Publications
425 results found
Zhu Y, Almeida FJ, Baillie JK, et al., 2023, International Pediatric COVID-19 Severity Over the Course of the Pandemic., JAMA Pediatr
IMPORTANCE: Multiple SARS-CoV-2 variants have emerged over the COVID-19 pandemic. The implications for COVID-19 severity in children worldwide are unclear. OBJECTIVE: To determine whether the dominant circulating SARS-CoV-2 variants of concern (VOCs) were associated with differences in COVID-19 severity among hospitalized children. DESIGN, SETTING, AND PARTICIPANTS: Clinical data from hospitalized children and adolescents (younger than 18 years) who were SARS-CoV-2 positive were obtained from 9 countries (Australia, Brazil, Italy, Portugal, South Africa, Switzerland, Thailand, UK, and the US) during 3 different time frames. Time frames 1 (T1), 2 (T2), and 3 (T3) were defined to represent periods of dominance by the ancestral virus, pre-Omicron VOCs, and Omicron, respectively. Age groups for analysis were younger than 6 months, 6 months to younger than 5 years, and 5 to younger than 18 years. Children with an incidental positive test result for SARS-CoV-2 were excluded. EXPOSURES: SARS-CoV-2 hospitalization during the stipulated time frame. MAIN OUTCOMES AND MEASURES: The severity of disease was assessed by admission to intensive care unit (ICU), the need for ventilatory support, or oxygen therapy. RESULTS: Among 31 785 hospitalized children and adolescents, the median age was 4 (IQR 1-12) years and 16 639 were male (52.3%). In children younger than 5 years, across successive SARS-CoV-2 waves, there was a reduction in ICU admission (T3 vs T1: risk ratio [RR], 0.56; 95% CI, 0.42-0.75 [younger than 6 months]; RR, 0.61, 95% CI; 0.47-0.79 [6 months to younger than 5 years]), but not ventilatory support or oxygen therapy. In contrast, ICU admission (T3 vs T1: RR, 0.39, 95% CI, 0.32-0.48), ventilatory support (T3 vs T1: RR, 0.37; 95% CI, 0.27-0.51), and oxygen therapy (T3 vs T1: RR, 0.47; 95% CI, 0.32-0.70) decreased across SARS-CoV-2 waves in children 5 years to younger than 18 years old. The results were consistent when data were restricted to unvaccinated children. CONC
Swieboda D, Thwaites R, Rice T, et al., 2023, Natural killer cells and innate lymphoid cells but not NKT cells are mature in their cytokine production at birth, Clinical and Experimental Immunology, ISSN: 0009-9104
Early life is a time of increased susceptibility to infectious diseases and development of allergy. Innate lymphocytes are crucial components of the initiation and regulation of immune responses at mucosal surfaces, but functional differences in innate lymphocytes early in life are not fully described. We aimed to characterise the abundance and function of different innate lymphocyte cell populations in cord blood in comparison to that of adults. Blood was collected from adult donors and umbilical vessels at birth. Multicolour flow cytometry panels were used to identify and characterise lymphocyte populations and their capacity to produce hallmark cytokines. Lymphocytes were more abundant in cord blood compared to adults, however, mucosal-associated invariant T (MAIT) cells and Natural Killer T (NKT)-like cells, were far less abundant. The capacity of NKT-like cells to produce cytokines and their expression of the cytotoxic granule protein granzyme B and the marker of terminal differentiation CD57 were much lower in cord blood than in adults. In contrast, Natural Killer (NK) cells were as abundant in cord blood as in adults, they could produce IFNγ, and their expression of granzyme B was not significantly different to that of adult NK cells, although CD57 expression was lower. All innate lymphoid cell (ILC) subsets were more abundant in cord blood, and ILC1 and ILC2 were capable of production of IFNγ and IL-13, respectively. In conclusion, different innate lymphoid cells differ in both abundance and function in peripheral blood at birth and with important implications for immunity in early life.
Ward KE, Steadman L, Karim AR, et al., 2023, SARS-CoV-2 infection is associated with anti-desmoglein 2 autoantibody detection, Clinical and Experimental Immunology, Vol: 213, Pages: 243-251, ISSN: 0009-9104
Post-acute cardiac sequelae, following SARS-CoV-2 infection, are well recognized as complications of COVID-19. We have previously shown the persistence of autoantibodies against antigens in skin, muscle, and heart in individuals following severe COVID-19; the most common staining on skin tissue displayed an inter-cellular cement pattern consistent with antibodies against desmosomal proteins. Desmosomes play a critical role in maintaining the structural integrity of tissues. For this reason, we analyzed desmosomal protein levels and the presence of anti-desmoglein (DSG) 1, 2, and 3 antibodies in acute and convalescent sera from patients with COVID-19 of differing clinical severity. We find increased levels of DSG2 protein in sera from acute COVID-19 patients. Furthermore, we find that DSG2 autoantibody levels are increased significantly in convalescent sera following severe COVID-19 but not in hospitalized patients recovering from influenza infection or healthy controls. Levels of autoantibody in sera from patients with severe COVID-19 were comparable to levels in patients with non-COVID-19-associated cardiac disease, potentially identifying DSG2 autoantibodies as a novel biomarker for cardiac damage. To determine if there was any association between severe COVID-19 and DSG2, we stained post-mortem cardiac tissue from patients who died from COVID-19 infection. This confirmed DSG2 protein within the intercalated discs and disruption of the intercalated disc between cardiomyocytes in patients who died from COVID-19. Our results reveal the potential for DSG2 protein and autoimmunity to DSG2 to contribute to unexpected pathologies associated with COVID-19 infection.
Pairo-Castineira E, Rawlik K, Bretherick AD, et al., 2023, Author Correction: GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19., Nature, Vol: 619
Yang H, Sun H, Brackenridge S, et al., 2023, HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation., Sci Immunol, Vol: 8
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells.
Pairo-Castineira E, Rawlik K, Bretherick AD, et al., 2023, GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19, Nature, Vol: 617, Pages: 764-768, ISSN: 0028-0836
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Postma MJ, Cheng C-Y, Buyukkaramikli NC, et al., 2023, Predicted Public Health and Economic Impact of Respiratory Syncytial Virus Vaccination with Variable Duration of Protection for Adults ≥60 Years in Belgium., Vaccines (Basel), Vol: 11, ISSN: 2076-393X
Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection (ARI) in older adults. This study used a static, cohort-based decision-tree model to estimate the public health and economic impact of vaccination against RSV in Belgians aged ≥60 years compared with no vaccination for different vaccine duration of protection profiles from a healthcare payer perspective. Three vaccine protection durations were compared (1, 3, and 5 years), and several sensitivity and scenario analyses were performed. Results showed that an RSV vaccine with a 3-year duration of protection would prevent 154,728 symptomatic RSV-ARI cases, 3688 hospitalizations, and 502 deaths over three years compared to no vaccination in older adults and would save EUR 35,982,857 in direct medical costs in Belgium. The number needed to vaccinate to prevent one RSV-ARI case was 11 for the 3-year duration profile, while it was 28 and 8 for the 1- and 5-year vaccine duration profiles, respectively. The model was generally robust in sensitivity analyses varying key input values. This study suggested that vaccination could substantially decrease the public health and economic burden of RSV in adults ≥60 years in Belgium, with benefits increasing with a longer duration of vaccine protection.
Liew F, Efstathiou C, Openshaw PJM, 2023, Long COVID: clues about causes., Eur Respir J, Vol: 61
Many patients report persistent symptoms after resolution of acute COVID-19, regardless of SARS-CoV-2 variant and even if the initial illness is mild [1, 2]. A multitude of symptoms have been described under the umbrella term ‘Long COVID’, otherwise known as ‘post-COVID syndrome’ or ‘post-acute sequelae of SARS-CoV-2 (PASC)’; for simplicity we will use the term Long COVID. Symptoms are diverse but include breathlessness, fatigue and brain fog, reported to affect up to 69% of cases [3]. Long COVID can be debilitating, 45.2% of patients requiring a reduced work schedule [4]. The WHO estimates that 17 million people in Europe have experienced Long COVID during the first two years of the pandemic [5]. SARS-CoV-2 variants continue to circulate and the risk of post-acute complications remains; a recent study of 56 003 UK patients found that even after Omicron infection, 4.5% suffered persistent symptoms [6]. It is therefore likely that Long COVID will provide a substantial medical and economic burden for the foreseeable future. There is an urgent need to understand mechanisms of disease and develop effective treatments based on this understanding.
Cable J, Sun J, Cheon IS, et al., 2023, Respiratory viruses: New frontiers-a Keystone Symposia report., Annals of the New York Academy of Sciences, Vol: 1522, Pages: 60-73, ISSN: 0077-8923
Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.
Li X, Hodgson D, Flaig J, et al., 2023, Cost-Effectiveness of Respiratory Syncytial Virus Preventive Interventions in Children: A Model Comparison Study., Value Health, Vol: 26, Pages: 508-518
OBJECTIVES: Model-based cost-effectiveness analyses on maternal vaccine (MV) and monoclonal antibody (mAb) interventions against respiratory syncytial virus (RSV) use context-specific data and produce varied results. Through model comparison, we aim to characterize RSV cost-effectiveness models and examine drivers for their outputs. METHODS: We compared 3 static and 2 dynamic models using a common input parameter set for a hypothetical birth cohort of 100 000 infants. Year-round and seasonal programs were evaluated for MV and mAb interventions, using available evidence during the study period (eg, phase III MV and phase IIb mAb efficacy). RESULTS: Three static models estimated comparable medically attended (MA) cases averted versus no intervention (MV, 1019-1073; mAb, 5075-5487), with the year-round MV directly saving ∼€1 million medical and €0.3 million nonmedical costs, while gaining 4 to 5 discounted quality-adjusted life years (QALYs) annually in <1-year-olds, and mAb resulting in €4 million medical and €1.5 million nonmedical cost savings, and 21 to 25 discounted QALYs gained. In contrast, both dynamic models estimated fewer MA cases averted (MV, 402-752; mAb, 3362-4622); one showed an age shift of RSV cases, whereas the other one reported many non-MA symptomatic cases averted, especially by MV (2014). These differences can be explained by model types, assumptions on non-MA burden, and interventions' effectiveness over time. CONCLUSIONS: Our static and dynamic models produced overall similar hospitalization and death estimates, but also important differences, especially in non-MA cases averted. Despite the small QALY decrement per non-MA case, their larger number makes them influential for the costs per QALY gained of RSV interventions.
Parker E, Thomas J, Roper KJ, et al., 2023, SARS-CoV-2 antibody responses associate with sex, age and disease severity in previously uninfected people admitted to hospital with COVID-19: An ISARIC4C prospective study, Frontiers in Immunology, Vol: 14, Pages: 1-12, ISSN: 1664-3224
The SARS-CoV-2 pandemic enables the analysis of immune responses induced against a novel coronavirus infecting immunologically naïve individuals. This provides an opportunity for analysis of immune responses and associations with age, sex and disease severity. Here we measured an array of solid-phase binding antibody and viral neutralising Ab (nAb) responses in participants (n=337) of the ISARIC4C cohort and characterised their correlation with peak disease severity during acute infection and early convalescence. Overall, the responses in a Double Antigen Binding Assay (DABA) for antibody to the receptor binding domain (anti-RBD) correlated well with IgM as well as IgG responses against viral spike, S1 and nucleocapsid protein (NP) antigens. DABA reactivity also correlated with nAb. As we and others reported previously, there is greater risk of severe disease and death in older men, whilst the sex ratio was found to be equal within each severity grouping in younger people. In older males with severe disease (mean age 68 years), peak antibody levels were found to be delayed by one to two weeks compared with women, and nAb responses were delayed further. Additionally, we demonstrated that solid-phase binding antibody responses reached higher levels in males as measured via DABA and IgM binding against Spike, NP and S1 antigens. In contrast, this was not observed for nAb responses. When measuring SARS-CoV-2 RNA transcripts (as a surrogate for viral shedding) in nasal swabs at recruitment, we saw no significant differences by sex or disease severity status. However, we have shown higher antibody levels associated with low nasal viral RNA indicating a role of antibody responses in controlling viral replication and shedding in the upper airway. In this study, we have shown discernible differences in the humoral immune responses between males and females and these differences associate with age as well as with resultant disease severity.
Goldswain H, Dong X, Penrice-Randal R, et al., 2023, The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection, Genome Biology, Vol: 24, ISSN: 1474-7596
BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.
Siggins MK, Davies K, Fellows R, et al., 2023, Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19, Immunology, Vol: 168, Pages: 473-492, ISSN: 0019-2805
Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in an COVID-19 to date, a comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalised COVID-19 patients collected across the hospitalisation period as part of the UK ISARIC4C study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to heathy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.
Turtle L, Thorpe M, Drake TM, et al., 2023, Outcome of COVID-19 in hospitalised immunocompromised patients: An analysis of the WHO ISARIC CCP-UK prospective cohort study., PLoS Med, Vol: 20
BACKGROUND: Immunocompromised patients may be at higher risk of mortality if hospitalised with Coronavirus Disease 2019 (COVID-19) compared with immunocompetent patients. However, previous studies have been contradictory. We aimed to determine whether immunocompromised patients were at greater risk of in-hospital death and how this risk changed over the pandemic. METHODS AND FINDINGS: We included patients > = 19 years with symptomatic community-acquired COVID-19 recruited to the ISARIC WHO Clinical Characterisation Protocol UK prospective cohort study. We defined immunocompromise as immunosuppressant medication preadmission, cancer treatment, organ transplant, HIV, or congenital immunodeficiency. We used logistic regression to compare the risk of death in both groups, adjusting for age, sex, deprivation, ethnicity, vaccination, and comorbidities. We used Bayesian logistic regression to explore mortality over time. Between 17 January 2020 and 28 February 2022, we recruited 156,552 eligible patients, of whom 21,954 (14%) were immunocompromised. In total, 29% (n = 6,499) of immunocompromised and 21% (n = 28,608) of immunocompetent patients died in hospital. The odds of in-hospital mortality were elevated for immunocompromised patients (adjusted OR 1.44, 95% CI [1.39, 1.50], p < 0.001). Not all immunocompromising conditions had the same risk, for example, patients on active cancer treatment were less likely to have their care escalated to intensive care (adjusted OR 0.77, 95% CI [0.7, 0.85], p < 0.001) or ventilation (adjusted OR 0.65, 95% CI [0.56, 0.76], p < 0.001). However, cancer patients were more likely to die (adjusted OR 2.0, 95% CI [1.87, 2.15], p < 0.001). Analyses were adjusted for age, sex, socioeconomic deprivation, comorbidities, and vaccination status. As the pandemic progressed, in-hospital mortality reduced more slowly for immunocompromised patients than for immunocompetent patients. This was particularly evident with increasing age: the
Liew F, Talwar S, Cross A, et al., 2023, SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination, EBioMedicine, Vol: 87, Pages: 1-14, ISSN: 2352-3964
Background:Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced.Methods:In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data.Findings:Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination.Interpretation:The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity.Funding:This
Grundmann A, Wu C-H, Hardwick M, et al., 2023, Fewer COVID-19 neurological complications with dexamethasone and remdesivir, Annals of Neurology, Vol: 93, Pages: 88-102, ISSN: 0364-5134
OBJECTIVE: To assess the impact of treatment with dexamethasone, remdesivir or both on neurological complications in acute COVID-19. METHODS: We used observational data from the International Severe Acute and emerging Respiratory Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK). Hospital inpatients aged ≥18 years with laboratory-confirmed SARS-CoV-2 infection admitted between 31 January 2020 and 29 June 2021 were included. Treatment allocation was non-blinded and performed by reporting clinicians. A propensity scoring methodology was used to minimize confounding. Treatment with remdesivir, dexamethasone or both was assessed against standard of care. The primary outcome was a neurological complication occurring at the point of death, discharge, or resolution of the COVID-19 clinical episode. RESULTS: Out of 89,297 hospital inpatients, 64,088 had severe COVID-19 and 25,209 had non-hypoxic COVID-19. Neurological complications developed in 4.8% and 4.5% respectively. In both groups, neurological complications associated with increased mortality, ICU admission, worse self-care on discharge and time to recovery. In severe COVID-19, treatment with dexamethasone (n=21,129), remdesivir (n=1,428) and both combined (n=10,846) associated with a lower frequency of neurological complications: OR=0.76 (95% CI=0.69-0.83), OR 0.69 (95% CI=0.51-0.90) and OR=0.54, (95% CI=0.47-0.61) respectively. In non-hypoxic COVID-19, dexamethasone (n=2,580) associated with less neurological complications (OR=0.78, 95% CI 0.62-0.97), while the dexamethasone/remdesivir combination (n=460) showed a similar trend (OR=0.63, 95% CI=0.31-1.15). INTERPRETATION: Treatment with dexamethasone, remdesivir or both in patients hospitalised with COVID-19 associated with a lower frequency of neurological complications in an additive manner, such that the greatest benefit was observed in patients who received both drugs together. This article is protected by copyright. All
Liew F, Talwar S, Efstathiou C, et al., 2022, Vaccination after recovery from COVID-19 affects nasal antibody levels, 2022 ERS International Congress, Publisher: European Respiratory Society, ISSN: 0903-1936
Piggin M, Smith E, Mankone P, et al., 2022, The role of public involvement in the design of the first SARS-CoV-2 human challenge study during an evolving pandemic, Epidemics: the journal of infectious disease dynamics, Vol: 41, Pages: 1-6, ISSN: 1755-4365
High quality health care research must involve patients and the public. This ensures research is important, relevant and acceptable to those it is designed to benefit. The world’s first human challenge study with SARS-CoV-2 undertook detailed public involvement to inform study design despite the urgency to review and establish the study. The work was integral to the UK Research Ethics Committee review and approval of the study. Discussion with individuals from ethnic minorities within the UK population supported decision-making around the study exclusion criteria. Public review of study materials for consent processes led to the addition of new information, comparisons and visual aids to help volunteers consider the practicalities and risks involved in participating. A discussion exploring the acceptability of a human challenge study with SARS-CoV-2 taking place in the UK, given the current context of the pandemic, identified overall support for the study. Public concern for the wellbeing of trial participants, as a consequence of isolation, was identified. We outline our approach to public involvement and its impact on study design.
Vink E, Davis C, MacLean A, et al., 2022, Viral coinfections in hospitalized Coronavirus disease 2019 patients recruited to the international severe acute respiratory and emerging infections consortium WHO clinical characterisation protocol UK study, Open Forum Infectious Diseases, Vol: 9, Pages: 1-10, ISSN: 2328-8957
BackgroundWe conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity.MethodsMultiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge.ResultsA coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity.ConclusionsViral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward.
Chang CWD, McCoul ED, Briggs SE, et al., 2022, Corticosteroid use in otolaryngology: current considerations during the COVID-19 era, Otolaryngology - Head and Neck Surgery, Vol: 167, Pages: 803-820, ISSN: 0194-5998
Objective:To offer pragmatic, evidence-informed advice on administering corticosteroids in otolaryngology during the coronavirus disease 2019 (COVID-19) pandemic, considering therapeutic efficacy, potential adverse effects, susceptibility to COVID-19, and potential effects on efficacy of vaccination against SARS-CoV-2, which causes COVID-19.Data Sources:PubMed, Cochrane Library, EMBASE, CINAHL, and guideline databases.Review Methods:Guideline search strategies, supplemented by database searches on sudden sensorineural hearing loss (SSNHL), idiopathic facial nerve paralysis (Bell’s palsy), sinonasal polyposis, laryngotracheal disorders, head and neck oncology, and pediatric otolaryngology, prioritizing systematic reviews, randomized controlled trials, and COVID-19–specific findings.Conclusions:Systemic corticosteroids (SCSs) reduce long-term morbidity in individuals with SSNHL and Bell’s palsy, reduce acute laryngotracheal edema, and have benefit in perioperative management for some procedures. Topical or locally injected corticosteroids are preferable for most other otolaryngologic indications. SCSs have not shown long-term benefit for sinonasal disorders. SCSs are not a contraindication to vaccination with COVID-19 vaccines approved by the US Food and Drug Administration. The Centers for Disease Control and Prevention noted that these vaccines are safe for immunocompromised patients.Implications for Practice:SCS use for SSNHL, Bell’s palsy, laryngotracheal edema, and perioperative care should follow prepandemic standards. Local or topical corticosteroids are preferable for most other otolaryngologic indications. Whether SCSs attenuate response to vaccination against COVID-19 or increase susceptibility to SARS-CoV-2 infection is unknown. Immunosuppression may lower vaccine efficacy, so immunocompromised patients should adhere to recommended infection control practices. COVID-19 vaccination with Pfizer-BioNTech, Moderna, or Johnson & Johns
Needham EJ, Ren AL, Digby RJ, et al., 2022, Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses, Brain: a journal of neurology, Vol: 145, Pages: 4097-4107, ISSN: 0006-8950
COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury (neurofilament light [NfL], glial fibrillary acidic protein [GFAP] and total tau) and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalisation, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterised by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.
Zhou Y, Shalhoub R, Rogers SN, et al., 2022, Clonal hematopoiesis is not significantly associated with COVID-19 disease severity, BLOOD, Vol: 140, Pages: 1650-1656, ISSN: 0006-4971
- Author Web Link
- Cite
- Citations: 1
McGinley J, Thwaites R, Brebner W, et al., 2022, A systematic review and meta-analysis of animal studies investigating the relationship between serum antibody, T lymphocytes, and respiratory syncytial virus disease, Journal of Infectious Diseases, Vol: 226, Pages: S117-S129, ISSN: 0022-1899
BACKGROUND: Respiratory syncytial virus (RSV) infections occur in human populations around the globe, causing disease of variable severity, disproportionately affecting infants and older adults (>65 years of age). Immune responses can be protective but also contribute to disease. Experimental studies in animals enable detailed investigation of immune responses, provide insights into clinical questions, and accelerate the development of passive and active vaccination. We aimed to review the role of antibody and T-cell responses in relation to RSV disease severity in animals. METHODS: Systematic review and meta-analysis of animal studies examining the association between T-cell responses/phenotype or antibody titers and severity of RSV disease. The PubMed, Zoological Record, and Embase databases were screened from January 1980 to May 2018 to identify animal studies of RSV infection that assessed serum antibody titer or T lymphocytes with disease severity as an outcome. Sixty-three studies were included in the final review. RESULTS: RSV-specific antibody appears to protect from disease in mice, but such an effect was less evident in bovine RSV. Strong T-cell, Th1, Th2, Th17, CD4/CD8 responses, and weak Treg responses accompany severe disease in mice. CONCLUSIONS: Murine studies suggest that measures of T-lymphocyte activity (particularly CD4 and CD8 T cells) may be predictive biomarkers of severity. Further inquiry is merited to validate these results and assess relevance as biomarkers for human disease.
McGinley JP, Lin GL, Oner D, et al., 2022, Clinical and viral factors associated with disease severity and subsequent wheezing in infants with respiratory syncytial virus infection, Journal of Infectious Diseases, Vol: 226, Pages: S45-S54, ISSN: 0022-1899
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants and young children worldwide. Here we evaluated host demographic and viral factors associated with RSV disease severity in 325 RSV-infected infants under 1 year of age from 3 European countries during 2017–2020. Younger infants had a higher clinical severity (ReSViNET) score and were more likely to require hospitalization, intensive care, respiratory support, and/or mechanical ventilation than older infants (<3 months vs 3 to <6 months and 3 to <6 months vs ≥6 months). Older age (≥6 months vs <3 months), higher viral load, and RSV-A were associated with a greater probability of fever. RSV-A and RSV-B caused similar disease severity and had similar viral dynamics. Infants with a more severe RSV infection, demonstrated by having a higher ReSViNET score, fever, and requiring hospitalization and intensive care, were more likely to have developed subsequent wheezing at 1 year of age.
Evans RA, Leavy OC, Richardson M, et al., 2022, Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study, The Lancet Respiratory Medicine, Vol: 10, Pages: 761-775, ISSN: 2213-2600
BackgroundNo effective pharmacological or non-pharmacological interventions exist for patients with long COVID. We aimed to describe recovery 1 year after hospital discharge for COVID-19, identify factors associated with patient-perceived recovery, and identify potential therapeutic targets by describing the underlying inflammatory profiles of the previously described recovery clusters at 5 months after hospital discharge.MethodsThe Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study recruiting adults (aged ≥18 years) discharged from hospital with COVID-19 across the UK. Recovery was assessed using patient-reported outcome measures, physical performance, and organ function at 5 months and 1 year after hospital discharge, and stratified by both patient-perceived recovery and recovery cluster. Hierarchical logistic regression modelling was performed for patient-perceived recovery at 1 year. Cluster analysis was done using the clustering large applications k-medoids approach using clinical outcomes at 5 months. Inflammatory protein profiling was analysed from plasma at the 5-month visit. This study is registered on the ISRCTN Registry, ISRCTN10980107, and recruitment is ongoing.Findings2320 participants discharged from hospital between March 7, 2020, and April 18, 2021, were assessed at 5 months after discharge and 807 (32·7%) participants completed both the 5-month and 1-year visits. 279 (35·6%) of these 807 patients were women and 505 (64·4%) were men, with a mean age of 58·7 (SD 12·5) years, and 224 (27·8%) had received invasive mechanical ventilation (WHO class 7–9). The proportion of patients reporting full recovery was unchanged between 5 months (501 [25·5%] of 1965) and 1 year (232 [28·9%] of 804). Factors associated with being less likely to report full recovery at 1 year were female sex (odds ratio 0·68 [95% CI 0·46–0·99]), obes
Norris T, Razieh C, Zaccardi F, et al., 2022, Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19, Heart, Vol: 108, Pages: 1200-1208, ISSN: 1355-6037
Objective Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death.Methods A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death.Results Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication.Conclusions In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidity.
McNaughton AL, Paton RS, Edmans M, et al., 2022, Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses., JCI Insight, Vol: 7
The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal outcomes with coronavirus disease 2019 (COVID-19) is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to an intensive care unit (ICU) with fatal COVID-19 outcomes, but not in individuals with nonfatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to an ICU with fatal and nonfatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an "original antigenic sin" type response.
Dayananda P, Chiu C, Openshaw P, 2022, Controlled human infection challenge studies with RSV., Current Topics in Microbiology and Immunology, Editors: Ahmed, Akira, Casadevall, Galan, Garcia-Sastre, Malissen, Rappuoli, Pages: 1-28
Despite considerable momentum in the development of RSV vaccines and therapeutics, there remain substantial barriers to the development and licensing of effective agents, particularly in high-risk populations. The unique immunobiology of RSV and lack of clear protective immunological correlates has held back RSV vaccine development, which, therefore, depends on large and costly clinical trials to demonstrate efficacy. Studies involving the deliberate infection of human volunteers offer an intermediate step between pre-clinical and large-scale studies of natural infection. Human challenge has been used to demonstrate the potential efficacy of vaccines and antivirals while improving our understanding of the protective immunity against RSV infection. Early RSV human infection challenge studies determined the role of routes of administration and size of inoculum on the disease. However, inherent limitations, the use of highly attenuated/laboratory-adapted RSV strains and the continued evolutionary adaptation of RSV limits extrapolation of results to present-day vaccine testing. With advances in technology, it is now possible to perform more detailed investigations of human mucosal immunity against RSV in experimentally infected adults and, more recently, older adults to optimise the design of vaccines and novel therapies. These studies identified defects in RSV-induced humoral and CD8+ T cell immunity that may partly explain susceptibility to recurrent RSV infection. We discuss the insights from human infection challenge models, ethical and logistical considerations, potential benefits, and role in streamlining and accelerating novel antivirals and vaccines against RSV. Finally, we consider how human challenges might be extended to include relevant at-risk populations.
Ijaz S, Dicks S, Jegatheesan K, et al., 2022, Mapping of SARS-CoV-2 IgM and IgG in gingival crevicular fluid: antibody dynamics and linkage to severity of COVID-19 in hospital inpatients, Journal of Infection, Vol: 85, Pages: 152-160, ISSN: 0163-4453
Ascough S, Dayananda P, Kalyan M, et al., 2022, Divergent age-related humoral correlates of protection against respiratory syncytial virus infection in older and young adults: a pilot, controlled, human infection challenge model, The Lancet Healthy Longevity, Vol: 3, Pages: E405-E416, ISSN: 2666-7568
BackgroundRespiratory viral infections are typically more severe in older adults. Older adults are more vulnerable to infection and do not respond effectively to vaccines due to a combination of immunosenescence, so-called inflamm-ageing, and accumulation of comorbidities. Although age-related changes in immune responses have been described, the causes of this enhanced respiratory disease in older adults remain poorly understood. We therefore performed volunteer challenge with respiratory syncytial virus (RSV) in groups of younger and older adult volunteers. The aim of this study was to establish the safety and tolerability of this model and define age-related clinical, virological, and immunological outcomes.MethodsIn this human infection challenge pilot study, adults aged 18–55 years and 60–75 years were assessed for enrolment using protocol-defined inclusion and exclusion criteria. Symptoms were documented by self-completed diaries and viral load determined by quantitative PCR of nasal lavage. Peripheral blood B cell frequencies were measured by enzyme-linked immunospot and antibodies against pre-fusion and post-fusion, NP, and G proteins in the blood and upper respiratory tract were measured. The study was registered with ClinicalTrials.gov, NCT03728413.Findings381 adults aged 60–75 years (older cohort) and 19 adults aged 18–55 years (young cohort) were assessed for enrolment using protocol-defined inclusion and exclusion criteria between Nov 12, 2018, and Feb 26, 2020. 12 healthy volunteers aged 60–75 years and 21 aged 18–55 years were inoculated intranasally with RSV Memphis-37. Nine (67%) of the 12 older volunteers became infected, developing mild-to-moderate upper respiratory tract symptoms that resolved without serious adverse events or sequelae. Viral load peaked on day 6 post-inoculation and symptoms peaked between days 6 and 8. Increases in circulating IgG-positive and IgA-positive antigen-specific plasmablasts, serum
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.