Imperial College London


Faculty of MedicineDepartment of Infectious Disease

Chair in Virology



+44 (0)20 7594 9517p.ohare Website




Norfolk PlaceSt Mary's Campus





We aim to understand the fundamental virus-host interactions underpinning the critical earliest stages in infection by large complex DNA viruses, focusing on herpes simplex virus as a model system. We are particularly interested in two key areas; firstly,  mechanisms of early genome entry and nuclear transport; secondly the competing interactions with the host transcription machinery versus innate immune restriction mechanisms. We are currently pioneering methods combining molecular and cell biology with click-chemistry to study these processes and the single cell and single molecule levels.

Link here to my Research Page:



Mohnke J, Stark I, Fischer M, et al., 2022, pUL36 Deubiquitinase Activity Augments Both the Initiation and the Progression of Lytic Herpes Simplex Virus Infection in IFN-Primed Cells, Journal of Virology, Vol:96, ISSN:0022-538X

Mohnke J, Stark I, Fischer M, et al., 2021, pUL36 de-ubiquitinase activity augments both the initiation and progression of lytic virus infection in IFN–primed cells

Bodda C, Reinert LS, Fruhwürth S, et al., 2020, HSV1 VP1-2 deubiquitinates STING to block type I interferon expression and promote brain infection, Journal of Experimental Medicine, Vol:217, ISSN:0022-1007

Serwa RA, Sekine E, Brown J, et al., 2019, Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry, Plos Pathogens, Vol:15, ISSN:1553-7366

Ahmad L, Mashbat B, Leung C, et al., 2019, Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection, Journal of Allergy and Clinical Immunology, Vol:143, ISSN:0091-6749, Pages:765-769.e7

More Publications