Imperial College London

DrPavlosKotidis

Faculty of EngineeringDepartment of Chemical Engineering

Academic Visitor
 
 
 
//

Contact

 

p.kotidis17

 
 
//

Location

 

Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

14 results found

Kotidis P, Donini R, Arnsdorf J, Hansen AH, Voldborg BGR, Chiang AWT, Haslam SM, Betenbaugh M, del Val IJ, Lewis NE, Krambeck F, Kontoravdi Cet al., 2023, CHOGlycoNET: comprehensive glycosylation reaction network for CHO cells, Metabolic Engineering, Vol: 76, Pages: 87-96, ISSN: 1096-7176

Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins, for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity. Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often guided by mathematical models. However, each study considers a unique glycosylation reaction network that is tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network, CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies. Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO cell genome scale models.

Journal article

Moya-Ramirez I, Kotidis P, Marbiah M, Kim J, Kontoravdi K, Polizzi Ket al., 2022, Polymer encapsulation of bacterial biosensors enables co-culture with mammalian cells, ACS Synthetic Biology, Vol: 11, ISSN: 2161-5063

Coexistence of different populations of cells and isolation of tasks can provide enhanced robustness and adaptability or impart new functionalities to a culture. However, generating stable cocultures involving cells with vastly different growth rates can be challenging. To address this, we developed living analytics in a multilayer polymer shell (LAMPS), an encapsulation method that facilitates the coculture of mammalian and bacterial cells. We leverage LAMPS to preprogram a separation of tasks within the coculture: growth and therapeutic protein production by the mammalian cells and l-lactate biosensing by Escherichia coli encapsulated within LAMPS. LAMPS enable the formation of a synthetic bacterial–mammalian cell interaction that enables a living biosensor to be integrated into a biomanufacturing process. Our work serves as a proof-of-concept for further applications in bioprocessing since LAMPS combine the simplicity and flexibility of a bacterial biosensor with a viable method to prevent runaway growth that would disturb mammalian cell physiology.

Journal article

Kotidis P, Marbiah M, Donini R, Gomez IA, del Val IJ, Haslam SM, Polizzi KM, Kontoravdi Cet al., 2022, Rapid Antibody Glycoengineering in CHO Cells Via RNA Interference and CGE-LIF <i>N</i>-Glycomics, GLYCOSYLATION, Pages: 147-167, ISSN: 1064-3745

Journal article

Kotidis P, Pappas I, Avraamidou S, Pistikopoulos EN, Kontoravdi C, Papathanasiou MMet al., 2021, DigiGlyc: A hybrid tool for reactive scheduling in cell culture systems, Computers and Chemical Engineering, Vol: 154, Pages: 1-7, ISSN: 0098-1354

Chinese hamster ovary (CHO) cell culture systems are the most widely used platform for the industrial production of monoclonal antibodies (mAbs). The optimisation of manufacturing conditions for these high-value products is largely conducted off-line with little or no monitoring of mAb quality in-process. Here, we propose DigiGlyc, a hybrid model of these systems that predicts the critical quality attribute of mAb galactosylation. Having shown that DigiGlyc describes a wide range of experimental data well, we demonstrate that it can be used for the design of reactive optimisation studies. This hybrid formulation offers considerable gains in computational speed compared to mechanistic models with no loss in fidelity and can therefore underpin future online control and optimisation studies.

Journal article

Makrydaki E, Kotidis P, Polizzi KM, Kontoravdi Cet al., 2021, Hitting the sweet spot with capillary electrophoresis: advances in N-glycomics and glycoproteomics, CURRENT OPINION IN BIOTECHNOLOGY, Vol: 71, Pages: 182-190, ISSN: 0958-1669

Journal article

Shmool TA, Martin LK, Bui-Le L, Moya-Ramirez I, Kotidis P, Matthews RP, Venter GA, Kontoravdi C, Polizzi KM, Hallett JPet al., 2021, An experimental approach probing the conformational transitions and energy landscape of antibodies: a glimmer of hope for reviving lost therapeutic candidates using ionic liquid, Chemical Science, Vol: 12, Pages: 9528-9545, ISSN: 2041-6520

Understanding protein folding in different environmental conditions is fundamentally important for predicting protein structures and developing innovative antibody formulations. While the thermodynamics and kinetics of folding and unfolding have been extensively studied by computational methods, experimental methods for determining antibody conformational transition pathways are lacking. Motivated to fill this gap, we prepared a series of unique formulations containing a high concentration of a chimeric immunoglobin G4 (IgG4) antibody with different excipients in the presence and absence of the ionic liquid (IL) choline dihydrogen phosphate. We determined the effects of different excipients and IL on protein thermal and structural stability by performing variable temperature circular dichroism and bio-layer interferometry analyses. To further rationalise the observations of conformational changes with temperature, we carried out molecular dynamics simulations on a single antibody binding fragment from IgG4 in the different formulations, at low and high temperatures. We developed a methodology to study the conformational transitions and associated thermodynamics of biomolecules, and we showed IL-induced conformational transitions. We showed that the increased propensity for conformational change was driven by preferential binding of the dihydrogen phosphate anion to the antibody fragment. Finally, we found that a formulation containing IL with sugar, amino acids and surfactant is a promising candidate for stabilising proteins against conformational destabilisation and aggregation. We hope that ultimately, we can help in the quest to understand the molecular basis of the stability of antibodies and protein misfolding phenomena and offer new candidate formulations with the potential to revive lost therapeutic candidates.

Journal article

Alhuthali S, Kotidis P, Kontoravdi K, 2021, Osmolality effects on CHO cell growth, cell volume and antibody productivity and glycosylation, International Journal of Molecular Sciences, Vol: 22, ISSN: 1422-0067

The addition of nutrients and accumulation of metabolites in a fed-batch culture of Chinese hamster ovary (CHO) cells leads to an increase in extracellular osmolality in late stage culture. Herein, we explore the effect of osmolality on CHO cell growth, specific monoclonal antibody (mAb) productivity and glycosylation achieved with the addition of NaCl or the supplementation of a commercial feed. Although both methods lead to an increase in specific antibody productivity, they have different effects on cell growth and antibody production. Osmolality modulation using NaCl up to 470 mOsm kg−1 had a consistently positive effect on specific antibody productivity and titre. The addition of the commercial feed achieved variable results: specific mAb productivity was increased, yet cell growth rate was significantly compromised at high osmolality values. As a result, Feed C addition to 410 mOsm kg−1 was the only condition that achieved a significantly higher mAb titre compared to the control. Additionally, Feed C supplementation resulted in a significant reduction in galactosylated antibody structures. Cell volume was found to be positively correlated to osmolality; however, osmolality alone could not account for observed changes in average cell diameter without considering cell cycle variations. These results help delineate the overall effect of osmolality on titre and highlight the potentially negative effect of overfeeding on cell growth.

Journal article

Antonakoudis A, Kis Z, Kontoravdi K, Kotidis P, Papathanasiou M, Shah N, Tomba E, Varsakelis C, von Stoch Met al., 2021, Accelerating product and process development through a model centric approach, Quality by Design - An Indispensable Approach to Accelerate Biopharmaceutical Product Development, Editors: Campa, Khan, Publisher: Parenteral Drug Association, Inc., Pages: 285-338, ISBN: 978-1-945584-22-0

Book chapter

Kis Z, Papathanasiou M, Kotidis P, Antonakoudis T, Kontoravdi K, Shah Net al., 2021, Stability modelling for biopharmaceutical process intermediates, Quality by Design - An Indispensable Approach to Accelerate Biopharmaceutical Product Development, Editors: Campa, Khan, Publisher: Parenteral Drug Association, Inc, Pages: 200-225, ISBN: 978-1-945584-22-0

Book chapter

Antonakoudis A, Barbosa R, Kotidis P, Kontoravdi Ket al., 2020, The era of big data: Genome-scale modelling meets machine learning, Computational and Structural Biotechnology Journal, Vol: 18, Pages: 3287-3300, ISSN: 2001-0370

With omics data being generated at an unprecedented rate, genome-scale modelling has become pivotal in its organisation and analysis. However, machine learning methods have been gaining ground in cases where knowledge is insufficient to represent the mechanisms underlying such data or as a means for data curation prior to attempting mechanistic modelling. We discuss the latest advances in genome-scale modelling and the development of optimisation algorithms for network and error reduction, intracellular constraining and applications to strain design. We further review applications of supervised and unsupervised machine learning methods to omics datasets from microbial and mammalian cell systems and present efforts to harness the potential of both modelling approaches through hybrid modelling.

Journal article

Kotidis P, Kontoravdi K, 2020, Harnessing the potential of artificial neural networks for predicting protein glycosylation, Metabolic Engineering Communications, Vol: 10, ISSN: 2214-0301

Kinetic models offer incomparable insight on cellular mechanisms controlling protein glycosylation. However, their ability to reproduce site-specific glycoform distributions depends on accurate estimation of a large number of protein-specific kinetic parameters and prior knowledge of enzyme and transport protein levels in the Golgi membrane. Herein we propose an artificial neural network (ANN) for protein glycosylation and apply this to four recombinant glycoproteins produced in Chinese hamster ovary (CHO) cells, two monoclonal antibodies and two fusion proteins. We demonstrate that the ANN model accurately predicts site-specific glycoform distributions of up to eighteen glycan species with an average absolute error of 1.1%, correctly reproducing the effect of metabolic perturbations as part of a hybrid, kinetic/ANN, glycosylation model (HyGlycoM), as well as the impact of manganese supplementation and glycosyltransferase knock out experiments as a stand-alone machine learning algorithm. These results showcase the potential of machine learning and hybrid approaches for rapidly developing performance-driven models of protein glycosylation.

Journal article

Kotidis P, Jedrzejewski P, Sou SN, Sellick C, Polizzi K, Del Val IJ, Kontoravdi Cet al., 2019, Model-based optimization of antibody galactosylation in CHO cell culture, Biotechnology and Bioengineering, Vol: 116, Pages: 1612-1626, ISSN: 0006-3592

Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch-to-batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade-off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding - specifically that of galactose and uridine - on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher-performing bioprocesses.

Journal article

Kotidis P, Demis P, Goey C, Correa E, McIntosh C, Trepekli S, Shah N, Klymenko O, Kontoravdi Ket al., 2019, Constrained global sensitivity analysis for bioprocess design space identification, Computers and Chemical Engineering, Vol: 125, Pages: 558-568, ISSN: 1873-4375

The manufacture of protein-based therapeutics presents unique challenges due to limited control over the biotic phase. This typically gives rise to a wide range of protein structures of varying safety and in vivo efficacy. Herein we propose a computational methodology, enabled by the application of constrained Global Sensitivity Analysis, for efficiently exploring the operatingrange of process inputs in silico and identifying a design space that meets output constraints. The methodology was applied to an antibody-producing Chinese hamster ovary (CHO) cell culture system: we explored >8000 feeding strategies to identify a subset of manufacturing conditions that meet constraints on antibody titre and glycan distribution as an attribute of product quality. Our computational findings were then verified experimentally, confirming the applicability of this approach to a challenging production system. We envisage that this methodology can significantly expedite bioprocess development and increase operational flexibility.

Journal article

Kotidis P, Kontoravdi C, 2019, Strategic framework for parameterization of cell culture models, Processes, Vol: 7, ISSN: 2227-9717

Global Sensitivity Analysis (GSA) is a technique that numerically evaluates the significance of model parameters with the aim of reducing the number of parameters that need to be estimated accurately from experimental data. In the work presented herein, we explore different methods and criteria in the sensitivity analysis of a recently developed mathematical model to describe Chinese hamster ovary (CHO) cell metabolism in order to establish a strategic, transferable framework for parameterizing mechanistic cell culture models. For that reason, several types of GSA employing different sampling methods (Sobol’, Pseudo-random and Scrambled-Sobol’), parameter deviations (10%, 30% and 50%) and sensitivity index significance thresholds (0.05, 0.1 and 0.2) were examined. The results were evaluated according to the goodness of fit between the simulation results and experimental data from fed-batch CHO cell cultures. Then, the predictive capability of the model was tested against four different feeding experiments. Parameter value deviation levels proved not to have a significant effect on the results of the sensitivity analysis, while the Sobol’ and Scrambled-Sobol’ sampling methods and a 0.1 significance threshold were found to be the optimum settings. The resulting framework was finally used to calibrate the model for another CHO cell line, resulting in a good overall fit. The results of this work set the basis for the use of a single mechanistic metabolic model that can be easily adapted through the proposed sensitivity analysis method to the behavior of different cell lines and therefore minimize the experimental cost of model development.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01391265&limit=30&person=true