Imperial College London

Professor Paul M. Matthews

Faculty of MedicineDepartment of Brain Sciences

Edmond and Lily Safra Chair, Head of Department
 
 
 
//

Contact

 

+44 (0)20 7594 2855p.matthews

 
 
//

Assistant

 

Ms Siobhan Dillon +44 (0)20 7594 2855

 
//

Location

 

E502Burlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

615 results found

Meyer H, Dawes T, Serrani M, Bai W, Tokarczuk P, Cai J, Simoes Monteiro de Marvao A, Henry A, Lumbers T, Gierten J, Thumberger T, Wittbrodt J, Ware J, Rueckert D, Matthews P, Prasad S, Costantino M, Cook S, Birney E, O'Regan Det al., 2020, Genetic and functional insights into the fractal structure of the heart, Nature, Vol: 584, Pages: 589-594, ISSN: 0028-0836

The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a vestigeof embryonic development.1,2 The function of these trabeculae in adults and their genetic architecture are unknown. Toinvestigate this we performed a genome-wide association study using fractal analysis of trabecular morphology as animage-derived phenotype in 18,096 UK Biobank participants. We identified 16 significant loci containing genes associatedwith haemodynamic phenotypes and regulation of cytoskeletal arborisation.3,4 Using biomechanical simulations and humanobservational data, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Throughgenetic association studies with cardiac disease phenotypes and Mendelian randomisation, we find a causal relationshipbetween trabecular morphology and cardiovascular disease risk. These findings suggest an unexpected role for myocardialtrabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity, and reveal theirinfluence on susceptibility to disease

Journal article

Bai W, Suzuki H, Huang J, Francis C, Wang S, Tarroni G, Guitton F, Aung N, Fung K, Petersen SE, Piechnik SK, Neubauer S, Evangelou E, Dehghan A, O'Regan DP, Wilkins MR, Guo Y, Matthews PM, Rueckert Det al., 2020, A population-based phenome-wide association study of cardiac and aortic structure and function, Nature Medicine, ISSN: 1078-8956

Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can be used to better define cardiovascular disease risks as well as heart–brain health interactions, highlighting new opportunities for studying disease mechanisms and developing image-based biomarkers.

Journal article

Huang J, Zuber V, Matthews P, Tzoulaki I, Elliott P, Dehghan Aet al., 2020, Sleep, major depressive disorder and Alzheimer’s disease: a Mendelian randomisation study, Neurology, ISSN: 0028-3878

ObjectiveTo explore the causal relationships between sleep, major depressive disorder (MDD), and Alzheimer’s disease (AD).MethodsWe conducted bi-directional two-sample Mendelian randomisation analyses. Genetic associations were obtained from the largest genome-wide association studies currently available in UK Biobank (N=446,118), the Psychiatric Genomics Consortium (N=18,759), and the International Genomics of Alzheimer’s Project (N=63,926). We used the inverse variance weighted Mendelian randomisation method to estimate causal effects, and weighted median and MR-Egger for sensitivity analyses to test for pleiotropic effects. ResultsWe found that higher risk of AD was significantly associated with being a “morning person” (odds ratio (OR)=1.01, P=0.001), shorter sleep duration (self-reported: β=-0.006, P=1.9×10-4; accelerometer-based: β=-0.015, P=6.9×10-5), less likely to report long sleep (β=-0.003, P=7.3×10-7), earlier timing of the least active 5 hours (β=-0.024, P=1.7×10-13), and a smaller number of sleep episodes (β=-0.025, P=5.7×10-14) after adjusting for multiple comparisons. We also found that higher risk of AD was associated with lower risk of insomnia (OR=0.99, P=7×10-13). However, we did not find evidence either that these abnormal sleep patterns were causally related to AD or for a significant causal relationship between MDD and risk of AD. ConclusionWe found that AD may causally influence sleep patterns. However, we did not find evidence supporting a causal role of disturbed sleep patterns for AD or evidence for a causal relationship between MDD and AD.

Journal article

Popescu SG, Whittington A, Gunn RN, Matthews PM, Glocker B, Sharp DJ, Cole JHet al., 2020, Nonlinear biomarker interactions in conversion from mild cognitive impairment to Alzheimer's disease, HUMAN BRAIN MAPPING, ISSN: 1065-9471

Journal article

Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien J-P, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PMet al., 2020, Neurofilaments: neurobiological foundations for biomarker applications., Brain, Vol: 143, Pages: 1975-1998

Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.

Journal article

Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell JD, Boultwood C, Collins R, Conroy MC, Crabtree N, Doherty N, Frangi AF, Harvey NC, Leeson P, Miller KL, Neubauer S, Petersen SE, Sellors J, Sheard S, Smith SM, Sudlow CLM, Matthews PM, Allen NEet al., 2020, The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions, Nature Communications, Vol: 11, ISSN: 2041-1723

UK Biobank is a population-based cohort of half a million participants aged 40-69 years recruited between 2006 and 2010. In 2014, UK Biobank started the world's largest multi-modal imaging study, with the aim of re-inviting 100,000 participants to undergo brain, cardiac and abdominal magnetic resonance imaging, dual-energy X-ray absorptiometry and carotid ultrasound. The combination of large-scale multi-modal imaging with extensive phenotypic and genetic data offers an unprecedented resource for scientists to conduct health-related research. This article provides an in-depth overview of the imaging enhancement, including the data collected, how it is managed and processed, and future directions.

Journal article

Faergeman SL, Evans H, Attfield KE, Desel C, Kuttikkatte SB, Sommerlund M, Jensen LT, Frokiaer J, Friese MA, Matthews PM, Luchtenborg C, Brügger B, Oturai AB, Dendrou CA, Fugger Let al., 2020, A novel neurodegenerative spectrum disorder in patients with MLKL deficiency, Cell Death and Disease, Vol: 11, ISSN: 2041-4889

Mixed lineage kinase domain-like (MLKL) is the main executor of necroptosis, an inflammatory form of programmed cell death. Necroptosis is implicated in combating infections, but also in contributing to numerous other clinical conditions, including cardiovascular diseases and neurodegenerative disorders. Inhibition of necroptosis is therefore of therapeutic interest. Here we report two siblings both of whom over the course of 35 years developed a similar progressive, neurodegenerative spectrum disorder characterized by paresis, ataxia and dysarthria. Magnetic resonance imaging of their central nervous system (CNS) revealed severe global cerebral volume loss and atrophy of the cerebellum and brainstem. These brothers are homozygous for a rare haplotype identified by whole genome sequencing carrying a frameshift variant in MLKL, as well as an in-frame deletion of one amino acid in the adjacent fatty acid 2-hydroxylase (FA2H) gene. Functional studies of patient-derived primary cells demonstrated that the variant in MLKL leads to a deficiency of MLKL protein resulting in impairment of necroptosis. Conversely, shotgun lipidomic analysis of the variant in FA2H shows no impact on either the abundance or the enzymatic activity of the encoded hydroxylase. To our knowledge, this is the first report of complete necroptosis deficiency in humans. The findings may suggest that impaired necroptosis is a novel mechanism of neurodegeneration, promoting a disorder that shares some clinical features with primary progressive multiple sclerosis (PPMS) and other neurodegenerative diseases. Importantly, the necroptotic deficiency does not cause symptoms outside the nervous system, nor does it confer susceptibility to infections. Given the current interest in pharmacological inhibition of necroptosis by targeting MLKL and its associated pathways, this strategy should be developed with caution, with careful consideration of the possible development of adverse neurological effects.

Journal article

Bauermeister S, Orton C, Thompson S, Barker RA, Bauermeister JR, Ben-Shlomo Y, Brayne C, Burn D, Campbell A, Calvin C, Chandran S, Chaturvedi N, Chene G, Chessell IP, Corbett A, Davis DHJ, Denis M, Dufouil C, Elliott P, Fox N, Hill D, Hofer SM, Hu MT, Jindra C, Kee F, Kim C-H, Kim C, Kivimaki M, Koychev I, Lawson RA, Linden GJ, Lyons RA, Mackay C, Matthews PM, McGuiness B, Middleton L, Moody C, Moore K, Na DL, O'Brien JT, Ourselin S, Paranjothy S, Park K-S, Porteous DJ, Richards M, Ritchie CW, Rohrer JD, Rossor MN, Rowe JB, Scahill R, Schnier C, Schott JM, Seo SW, South M, Steptoe M, Tabrizi SJ, Tales A, Tillin T, Timpson NJ, Toga AW, Visser P-J, Wade-Martins R, Wilkinson T, Williams J, Wong A, Gallacher JEJet al., 2020, The Dementias Platform UK (DPUK) data portal, European Journal of Epidemiology, Vol: 35, Pages: 601-611, ISSN: 0393-2990

The Dementias Platform UK Data Portal is a data repository facilitating access to data for 3 370 929 individuals in 42 cohorts. The Data Portal is an end-to-end data management solution providing a secure, fully auditable, remote access environment for the analysis of cohort data. All projects utilising the data are by default collaborations with the cohort research teams generating the data. The Data Portal uses UK Secure eResearch Platform infrastructure to provide three core utilities: data discovery, access, and analysis. These are delivered using a 7 layered architecture comprising: data ingestion, data curation, platform interoperability, data discovery, access brokerage, data analysis and knowledge preservation. Automated, streamlined, and standardised procedures reduce the administrative burden for all stakeholders, particularly for requests involving multiple independent datasets, where a single request may be forwarded to multiple data controllers. Researchers are provided with their own secure ‘lab’ using VMware which is accessed using two factor authentication. Over the last 2 years, 160 project proposals involving 579 individual cohort data access requests were received. These were received from 268 applicants spanning 72 institutions (56 academic, 13 commercial, 3 government) in 16 countries with 84 requests involving multiple cohorts. Projects are varied including multi-modal, machine learning, and Mendelian randomisation analyses. Data access is usually free at point of use although a small number of cohorts require a data access fee.

Journal article

Matthews PM, Block VJ, Leocani L, 2020, E-health and multiple sclerosis., Current Opinion in Neurology, Vol: 33, Pages: 271-276, ISSN: 1080-8248

PURPOSE OF REVIEW: To outline recent applications of e-health data and digital tools for improving the care and management of healthcare for people with multiple sclerosis. RECENT FINDINGS: The digitization of most clinical data, along with developments in communication technologies, miniaturization of sensors and computational advances are enabling aggregation and clinically meaningful analyses of real-world data from patient registries, digital patient-reported outcomes and electronic health records (EHR). These data are allowing more confident descriptions of prognoses for multiple sclerosis patients and the long-term relative benefits and safety of disease-modifying treatments (DMT). Registries allow detailed, multiple sclerosis-specific data to be shared between clinicians more easily, provide data needed to improve the impact of DMT and, with EHR, characterize clinically relevant interactions between multiple sclerosis and other diseases. Wearable sensors provide continuous, long-term measures of performance dynamics in relevant ecological settings. In conjunction with telemedicine and online apps, they promise a major expansion of the scope for patients to manage aspects of their own care. Advances in disease understanding, decision support and self-management using these Big Data are being accelerated by machine learning and artificial intelligence. SUMMARY: Both health professionals and patients can employ e-health approaches and tools for development of a more patient-centred learning health system.

Journal article

Longbrake E, Mao-Draayer Y, Matthews PM, Foley J, Zielinski T, Chen C, Mokliatchouk O, Parks B, Sharma A, Xing D, Kapadia S, Bame Eet al., 2020, Absolute Lymphocyte Counts Are Not a Biomarker of Clinical Response in Patients Treated With Delayed-Release Dimethyl Fumarate, Annual Meeting of the American-Academy-of-Neurology, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0028-3878

Conference paper

Tarroni G, Bai W, Oktay O, Schuh A, Suzuki H, Glocker B, Matthews P, Rueckert Det al., 2020, Large-scale quality control of cardiac imaging in population studies: application to UK Biobank, Scientific Reports, Vol: 10, ISSN: 2045-2322

In large population studies such as the UK Biobank (UKBB), quality control of the acquired images by visual assessment isunfeasible. In this paper, we apply a recently developed fully-automated quality control pipeline for cardiac MR (CMR) imagesto the first 19,265 short-axis (SA) cine stacks from the UKBB. We present the results for the three estimated quality metrics(heart coverage, inter-slice motion and image contrast in the cardiac region) as well as their potential associations with factorsincluding acquisition details and subject-related phenotypes. Up to 14.2% of the analysed SA stacks had sub-optimal coverage(i.e. missing basal and/or apical slices), however most of them were limited to the first year of acquisition. Up to 16% of thestacks were affected by noticeable inter-slice motion (i.e. average inter-slice misalignment greater than 3.4 mm). Inter-slicemotion was positively correlated with weight and body surface area. Only 2.1% of the stacks had an average end-diastoliccardiac image contrast below 30% of the dynamic range. These findings will be highly valuable for both the scientists involvedin UKBB CMR acquisition and for the ones who use the dataset for research purposes.

Journal article

Rajewsky N, Almouzni G, Gorski SA, Aerts S, Amit I, Bertero MG, Bock C, Bredenoord AL, Cavalli G, Chiocca S, Clevers H, De Strooper B, Eggert A, Ellenberg J, Fernández XM, Figlerowicz M, Gasser SM, Hubner N, Kjems J, Knoblich JA, Krabbe G, Lichter P, Linnarsson S, Marine JC, Marioni J, Marti-Renom MA, Netea MG, Nickel D, Nollmann M, Novak HR, Parkinson H, Piccolo S, Pinheiro I, Pombo A, Popp C, Reik W, Roman-Roman S, Rosenstiel P, Schultze JL, Stegle O, Tanay A, Testa G, Thanos D, Theis FJ, Torres-Padilla ME, Valencia A, Vallot C, van Oudenaarden A, Vidal M, Voet T, Alberi L, Alexander S, Alexandrov T, Arenas E, Bagni C, Balderas R, Bandelli A, Becher B, Becker M, Beerenwinkel N, Benkirame M, Beyer M, Bickmore W, Biessen EEAL, Blomberg N, Blumcke I, Bodenmiller B, Borroni B, Boumpas DT, Bourgeron T, Bowers S, Braeken D, Brooksbank C, Brose N, Bruining H, Bury J, Caporale N, Cattoretti G, Chabane N, Chneiweiss H, Cook SA, Curatolo P, de Jonge MI, Deplancke B, De Strooper B, de Witte P, Dimmeler S, Draganski B, Drews AD, Dumbrava C, Engelhardt S, Gasser T, Giamarellos-Bourboulis EJ, Graff C, Grün D, Gut I, Hansson O, Henshall DC, Herland A, Heutink Pet al., 2020, LifeTime and improving European healthcare through cell-based interceptive medicine, Nature, ISSN: 0028-0836

© 2020, The Author(s). LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.

Journal article

Suzuki H, Venkataraman AV, Bai W, Guitton F, Guo Y, Dehghan A, Matthews PMet al., 2019, Associations of regional brain structural differences with aging, modifiable risk factors for dementia, and cognitive performance, JAMA Network Open, Vol: 2, Pages: 1-19, ISSN: 2574-3805

Importance Identifying brain regions associated with risk factors for dementia could guide mechanistic understanding of risk factors associated with Alzheimer disease (AD).Objectives To characterize volume changes in brain regions associated with aging and modifiable risk factors for dementia (MRFD) and to test whether volume differences in these regions are associated with cognitive performance.Design, Setting, and Participants This cross-sectional study used data from UK Biobank participants who underwent T1-weighted structural brain imaging from August 5, 2014, to October 14, 2016. A voxelwise linear model was applied to test for regional gray matter volume differences associated with aging and MRFD (ie, hypertension, diabetes, obesity, and frequent alcohol use). The potential clinical relevance of these associations was explored by comparing their neuroanatomical distributions with the regional brain atrophy found with AD. Mediation models for risk factors, brain volume differences, and cognitive measures were tested. The primary hypothesis was that common, overlapping regions would be found. Primary analysis was conducted on April 1, 2018.Main Outcomes and Measures Gray matter regions that showed relative atrophy associated with AD, aging, and greater numbers of MRFD.Results Among 8312 participants (mean [SD] age, 62.4 [7.4] years; 3959 [47.1%] men), aging and 4 major MRFD (ie, hypertension, diabetes, obesity, and frequent alcohol use) had independent negative associations with specific gray matter volumes. These regions overlapped neuroanatomically with those showing lower volumes in participants with AD, including the posterior cingulate cortex, the thalamus, the hippocampus, and the orbitofrontal cortex. Associations between these MRFD and spatial memory were mediated by differences in posterior cingulate cortex volume (β = 0.0014; SE = 0.0006; P = .02).Conclusions and Relevance This cross-sectional study

Journal article

Goldman MD, LaRocca NG, Rudick RA, Hudson LD, Chin PS, Francis GS, Jacobs A, Kapoor R, Matthews PM, Mowry EM, Balcer LJ, Panzara M, Phillips G, Uitdehaag BMJ, Cohen JAet al., 2019, Evaluation of multiple sclerosis disability outcome measures using pooled clinical trial data, NEUROLOGY, Vol: 93, Pages: E1921-E1931, ISSN: 0028-3878

Journal article

Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews P, Owen D, Amor Set al., 2019, A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis, Brain, Vol: 142, Pages: 3440-3455, ISSN: 1460-2156

The 18kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely-considered to reflect activated pathogenicmicroglia, although quantitative neuropathological data to support this interpretation has not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting.Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands ([3H]PK11195 and [3H]PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and human leukocyte antigen -DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+astrocytes were increased up to 7-fold compared to normal appearing white matter across all lesion sub-types and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands [3H]PK11195 and [3H]PBR28was determined in the same lesions. TSPO radioligand binding was increased up to seven times for [3H]PBR28 and up to two times for [3H]PK11195 in active lesions and the centre of chronic ac

Journal article

Gorgoraptis N, Li LM, Whittington A, Zimmerman KA, Maclean LM, McLeod C, Ross E, Heslegrave A, Zetterberg H, Passchier J, Matthews PM, Gunn RN, McMillan TM, Sharp DJet al., 2019, In vivo detection of cerebral tau pathology in long-term survivors of traumatic brain injury, Science Translational Medicine, Vol: 11, Pages: 1-14, ISSN: 1946-6234

Traumatic brain injury (TBI) can trigger progressive neurodegeneration, with tau pathology seen years after a single moderate-severe TBI. Identifying this type of posttraumatic pathology in vivo might help to understand the role of tau pathology in TBI pathophysiology. We used flortaucipir positron emission tomography (PET) to investigate whether tau pathology is present many years after a single TBI in humans. We examined PET data in relation to markers of neurodegeneration in the cerebrospinal fluid (CSF), structural magnetic resonance imaging measures, and cognitive performance. Cerebral flortaucipir binding was variable, with many participants with TBI showing increases in cortical and white matter regions. At the group level, flortaucipir binding was increased in the right occipital cortex in TBI when compared to healthy controls. Flortaucipir binding was associated with increased total tau, phosphorylated tau, and ubiquitin carboxyl-terminal hydrolase L1 CSF concentrations, as well as with reduced fractional anisotropy and white matter tissue density in TBI. Apolipoprotein E (APOE) ε4 genotype affected the relationship between flortaucipir binding and time since injury, CSF β amyloid 1–42 (Aβ42) concentration, white matter tissue density, and longitudinal Mini-Mental State Examination scores in TBI. The results demonstrate that tau PET is a promising approach to investigating progressive neurodegeneration associated with tauopathy after TBI.

Journal article

Weinert M, Cowley SA, Alavian KN, Matthews PM, Owen DRet al., 2019, Exploring the mitochondrial TSPO protein as a possible immunometabolic modulatory target for treatment of multiple sclerosis, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 515-515, ISSN: 1352-4585

Conference paper

Longbrake EE, Matthews PM, Mao-Draayer Y, Foley J, Zielinski T, Barne E, Chen C, Mendoza JP, Mokliatchouk O, Parks B, Sharma A, Xing D, Plavina Tet al., 2019, Change in absolute lymphocyte count is not a biomarker of clinical response and does not correlate with change in serum neurofilament light for patients treated with delayed-release dimethyl fumarate, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 552-553, ISSN: 1352-4585

Conference paper

Smith AM, Khozoie C, Fancy N, Srivastava P, Matthews PM, Owen D, Reynolds Ret al., 2019, Single nucleus RNA sequencing of post-mortem multiple sclerosis cortical grey matter, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 233-233, ISSN: 1352-4585

Conference paper

Fancy NN, Srivastava P, Matthews PM, Owen DRet al., 2019, A bioinformatics approach to understand the regulation of TSPO gene expression in myeloid cells, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 222-222, ISSN: 1352-4585

Conference paper

Evangelou E, Gao H, Blakeley P, Pazoki R, Suzuki H, Elliott J, Karaman I, Jarvelin MR, Tzoulaki I, Bell JD, Matthews PM, Elliott Pet al., 2019, New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders, Nature Human Behaviour, Vol: 3, Pages: 950-961, ISSN: 2397-3374

Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d−1) from the UK Biobank, the Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging Research in Genomic Epidemiology Plus consortia, collecting data from 480,842 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 new common loci and investigated their potential functional importance using magnetic resonance imaging data and gene expression studies. We identify genetic pathways associated with alcohol consumption and suggest genetic mechanisms that are shared with neuropsychiatric disorders such as schizophrenia.

Journal article

Matthews P, 2019, Chronic inflammation in multiple sclerosis — seeing what was always there, Nature Reviews Neurology, Vol: 15, Pages: 582-593, ISSN: 1759-4758

Activation of innate immune cells and other brain compartmentalized inflammatory cellsin the brains and spinal cords of people with relapsing–remitting multiple sclerosis (MS) and progressive MS have been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood–brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods also can be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations using these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.

Journal article

Bai W, Chen C, Tarroni G, Duan J, Guitton F, Petersen SE, Guo Y, Matthews PM, Rueckert Det al., 2019, Self-supervised learning for cardiac MR image segmentation by anatomicalposition prediction, International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)

In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manuallyannotated data, which is expensive to acquire and limited by the availableresources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net.

Conference paper

Venkataraman A, Mansur A, Lewis Y, Kocagoncu E, Lingford-Hughes A, Huiban M, Passchier J, Rowe J, Tsukada H, Brooks D, Gunn R, Matthews P, Rabiner E, MINDMAPS Consortiumet al., 2019, Evaluation of mitochondrial and synaptic function in Alzheimer’s disease (AD): a [18F]BCPP-EF, [11C]SA4503 and [11C]UCB-J PET study, Journal of Cerebral Blood Flow and Metabolism, Vol: 39, Pages: 121-122, ISSN: 1559-7016

ObjectivesMitochondrial deficits leading to synaptic dysfunction have been hypothesised in the pathophysiology of neurodegenerative disease, with Aβ/tau impairing mitochondrial function in AD. To date a combined evaluation of human mitochondrial and synaptic function has not been performed directly in vivo. We describe the pilot results of MINDMAPS-AD, a study within the MINDMAPS1 programme aiming to evaluate mitochondrial and synaptic function in the brain of patients with MCI/AD. MINDMAPS-AD uses the novel radioligands [18F]BCPP-EF, [11C]SA4503 and [11C]UCB-J, to compare the regional density of mitochondrial complex I (MC1), the sigma 1 receptor (s1R) and synaptic vesicular protein 2A (SV2A) respectively.MethodsSix participants with a range of AD related pathologies, EMCI (n = 2), LMCI (n = 2), and AD (n = 2), were enrolled into the study. Participants fulfilled NIA-AA criteria and were amyloid-beta +ve confirmed by [18F]Florbetaben PET. All participants underwent three PET scans with [18F]BCPP-EF, [11C]SA4503 and [11C]UCB-J. Arterial blood samples were collected and a metabolite corrected arterial plasma input function was estimated to derive regional volumes of distribution (VT). These data were compared to six age/sex matched cognitively normal (CN) healthy subjects recruited for ongoing studies within the MINDMAPS programme. Regions of interest (ROIs) were defined on individual subject MR images using an anatomical atlas and included: frontal cortex, hippocampus, amygdala, anterior cingulate, posterior cingulate, thalamus, temporal cortex, parietal cortex, caudate, putamen, and occipital lobe. Regional target density was evaluated using the VT, as well as VT corrected for the plasma free fraction of the radioligand (fP; VT/fp), and the regional VT ratio versus the VT in the centrum semiovale, a white matter region expected to have low levels of the targets evaluated (DVR). Comparison of regional target density and

Journal article

Venkataraman AV, Mansur A, Huiban M, Passchier J, Rowe JB, Tsukada H, Brooks D, Gunn RN, Matthews PM, Rabiner EAet al., 2019, Evaluation of mitochondrial and synaptic function in Alzheimer's disease (AD): a [F-18]BCPP-EF, [C-11]SA4503 and [C-11]UCB-J PET study, 29th International Symposium on Cerebral Blood Flow, Metabolism and Function / 14th International Conference on Quantification of Brain Function with PET (BRAIN and BRAIN Pet), Publisher: SAGE PUBLICATIONS INC, Pages: 121-122, ISSN: 0271-678X

Conference paper

Schmierer K, Campion T, Sinclair A, van Hecke W, Matthews PM, Wattjes MPet al., 2019, Towards a standard MRI protocol for multiple sclerosis across the UK., Br J Radiol, Pages: 20180926-20180926

Multiple sclerosis is a chronic inflammatory demyelinating and degenerative disease of the central nervous system. It is the most common non-traumatic cause of chronic disability in young adults. An early and accurate diagnosis, and effective disease modifying treatment are key elements of optimum care for people with MS (pwMS). MRI has become a critical tool to confirm the presence of dissemination in space and time of lesions characteristic of inflammatory demyelination, a cornerstone of MS diagnosis, over and above exclusion of numerous differential diagnoses. In the modern era of early and highly effective DMT, follow-up of pwMS also relies heavily on MRI, to both confirm efficacy and for pharmacovigilance. Since criteria for MS rely heavily on MRI, an agreed standardized acquisition and reporting protocol enabling efficient and equitable application across the UK is desirable. Following a recent meeting of MS experts in London (UK), we make recommendations for a standardized UK MRI protocol that captures the diagnostic phase as well as monitoring for safety and treatment efficacy once the diagnosis is established. Our views take into account issues arising from the (repeated) use of contrast agents as well as the advent of (semi-) automated tools to further optimize disease monitoring in pwMS.

Journal article

Tarroni G, Oktay O, Bai W, Schuh A, Suzuki H, Passerat-Palmbach J, de Marvao A, O'Regan D, Cook S, Glocker B, Matthews P, Rueckert Det al., 2019, Learning-based quality control for cardiac MR images, IEEE Transactions on Medical Imaging, Vol: 38, Pages: 1127-1138, ISSN: 0278-0062

The effectiveness of a cardiovascular magnetic resonance (CMR) scan depends on the ability of the operator to correctly tune the acquisition parameters to the subject being scanned and on the potential occurrence of imaging artefacts such as cardiac and respiratory motion. In the clinical practice, a quality control step is performed by visual assessment of the acquired images: however, this procedure is strongly operatordependent, cumbersome and sometimes incompatible with the time constraints in clinical settings and large-scale studies. We propose a fast, fully-automated, learning-based quality control pipeline for CMR images, specifically for short-axis image stacks. Our pipeline performs three important quality checks: 1) heart coverage estimation, 2) inter-slice motion detection, 3) image contrast estimation in the cardiac region. The pipeline uses a hybrid decision forest method - integrating both regression and structured classification models - to extract landmarks as well as probabilistic segmentation maps from both long- and short-axis images as a basis to perform the quality checks. The technique was tested on up to 3000 cases from the UK Biobank as well as on 100 cases from the UK Digital Heart Project, and validated against manual annotations and visual inspections performed by expert interpreters. The results show the capability of the proposed pipeline to correctly detect incomplete or corrupted scans (e.g. on UK Biobank, sensitivity and specificity respectively 88% and 99% for heart coverage estimation, 85% and 95% for motion detection), allowing their exclusion from the analysed dataset or the triggering of a new acquisition.

Journal article

Gafson AR, Savva C, Thorne T, David MJ, Gomez-Romero B, Lewis M, Nicholas R, Heslegrave A, Zetterberg H, Matthews Pet al., 2019, Breaking the cycle: reversal of flux in the tricarboxylic acid cycle by dimethyl fumarate, Neurology, Neuroimmunology and Neuroinflammation, Vol: 6, ISSN: 2332-7812

ObjectiveTo infer possible molecular effectors of therapeutic effects and adverse events for the pro-drug dimethyl fumarate (DMF, Tecfidera) in the plasma of relapsing-remitting MS patients (RRMS) based on untargeted blood plasma metabolomics. MethodsBlood samples were collected from 27 RRMS patients at baseline and six weeks after initiation of treatment with DMF (BG-12; Tecfidera). Patients were separated into a discovery (n=15) and a validation cohort (n=12). Ten healthy controls were also recruited and blood samples were collected over the same time intervals. Untargeted metabolomic profiling using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS) was performed on plasma samples from the discovery cohort and healthy controls at Metabolon Inc. (Durham, NC). UPLC-MS was then performed on samples from the validation cohort at the National Phenome Centre (Imperial College, UK). Plasma neurofilament concentration (NfL) was also assayed for all subjects using the Simoa platform (Quanterix, Lexington, MA). Time course and cross-sectional statistical analyses were performed to identify pharmacodynamic changes in the metabolome secondary to DMF and relate these to adverse events. Results In the discovery cohort, tricarboxylic acid (TCA) cycle intermediates fumarate and succinate and TCA cycle metabolites succinyl-carnitine and methyl succinyl-carnitine were increased 6-weeks after the start of treatment (q < 0.05). We confirmed that methyl succinyl carnitine was also increased in the validation cohort 6-weeks after the start of treatment (q < 0.05). Changes in concentrations of these metabolites were not seen over a similar time period in blood from the untreated healthy control population. Increased succinyl-carnitine and methyl succinyl-carnitine were associated with adverse events from DMF (flushing, abdominal symptoms. The mean plasma NfL concentration before treatment was higher in the RRMS patients than in the healthy contro

Journal article

Robinson R, Valindria VV, Bai W, Oktay O, Kainz B, Suzuki H, Sanghvi MM, Aung N, Paiva JÉM, Zemrak F, Fung K, Lukaschuk E, Lee AM, Carapella V, Kim YJ, Piechnik SK, Neubauer S, Petersen SE, Page C, Matthews PM, Rueckert D, Glocker Bet al., 2019, Automated quality control in image segmentation: application to the UK Biobank cardiac MR imaging study, Journal of Cardiovascular Magnetic Resonance, Vol: 21, ISSN: 1097-6647

Background: The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools, e.g. image segmentation methods, are employed to derive quantitative measures or biomarkers for later analyses. Manual inspection and visual QC of each segmentation isn't feasible at large scale. However, it's important to be able to automatically detect when a segmentation method fails so as to avoid inclusion of wrong measurements into subsequent analyses which could lead to incorrect conclusions. Methods: To overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4,800 cardiac magnetic resonance scans. We then apply our method to a large cohort of 7,250 cardiac MRI on which we have performed manual QC. Results: We report results used for predicting segmentation quality metrics including Dice Similarity Coefficient (DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy for classifying low and high quality segmentations using predicted DSC scores. As further validation we show high correlation between real and predicted scores and 95% classification accuracy on 4,800 scans for which manual segmentations were available. We mimic real-world application of the method on 7,250 cardiac MRI where we show good agreement between predicted quality metrics and manual visual QC scores. Conclusions: We show that RCA has the potential for accurate and fully automatic segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging Study.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00501273&limit=30&person=true&page=1&respub-action=search.html