, Coelho J, Conley E, Conrad J, Convery M, Corwin L, Cotte P, Cremaldi L, Cremonesi L, Crespo-Anadon J, Cristaldo E, Cross R, Cuesta C, Cui Y, Cussans D, Dabrowski M, Da Motta H, Peres LDS, David Q, Davies GS, Davinet al., 2020, Executive summary, JOURNAL OF INSTRUMENTATION, Vol: 15, Pages: 2-+, ISSN: 1748-0221

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00554718&limit=30&person=true