Imperial College London

prof paul f. luckham

Faculty of EngineeringDepartment of Chemical Engineering

Professor in Particle Technology
 
 
 
//

Contact

 

+44 (0)20 7594 5583p.luckham01 Website

 
 
//

Assistant

 

Miss Jessica Baldock +44 (0)20 7594 5699

 
//

Location

 

148Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

279 results found

Yesufu-Rufai S, Rucker M, Berg S, Lowe SF, Marcelis F, Georgiadis A, Luckham Pet al., 2020, Assessing the wetting state of minerals in complex sandstone rock in-situ by Atomic Force Microscopy (AFM), Fuel, Vol: 273, Pages: 1-11, ISSN: 0016-2361

Low salinity waterflooding is a low-cost method of enhancing oil recovery although, no consistent concept has been established explaining why some oil-fields show an increase in oil production when the salinity of the injected brine is reduced, while others do not. Various studies were conducted investigating the underlying mechanisms of the ‘low salinity effect’ using different crude oil, brine and rock compositions. Core floods of sandstone rock and analyses of molecular interactions using model systems indicate that clay content may play a dominant role. However, the spatial configuration of the sheet-like clay particles, which may vary from rock to rock, complicate comparisons of these model scenarios with reality.In the present study, we report the development of a pre-screening method using Atomic Force Microscopy (AFM) to assess rock-fluid interactions, which has previously only been used either on artificial model systems or minerals from crushed rock, by exploring the capability to operate in-situ in complex rock without crushing. The orientation of clay particles within a pore of an outcrop sandstone, Bandera Brown, was investigated with AFM and these particles were further assessed for changes in adhesion in brines of differing salinity. The results show a decrease in adhesions between CH3-functionalised AFM tips and the rock surface in low salinity brine, predominantly at the clay edges. This demonstrates that the edges of the clay particles, which may pin the oil phase after wettability alteration and therewith prevent oil from getting produced, lose this capacity when exposed to low salinity brine.

Journal article

Xiong R, Zhang Y, Zhou W, Xia K, Sun Q, Chen G, Han B, Gao Q, Zhou Cet al., 2020, Chemical activation of carbon materials for supercapacitors: Elucidating the effect of spatial characteristics of the precursors, COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, Vol: 597, ISSN: 0927-7757

Journal article

Yesufu-Rufai S, Marcelis F, Georgiadis A, Berg S, Rucker M, van Wunnik J, Luckham Pet al., 2020, Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact on wettability modification and mineral morphology, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol: 597, Pages: 1-10, ISSN: 0927-7757

Laboratory core flood experiments performed to establish chemical enhanced oil recovery (cEOR) procedures often make use of rock samples that deviate from prevailing conditions within the reservoir. These samples have usually been preserved in an uncontrolled oxidising environment in contrast to reducing reservoir conditions, a discrepancy that affects rock wettability and thus oil recovery. The use of a reducing fluid is a predominant method, particularly regarding iron-bearing minerals, for restoring these samples to representative redox states.In this study, the adhesion of polar (NH2 and COOH) and non-polar (CH3) crude oil components to the pore surfaces of Bandera Brown, an outcrop of similar mineralogy to reservoir sandstones, was investigated using Atomic Force Microscopy to determine the potential of a reducing fluid of Sodium Dithionite in seawater to alter surface wettability. This novel workflow for the observation of redox condition effects illuminates the nanoscopic interaction forces at the rock/fluid interface responsible this phenomenon.The results obtained show that adhesion forces between the oil components and the Bandera Brown surface after treatment with the reducing fluid decreased in the order: NH2 (∼70 %) >COOH (∼36 %) >CH3 (∼3 %), due to diminishing affinity of the surface for the polar functional groups when the oxidation state of iron was altered from iron III to iron II. The morphology of Bandera Brown is noted to be affected as well with some dissolution of the mineral composition within cemented pores observed.The results demonstrate that redox state is indeed important for the assessment of wetting properties of surfaces as measurements performed in oxidising environments may not be representative of reservoir reducing conditions. Also, complete reduction of iron oxides on the mineral surfaces seems unlikely without altering the prevailing pore structure. These findings have relevance not only in EOR cases but can fin

Journal article

Wang T, Yang L, Jiang G, Luckham PF, Yang Xet al., 2020, Enhanced foam-stabilizing performance by the addition of clays: A comparison of magnesium aluminum silicate with sodium bentonite, Applied Clay Science, Vol: 189, Pages: 1-12, ISSN: 0169-1317

High-temperature-resistant foam stabilizers are desperately required for high-temperature conditions, such as in geothermal wells. In this study, nano‑magnesium aluminum silicate (NMAS) and micro‑magnesium aluminum silicate (MMAS) particles have been studied and compared with sodium bentonite (Na-Bent) as high-temperature-resistant foam stabilizers. It is found that increasing the temperature could facilitate aggregation of clay dispersion, and the increase of particle size results in significant positive effect on apparent viscosity, interface dilational modulus, foam film thickness, and eventually drainage half-life (T0.5) of the foam. Simultaneously, it leads to a negative impact on the initial foam volume (V0) and foam diameter. Moreover, NMAS even possesses excellent foam stabilization effect after being aged at 320 °C for 16 h that it could still dramatically extend T0.5 to 9.78 h, compared to 45.52 and 13.78 min for MMAS and Na-Bent, respectively. Furthermore, V0 of Na-Bent-stabilized foam cannot resist the influence of NaCl and CaCl2 even when only 1.0 wt% NaCl or 0.1 wt% CaCl2 is added. By comparison, V0 of NMAS- and MMAS-stabilized foam drilling fluids are comparatively insensitive to NaCl and CaCl2 until the concentration of 3.0 wt% and 0.2 wt%, respectively. Not only has this study provided a guideline for using clay minerals as foam stabilizers under various high-temperature conditions, but we have also discovered an outstanding high-temperature-resistant foam stabilizer, NMAS, which produces an excellent foam-stabilizing performance even at temperatures as high as 320 °C.

Journal article

Reinoso D, Martín-Alfonso MJ, Luckham PF, Martínez-Boza FJet al., 2020, Flow behavior and thermal resistance of xanthan gum in formate brine, Journal of Petroleum Science and Engineering, Vol: 188, Pages: 1-9, ISSN: 0920-4105

Drilling and completion operations in HP/HT environments demand the use of environmentally friendly fluids with suitable properties such as solid-free high-density and pseudoplastic behavior. Xanthan gum solutions in different brines may be an interesting alternative to ensure a suitable thermo-rheological behavior and biodegradability. Nevertheless, xanthan exposed at high temperature experiences thermal degradation that can modify the flow properties over time and limits the ceiling temperature of oilfield applications. To gain insight on this issue, this paper characterizes the flow behavior of low concentration XT solutions in calcium and potassium brines, evaluating the effect that potassium formate exerts on both the flow properties and the resistance to thermal degradation of xanthan solutions as a function of the biopolymer concentration. Xanthan in formate brine retains the pseudoplastic behavior up to 190 °C, however, low concentrate solutions undergo a thermal degradation that decreases the recovery of pseudoplasticity after being exposed to high temperature.

Journal article

Ekanem EM, Berg S, De S, Fadili A, Bultreys T, Rucker M, Southwick J, Crawshaw J, Luckham PFet al., 2020, Signature of elastic turbulence of viscoelastic fluid flow in a single pore throat, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol: 101, Pages: 042605 – 1-042605 – 14, ISSN: 1539-3755

When a viscoelastic fluid, such as an aqueous polymer solution, flows through a porous medium, the fluid undergoes a repetitive expansion and contraction as it passes from one pore to the next. Above a critical flow rate, the interaction between the viscoelastic nature of the polymer and the pore configuration results in spatial and temporal flow instabilities reminiscent of turbulentlike behavior, even though the Reynolds number Re≪1. To investigate whether this is caused by many repeated pore body–pore throat sequences, or simply a consequence of the converging (diverging) nature present in a single pore throat, we performed experiments using anionic hydrolyzed polyacrylamide (HPAM) in a microfluidic flow geometry representing a single pore throat. This allows the viscoelastic fluid to be characterized at increasing flow rates using microparticle image velocimetry in combination with pressure drop measurements. The key finding is that the effect, popularly known as “elastic turbulence,” occurs already in a single pore throat geometry. The critical Deborah number at which the transition in rheological flow behavior from pseudoplastic (shear thinning) to dilatant (shear thickening) strongly depends on the ionic strength, the type of cation in the anionic HPAM solution, and the nature of pore configuration. The transition towards the elastic turbulence regime was found to directly correlate with an increase in normal stresses. The topology parameter, Qf, computed from the velocity distribution, suggests that the “shear thickening” regime, where much of the elastic turbulence occurs in a single pore throat, is a consequence of viscoelastic normal stresses that cause a complex flow field. This flow field consists of extensional, shear, and rotational features around the constriction, as well as upstream and downstream of the constriction. Furthermore, this elastic turbulence regime, has high-pressure fluctuations, with a power-law decay ex

Journal article

Rücker M, Bartels W-B, Bultreys T, Boone M, Singh K, Garfi G, Scanziani A, Spurin C, Krevor S, Blunt MJ, Wilson O, Mahani H, Cnudde V, Luckham PF, Georgiadis A, Berg Set al., 2020, Workflow for upscaling wettability from the nano- to core-scales, International Symposium of the Society of Core Analysts

Conference paper

Rucker M, Bartels W-B, Garfi G, Shams M, Bultreys T, Boone M, Pieterse S, Maitland GC, Krevor S, Cnudde V, Mahani H, Berg S, Georgiadis A, Luckham PFet al., 2020, Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale, JOURNAL OF COLLOID AND INTERFACE SCIENCE, Vol: 562, Pages: 159-169, ISSN: 0021-9797

Journal article

Russell AW, Kahouadji L, Mirpuri K, Quarmby A, Piccione PM, Matar OK, Luckham PF, Markides CNet al., 2019, Mixing viscoplastic fluids in stirred vessels over multiple scales: An experimental and CFD approach, Chemical Engineering Science, Vol: 208, ISSN: 1873-4405

Dye visualisation techniques and CFD are used to characterise the flow of viscoplastic CarbopolTM solutions in stirred vessel systems over multiple scales. Centrally-mounted, geometrically-similar Rushton turbine (RT) impellers are used to agitate various Carbopol 980 (C980) fluids. The dimensionless cavern diameters, Dc/D, are scaled against a combination of dimensionless parameters: Rem-0.3Rey0.6n-0.1ks-1, where Rem, Rey, n and ks are the modified power-law Reynolds number, yield stress Reynolds number, flow behaviour index and impeller geometry constant, respectively. Excellent collapse of the data is demonstrated for the fluids and flows investigated. Additional data are collected using a pitched-blade turbine (PBT) with cavern size similarity being shown between the RT and PBT datasets. These results are important in the context of scale-up/scale-down mixing processes in stirred vessels containing complex fluids and can be used to show that flow similarity can be achieved in these systems if the processes are scaled appropriately.

Journal article

Shaffee SNA, Luckham PF, Matar OK, Karnik A, Zamberi MSAet al., 2019, Numerical investigation of sand-screen performance in the presence of adhesive effects for enhanced sand control, SPE Journal, Vol: 24, Pages: 2195-2208, ISSN: 1086-055X

In many industrial processes, an effective particle-filtration system is essential for removing unwanted solids. The oil and gas industry has explored various technologies to control and manage excessive sand production, such as by installing sand screens or injecting consolidation chemicals in sand-prone wells as part of sand-management practices. However, for an unconsolidated sandstone formation, the selection and design of effective sand control remains a challenge. In recent years, the use of a computational technique known as the discrete-element method (DEM) has been explored to gain insight into the various parameters affecting sand-screen-retention behavior and the optimization of various types of sand screens (Mondal et al. 2011, 2012, 2016; Feng et al. 2012; Wu et al. 2016).In this paper, we investigate the effectiveness of particle filtration using a fully coupled computational-fluid-dynamics (CFD)/DEM approach featuring polydispersed, adhesive solid particles. We found that an increase in particle adhesion reduces the amount of solid in the liquid filtrate that passes through the opening of a wire-wrapped screen, and that a solid pack of particle agglomerates is formed over the screen with time. We also determined that increasing particle adhesion gives rise to a decrease in packing density and a diminished pressure drop across the solid pack covering the screen. This finding is further supported by a Voronoi tessellation analysis, which reveals an increase in porosity of the solid pack with elevated particle adhesion. The results of this study demonstrate that increasing the level of particle agglomeration, such as by using an adhesion-promoting chemical additive, has beneficial effects on particle filtration. An important application of these findings is the design and optimization of sand-control processes for a hydrocarbon well with excessive sand production, which is a major challenge in the oil and gas industry.

Journal article

Yang L, Wang T, Yang X, Jiang G, Luckham PF, Xu J, Li X, Ni Xet al., 2019, Highly stabilized foam by adding amphiphilic Janus particles for drilling a high-temperature and high-calcium geothermal well, Industrial and Engineering Chemistry Research, Vol: 58, Pages: 9795-9805, ISSN: 0888-5885

Fabricating Janus particles that consist of two distinct functional regions is an intriguing research topic. In this study, wax colloidosomes were successfully prepared by the Pickering emulsion method. After hydrophilic modification with an amino-containing silane agent and separate hydrophobic modification with several silane coupling agents with different carbon chain lengths, a series of Janus particles that differed in their hydrophilic lipophilic balance were facilely fabricated. The results show that the (3-aminopropyl)triethoxysilane-SiO2-dodecyltrimethoxysilane (NH2-SiO2-12C) Janus particles possess the best foam stability. As a result of their suitable contact angle of 80°, high positive ζ-potential, and good surface activity, these foams display the characteristics of low surface tension, high dilational elasticity, nonspherical shapes, large sizes, and thick films, which together result in the extension of the drainage half-life of the foam from 448 to 778 s in comparison with the foam of pure foaming agent solutions. Moreover, compared with a foam with no stabilizer or those stabilized by a soluble foam stabilizer and homogeneous hydrophobic-modified silica particles, NH2-SiO2-12C-stabilized foam can extend the drainage half-life to 668 s after hot rolling for 16 h at 280 °C and resist a CaCl2 concentration of 0.8 wt %. Benefiting from their excellent thermal stability and salt tolerance, these Janus particles are expected to be promising candidates for use as foam stabilizers in high-temperature and high-calcium conditions, including drilling, enhanced oil recovery, “waterless” fracturing, and, especially, in geothermal wells.

Journal article

Yang L, Yang X, Wang T, Jiang G, Luckham PF, Li X, Shi H, Luo Jet al., 2019, Effect of Alkyl Chain Length on Shale Hydration Inhibitive Performance of Vinylimidazolium-Based Ionic Liquids, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, Vol: 58, Pages: 8565-8577, ISSN: 0888-5885

Journal article

Yasin S, Shakeel A, Iqbal T, Ahmad F, Mehmood H, Luckham PF, Ullah Net al., 2019, Effect of experimental conditions on nano-indentation response of low density polyethylene (LDPE), JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, Vol: 56, Pages: 640-647, ISSN: 1060-1325

Journal article

Leivers M, Seddon JM, Declercq M, Robles ESJ, Luckham PFet al., 2019, Measurement of forces between supported cationic bilayers by colloid probe atomic force microscopy: electrolyte concentration and composition, Langmuir, Vol: 35, Pages: 729-738, ISSN: 0743-7463

The interactions between supported cationic surfactant bilayers were measured by colloidal probe atomic force spectroscopy and the effect of different halide salts was investigated. Di(alkyl iso-propyl ester) dimethyl ammonium methylsulfate (DIPEDMAMS) bilayers were fabricated by the vesicle fusion technique on muscovite mica. The interactions between the bilayers were measured in increasing concentrations of NaCl, NaBr, NaI and CaCl2. In NaCl the bilayer interactions were repulsive at all concentrations investigated, and the Debye length and surface potential were observed to decrease with increasing concentration. The interactions were found to follow the Electrical Double Layer (EDL) component of DLVO theory well. However Van der Waals forces were not detected, instead a strong hydration repulsion was observed at short separations. CaCl2 had a similar effect on the interactions as NaCl. NaBr and NaI were observed to be more efficient at decreasing the surface potential than the chloride salts, with the efficacy increasing with the ionic radius.

Journal article

Reinoso D, Martin-Alfonso MJ, Luckham PF, Martinez-Boza FJet al., 2019, Rheological characterisation of xanthan gum in brine solutions at high temperature, Carbohydrate Polymers, Vol: 203, Pages: 103-109, ISSN: 0144-8617

Xanthan gum solutions are used in the oil industry for flooding, drilling and completion operations. The stabilization of the structure of xanthan gum solutions in presence of salts increases the value of both the order-disorder transition temperature and the gel strength. This effect is very important in order to design drilling and completion fluids since not only density and viscosity of the fluid can be improved by increasing the concentration of salts but also the range of temperature where the solution shows viscoelastic behaviour can be extended.This paper presents results from a study on the rheological behaviour of xanthan gum solutions in different saturated brines. Chloride and formate potassium brines not only increase the viscosity of the solution but also extend the shear thinning behaviour to temperatures near 200 °C, maintaining a simple relaxation mechanism over the whole range of temperature where the ordered conformation dominates the rheological behaviour.

Journal article

Eguagie E, Berg S, Crawshaw J, De S, Luckham Pet al., 2019, Flexible coiled polymer dynamics in a single pore throat with effects of flow resistance and normal stresses

© 2019 European Association of Geoscientists and Engineers, EAGE. All Rights Reserved. We investigate the challenges involved in the use of polymer flooding as a chemical enhanced oil recovery (cEOR) technique for improving mobility ratio and enhancing macroscopic sweep efficiency. Flexible coiled polymers in porous media undergo stretching in a spatially heterogeneous structure. Due to the viscoelasticity of these polymers, they stretch continuously depending on their previous deformation until their elastic limit is reached and relaxation occurs. Previous research has proposed that at a certain critical flow rate, the relaxation of polymers cause an increase in viscosity and in turn a better mobility for enhancing microscopic sweep in porous media. However, others have reported that the increased viscosity in porous media is not so much related to the elasticity but more on the normal stresses that occur when polymers are sheared in porous media flow. One similar fact is that as increased viscosity is observed an enhanced pressured drop occurs and the flow becomes highly unstable even at laminar flow regime. This unstable flow is termed the elastic instability or turbulence but the details of this kind of turbulence, its consequences and applicability on the impact of oil recovery is not understood. In this work, we experimentally investigate the flow behaviors of flexible coiled polymers of hydrolyzed polyacrylamide (HPAM) based on a single pore throat geometry using a microfluidic device. The aim is to adequately parameterize the effects of the normal stress difference in shear and extension as a function of the geometry and intrinsic characteristics of the polymer solutions at different Deborah (De) numbers. Hence, we carry out pressure drop and particle image velocimetry experiments and results showed a critical De at which polymer viscosity increases as well as the normal stress difference. It was also observed that the flow resistance might be a functio

Conference paper

Eguagie E, Berg S, Crawshaw J, De S, Luckham Pet al., 2019, Flexible coiled polymer dynamics in a single pore throat with effects of flow resistance and normal stresses

© 2019 European Association of Geoscientists and Engineers, EAGE. All Rights Reserved. We investigate the challenges involved in the use of polymer flooding as a chemical enhanced oil recovery (cEOR) technique for improving mobility ratio and enhancing macroscopic sweep efficiency. Flexible coiled polymers in porous media undergo stretching in a spatially heterogeneous structure. Due to the viscoelasticity of these polymers, they stretch continuously depending on their previous deformation until their elastic limit is reached and relaxation occurs. Previous research has proposed that at a certain critical flow rate, the relaxation of polymers cause an increase in viscosity and in turn a better mobility for enhancing microscopic sweep in porous media. However, others have reported that the increased viscosity in porous media is not so much related to the elasticity but more on the normal stresses that occur when polymers are sheared in porous media flow. One similar fact is that as increased viscosity is observed an enhanced pressured drop occurs and the flow becomes highly unstable even at laminar flow regime. This unstable flow is termed the elastic instability or turbulence but the details of this kind of turbulence, its consequences and applicability on the impact of oil recovery is not understood. In this work, we experimentally investigate the flow behaviors of flexible coiled polymers of hydrolyzed polyacrylamide (HPAM) based on a single pore throat geometry using a microfluidic device. The aim is to adequately parameterize the effects of the normal stress difference in shear and extension as a function of the geometry and intrinsic characteristics of the polymer solutions at different Deborah (De) numbers. Hence, we carry out pressure drop and particle image velocimetry experiments and results showed a critical De at which polymer viscosity increases as well as the normal stress difference. It was also observed that the flow resistance might be a functio

Conference paper

Elizarova IS, Luckham PF, 2018, Layer-by-layer adsorption: Factors affecting the choice of substrates and polymers, Advances in Colloid and Interface Science, Vol: 262, Pages: 1-20, ISSN: 0001-8686

The electrostatic layer-by-layer technique for fabrication of multi-layered structures of various sizes and shapes using flat and colloidal templates coupled with polyelectrolyte layer-forming materials has attracted significant interest among both academic and industrial researchers due to its versatility and relative simplicity of the procedures involved in its execution. Fabrication of the multi-layered structures using the electrostatic layer-by-layer method involves several distinct stages each of which holds great importance when considering the production of a high-quality product. These stages include selection of materials (both template and a pair of construction polyelectrolytes), adsorption of the first polyelectrolyte layer onto the selected templates, formation of the second layer comprised of the oppositely charged polyelectrolyte and guided by the interactions between the two chosen polyelectrolytes, and multi-layering, where a selected number of layers are produced, and which is conditioned by both intrinsic properties of the involved construction materials and external fabrication conditions such as temperature, pH and ionic strength. The current review summarises the most important aspects of each stage mentioned above and gives examples of the materials suitable for utilization of the technique and describes the underlying physics involved.

Journal article

Butler E, Reid B, Petit C, Luckham P, Livingston A, Guldin Set al., 2018, Extended DLVO interactions of a metal-organic framework: Implications on colloidal dispersion, 256th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nanoscience, Nanotechnology and Beyond, Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727

Conference paper

Ahmad A, Iqbal T, Yasin S, Hanif R, Riaz S, Luckham PFet al., 2018, Stability of Amorphous PEEK in Organic Solvents, JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, Vol: 40, Pages: 810-818, ISSN: 0253-5106

Journal article

Collini H, Mohr M, Luckham P, Shan J, Russell Aet al., 2018, The effects of polymer concentration, shear rate and temperature on the gelation time of aqueous Silica-Poly(ethylene-oxide) "Shake-gels", Journal of Colloid and Interface Science, Vol: 517, Pages: 1-8, ISSN: 0021-9797

HypothesisAqueous mixtures of silica and Poly(ethylene-oxide) (PEO) are known as “Shake-gels” due to the formation of reversible gels when subject to an applied force, such as shaking. This shear-thickening effect can be observed using a rheometer, via distinct and abrupt increases in the viscosity of the material. Preliminary experiments qualitatively showed that the time elapsed before this occurs, termed the gelation time, varied depending on the conditions used. This paper reports on a systematic study into the effects of polymer concentration, shear rate and temperature on the gelation time, to quantify any relationships that exist between the variables and develop understanding of the gelation mechanism and kinetics.ExperimentsDifferent constant shear rates were applied to samples at various polymer concentrations and temperatures using a rheometer with concentric cylinder geometry.FindingsThe gelation time varied significantly from several seconds to an hour or more and was exponentially accelerated by shear rate. A peak in gelation time occurred at medium polymer concentrations of 0.35–0.40% (25% silica) and at a temperature about 20 °C. Higher temperatures also exponentially accelerated the gelation time as kinetic effects dominated the thermodynamic and structural resistances to gel formation.

Journal article

Iqbal T, Yasin S, Shakeel A, Mahmood H, Nazir F, Luckham PFet al., 2018, Analysis of Solvent Effect on Mechanical Properties of Poly(ether ether ketone) Using Nano-indentation, CHINESE JOURNAL OF CHEMICAL PHYSICS, Vol: 31, Pages: 211-215, ISSN: 1674-0068

Journal article

Matar O, Lee RY, Shaffee A, Luckham Pet al., 2018, Sand agglomeration in oil & gas reservoirs: Chemistry, experiments and simulations, 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water, Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727

Conference paper

Muratalin M, Luckham PF, Esimova A, Aidarova S, Mutaliyeva B, Madybekova G, Sharipova A, Issayeva Aet al., 2017, Study of N-isopropylacrylamide-based microgel particles as a potential drug delivery agents, COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, Vol: 532, Pages: 8-17, ISSN: 0927-7757

Journal article

Elizarova IS, Luckham PF, 2016, Layer-by-layer encapsulated nano-emulsion of ionic liquid loaded with functional material for extraction of Cd(2+) ions from aqueous solutions., Journal of Colloid and Interface Science, Vol: 491, Pages: 286-293, ISSN: 1095-7103

Ionic liquids can serve as an environmentally-friendly replacement for solvents in emulsions, therefore they are considered suitable to be used as an emulsified medium for various active materials one of which are extractors of metal ions. Increasing the extraction efficiency is considered to be one of the key objectives when working with such extraction systems. One way to improve the extraction efficiency is to increase the contact area between the extractant and the working ionic solution. This can be accomplished by creating a nano-emulsion of ionic liquid containing such an extractant. Since emulsification of ionic liquid is not always possible in the sample itself, there is a necessity of creating a stable emulsion that can be added externally and on demand to samples from which metal ions need to be extracted. We propose a method of fabrication of a highly-stable extractant-loaded ionic liquid-in-water nano-emulsion via a low-energy phase reversal emulsification followed by continuous layer-by-layer polyelectrolyte deposition process to encapsulate the nano-emulsion and enhance the emulsion stability. Such a multilayered stabilized nano-emulsion was tested for extraction of Cd(2+) and Ca(2+) ions in order to determine its extraction efficiency and selectivity. It was found to be effective in the extraction of Cd(2+) ions with near 100% cadmium removal, as well as being selective since no Ca(2+) ions were extracted. The encapsulated emulsion was removed from samples post-extraction using two methods - filtration and magnetic separation, both of which were shown to be viable under different circumstances - larger and mechanically stronger capsules could be removed by filtration, however magnetic separation worked better for both smaller and bigger capsules. The long-term stability of nano-emulsion was also tested being a very important characteristic for its proposed use: it was found to be highly stable after four months of storage time.

Journal article

Yasin S, Luckham PF, Iqbal T, 2016, Investigating the Conformation of Polymeric Dispersant Molecules on Nanoparticle Surface, JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, Vol: 38, Pages: 446-453, ISSN: 0253-5106

Journal article

Luckham PF, Elizarova I, 2016, Fabrication of polyelectrolyte multilayered nano-capsules using a continuous layer-by-layer approach, Journal of Colloid and Interface Science, Vol: 470, Pages: 92-99, ISSN: 1095-7103

The layer-by-layer approach is a highly versatile method for the fabrication of multilayered polymeric films and capsules. It has been widely investigated in research for various polyelectrolyte pairs and core template particles. However, the fabrication of nano-sized capsules at the larger scale is difficult and time consuming, due to the necessity of washing and centrifugation steps before the deposition of each polyelectrolyte layer. This results not only in a very long fabrication time, but also in the partial loss of particles during those intermediate steps. In this study, we introduced a continuous approach for the fabrication of multilayer polyelectrolyte based nano-capsules using calcium phosphate core nanoparticles and a tubular flow type reactor with the potential for synthesizing tens of milligrams of capsules per hour. Adsorption of the polyelectrolyte layer occurred in the tubing where particles and polyelectrolyte solution of choice were mixed, creating a layer of polyelectrolyte on the particles. After this, these newly surfaced-modified particles passed into the next segment of tubing, where they were mixed with a second polyelectrolyte of opposite charge. This process can be continuously repeated until the desired number of layers is achieved. One potential problem with this method concerned the presence of any excess polyelectrolyte in the tubing, so careful control of the amount of polymer added was crucial. It was found that slightly under dosing the amount of added polyelectrolyte ensured that negligible unadsorbed polyelectrolyte remained in solution. The particles created at each deposition step were stable, as they all had a zeta potential of greater than ±25 mV. Furthermore the zeta potential measurements showed that charge reversal occurred at each stage. Having achieved the necessary number of polyelectrolyte layers, the calcium phosphate cores were easily removed via dissolution in either hydrochloric or acetic acid.

Journal article

Martin HP, Brooks NJ, Seddon JM, Luckham PF, Terrill NJ, Kowalski AJ, Cabral JTet al., 2016, Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology, Soft Matter, Vol: 12, Pages: 1750-1758, ISSN: 1744-6848

Journal article

Mar Ramos-Tejada M, Luckham PF, 2015, Shaken but not stirred: The formation of reversible particle - polymer gels under shear, COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, Vol: 471, Pages: 164-169, ISSN: 0927-7757

Journal article

Mar Ramos-Tejada M, Luckham PF, 2015, Shaken but not stirred: The formation of reversible particle - polymer gels under shear, COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, Vol: 471, Pages: 164-169, ISSN: 0927-7757

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00003640&limit=30&person=true