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I prove that, at thermal equilibrium, the observed distribution of energy among the
quasi-independent degrees of freedom of any sufficiently-cold classical dynamical system
is a Bose-Einstein distribution, albeit with an unknown or system-dependent constant
h? in place of Planck’s constant, h. I identify characteristics of a classical Hamiltonian
that make my derivation of the Bose-Einstein distribution possible, and I point out that
other classical physical systems, such as an ideal gas, have Hamiltonians that can be
transformed canonically into forms with these characteristics. Among the implications
of this work are that (i) there is no qualitative discrepancy between the experimentally-
observed spectrum of a blackbody and what should be expected if light was a mechan-
ical wave in a bounded medium; (ii) there is no qualitative discrepancy between the
experimentally-observed temperature dependence of a crystal’s heat capacity and what
should be expected of classical lattice waves; (iii) zero point energy is an artefact of small
energies being empirically-indistinguishable from zero energy; and (iv) when a cluster
of massive particles is cold enough, the classical expectation should be that almost all
of its vibrational energy is possessed by its lowest-frequency normal mode. Therefore,
below a certain temperature, all but one of its degrees of freedom are almost inactive
and it is a Bose-Einstein condensate.

I. INTRODUCTION

The development of quantum theory began with the
discovery that energy radiating from a body at ther-
mal equilibrium is not distributed among frequencies (f)
as expected from (classical) statistical mechanics (Gor-
roochurn, 2018; Mehra and Rechenberg, 2000; Planck,
1901). The only ways found to derive the experimentally-
observed distribution involved assuming that either ra-
diation itself, or the energy of an emitter of ther-
mal radiation, was quantized into indivisible amounts
hf , where h ≈ 6.6× 10−34 m2 kg s−1 became known as
Planck’s constant (Planck, 1901). The distribution of en-
ergy among frequencies that this quantization implies be-
came known as the Bose-Einstein distribution, in recog-
nition of the refinement and extension of Planck’s work
by Bose and Einstein (Bose, 1924; Einstein, 1924, 1925).

The discrepancy between the observed spectrum of a hot
object and the expected one implied that the expecta-
tion was wrong. Planck’s recognition that it could be re-
solved by assuming that light emitters have quantized en-
ergies (Planck, 1901) led Einstein to the conclusion that
the energy of light itself is quantized (Einstein, 1905).
Light quanta later became known as photons (Lewis,
1926). Here I show that the discrepancy can be resolved
without concluding that either light itself, or emitters of
light, have quantized energies. I prove that many clas-
sical physical systems, including phonons in a cold crys-
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tal or small-amplitude standing waves in a continuous
medium, obey Bose-Einstein statistics.

The Bose-Einstein distribution is generally regarded
as among the most significant deviations of quantum
physics from classical physics, and among the charac-
teristics by which bosons differ from fermions, but I de-
rive it without invoking quantum mechanics. I simply
show that, for a certain class of physical systems, the
Bose-Einstein distribution follows from the Boltzmann
distribution after the Hamiltonian has been transformed
canonically.

I take an information theoretical approach to statistical
mechanics that is very similar to the one introduced, or
championed, by Jaynes (Jaynes, 1957a,b). Jaynes’ ap-
proach leans heavily on the work of Shannon (Shannon,
1948). The only nonstandard premise of my derivation is
that there exists a finite limit to the precision with which
any continuously-evolving property of a physical system
can be measured. I do not determine what that limit is,
or which limitation of the act of observation imposes it,
but I justify the premise that a limit must exist.

A. Outline of the derivation

For a physical system composed of mutually-
noninteracting degrees of freedom, Bose-Einstein
statistics and classical determinism can be reconciled in
three steps. I have mentioned the first step, which is
recognising that the true underlying state, or microstate,
of any continuously-evolving deterministic system is



2

unavoidably uncertain, to some degree, to any observer
in any context.

The second step is recognising that, in the presence
of uncertainty, the only empirically-unfalsifiable theories
are statistical theories, and that the only empirically-
unfalsifiable statistical theories are those in which uncer-
tainty is maximised subject to the constraint that every-
thing that is known about the system is true. I refer to
the set of all known information pertaining to a physical
system as the system’s macrostate.

The third step is transforming the Hamiltonian canoni-
cally in a way that reduces the effective dimensionalities
of the phase spaces of the system’s quasi-independent
degrees of freedom from two to one. For example, af-
ter transforming conventional positions and momenta to
action-angle coordinates, the Boltzmann distribution of
a system of mutually noninteracting harmonic oscillators
becomes a Bose-Einstein distribution.

I will now attempt to clarify what I mean by the first
two steps. The third step is explained in several classic
textbooks (Arnold, 1989; Lanczos, 1949; Landau et al.,
1976) and I will explain it briefly at the point of the
derivation where I take it.

1. Uncertainty is unavoidable

Consider a continuously-evolving deterministic system
with one degree of freedom, whose true microstate, at a
given time t, can be specified by a point (pt, xt) ∈ R× R.
When I say that its microstate is uncertain, I mean that
there exists a neighbourhood N(pt,xt) of (pt, xt) in R× R,
such that it is impossible for any observer to distinguish
(pt, xt) from any other point in N(pt,xt). I will denote the

area
∣∣N(pt,xt)

∣∣ of N(pt,xt) by h?.

There are likely to be many sources of unavoidable un-
certainty in any empirical determination of the true mi-
crostate (pt, xt), each of which places a different lower
bound on

∣∣N(pt,xt)

∣∣. It is the largest of these lower bounds
that I denote by h?. I do not attempt to calculate the
value of h?, or even to identify which of the many sources
of unavoidable uncertainty determines its value by plac-
ing the largest lower bound on the value of

∣∣N(pt,xt)

∣∣. By
introducing h?, I am simply acknowledging that it has a
lower bound.

To illustrate that a lower bound must exist, consider the
following extreme examples: If (p, x) is so close to (pt, xt)
that the distance between them is d× 10−m, where m
exceeds the number of particles in the universe, then
(p, x) and (pt, xt) are indistinguishable to any observer
in any context. Another limit on precision, which is spe-
cific to waves and to measurements that use waves as
probes, would be imposed by the waves’ medium being

bounded. For example, if the medium pervaded the uni-
verse, and if the universe has a finite diameter, D, then
both the smallest observable wavevector and the small-
est observable difference between wavevectors is equal to
π/D. Similarly, if the universe has a finite lifespan, T, the
smallest observable frequency and frequency difference is
1/(2T).

II. UNFALSIFIABLE STATISTICAL MODELS OF
DETERMINISTIC SYSTEMS

The purpose of this section is to explain the concept of an
unfalsifiable statistical model of a classical Hamiltonian
system. An example of such a model is the 19th century
classical theory of thermodynamics. Some readers may
wish to skip to Sec. III, and to return if or when they
wish to scrutinise the logical foundations of the derivation
more carefully.

I begin by explaining what I mean by an unfalsifiable
statistical model. Then I explain my theoretical setup,
before using this setup to derive the Maxwell-Boltzmann
distribution. In Sec. IV I show that, simply by chang-
ing the set of coordinates with which the microstate of
a set of oscillators or waves is specified, the Maxwell-
Boltzmann distribution becomes the Bose-Einstein dis-
tribution, albeit with an unknown constant in place of
Planck’s constant.

To understand what I mean by an unfalsifiable statistical
theory or model, it is crucial to understand the difference
between a macrostate and a microstate.

A. Macrostates and microstates

A classical microstate is complete information about the
state of a deterministic system. It is a precise specifica-
tion of the positions and momenta of all degrees of free-
dom of the system, or the values of any variables from
which these positions and momenta could, in principle,
be calculated.

A classical microstructure is complete information about
the structure of a deterministic system, without any in-
formation about its rate of change with respect to time.

A macrostate M is simply a specification of the do-
main of applicability of a particular unfalsifiable statisti-
cal model. A macrostate is a set of information specifying
everything that is known about the system to which the
model applies. Because the model is statistical, it could
only be falsified by a very large number of independent
measurements. The macrostate is the complete list of ev-
erything that the samples on which these measurements
are performed are known to have in common. It is also
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the complete list of everything that is known about each
individual sample, and which may significantly influence
the final reported result of the measurement, assuming
that the uncertainty in this result is quantified correctly
and reported with it.

B. Examples

1. Toy example

As a very simple example, let us suppose thatM contains
the following information only:

There are three lockable boxes, coloured red, green, and
blue, at least one of which is unlocked. A ball has been
placed inside one of the unlocked boxes. If more than one
box is unlocked, the box into which the ball has been placed
was chosen at random.

Let us suppose that an experiment on a system meeting
specification M consists of an experimentalist checking
which box the ball is in. Then, the only empirically-
unfalsifiable statistical model of the experiment’s results
would be a probability distribution that assigns a prob-
ability of 1

3 to the ball being in each box. Any other
model could be falsified by statistics from an arbitrarily
large number of repetitions of the experiment performed
on independent realisations of system M.

The fraction of times the ball would be found in each box
would be 1

3 even if different experiments were performed
with different boxes locked, as long as the choice of which
boxes were locked was made without bias, on average.

The model would be falsified by the empirical data if,
say, the red box was chosen to be locked more frequently
than the blue or green boxes. However, if that oc-
curred, it would not mean that the unfalsifiable model
was defective, but that it was being applied to the wrong
macrostate. After the bias was discovered and quan-
tified it would form part of the specification of a new
macrostate,M′, and an unfalsifiable statistical theory of
M′ would be developed. Then, if no further macrostate-
modifying peculiarities were found, the set of all subse-
quent repetitions of the experiment would produce data
consistent with the unfalsifiable statistical theory ofM′.

2. Realistic example

While considering a more complicated example, it may
be useful to have an infinite set of independent laborato-
ries in mind. The equipment in each laboratory may be
different, and different methods of measurement may be
used in each one, but all are capable of measuring what-

ever quantities the unfalsifiable statistical model applies
to. They are also capable of correcting their measure-
ments for artefacts of the particular sample-preparation
and measurement techniques they are using, and of accu-
rately quantifying uncertainties in the corrected values.

Then one can imagine asking each laboratory to mea-
sure, say, the bulk modulus B of diamond at a pressure
of 100 GPa and a temperature of 100 K. In this case,
the statistical model would be a probability distribution,
p(B), for the bulk modulus of an infinitely large crystal
(to eliminate surface effects, which are sample-specific)
at precisely those values of pressure and temperature.

In general, each laboratory will prepare or acquire their
sample of diamond in their own way, use a different
method of controlling and measuring temperature and
pressure, and use a different method of measuring B. In
addition to the quantified uncertainties in the measured
value of B, each independently-measured value will be
influenced to some unquantified degree by unknown un-
knowns, i.e., unknown peculiarities of the sample, the
apparatus, and the scientists performing the measure-
ments and analysing the data. However, we will assume
that this ‘data jitter’ either averages out, when the data
from all laboratories is compiled, or is accounted for when
comparing the compiled data to the statistical model.

If p(B) was an unfalsifiable statistical model of B, it
would be identical to the distribution of measured val-
ues. To derive or deduce an unfalsifiable distribution,
one must carefully avoid making any assumptions, ei-
ther explicitly or implicitly, about the sample or the
measurement, apart from the information specified by
the macrostate. This means maximising one’s igno-
rance of every other property of a sample of diamond
at (P, T ) = (100 GPa, 100 K). This is achieved by max-
imising the uncertainty in the value of B that remains
when its probability distribution, p, is known.

To derive an unfalsifiable distribution for a given
macrostate, one must express the information specified
by the macrostate as mathematical constraints on p.
Then, under these information constraints, one must find
the distribution p for which the uncertainty in the value
of B is maximised. Maximising uncertainty eliminates
bias and means that the information content of p is the
same as the information content of the distribution of
measured values of B. The differences between each dis-
tribution and a state of total ignorance is the same: it
is the information about the value of B implied by the
macrostate when no further information is available.

In summary, elimination of bias, subject to the constraint
that information M is true, guarantees that the result-
ing statistical model of the physical system defined by
M is unfalsifiable: It guarantees that the model would
agree with a statistical model calculated from a very large
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amount of experimental data pertaining to physical sys-
tems about which M, and only M, is known to be true.

III. DERIVATION OF AN UNFALSIFIABLE ENERGY
DISTRIBUTION

A. Theoretical setup

Consider a continuously-evolving deterministic system
whose microstate can be specified by Γ ≡ (P,Q), where
Q ≡ (Q1, Q2 · · · ) is some set of generalized coordinates
and P ≡ (P1, P2 · · · ), where Pη is the momentum conju-
gate to Qη. In this coordinate system, let H(Γ) denote
the system’s Hamiltonian, and let G denote its phase
space, which is the set of all possible microstates Γ.

Now suppose that, at some given time, the true mi-
crostate of the system is Γt. Since the system is determin-
istic, Γt and H determine the system’s microstate at all
times, past and future. However, Γt can never be known
precisely. Therefore, from the observational standpoint,
the system is not deterministic. In fact, it can never even
be verified that it is truly deterministic. Nevertheless, let
us pretend that it is deterministic because the purpose
of what follows is to deduce what can be known about a
continuously evolving deterministic system.

Let us begin by partitioning G into nonoverlapping sub-
sets of equal measure (phase space ‘volume’) as follows:
We choose a countable set G of evenly-spaced points (mi-
crostates) in G and define a neighbourhood NΓ ⊂ G of
each point Γ ∈ G such that G =

⋃
Γ∈G NΓ, and such that,

if Γ,Γ′ ∈ G are any two different points (Γ 6= Γ′), then
|NΓ ∩NΓ′ | = 0 and |NΓ| = |NΓ′ |, where |NΓ| denotes the
measure of NΓ in G. For simplicity, let us assume that if
Γt ∈ NΓ, then Γt is closer to Γ than to any other element
of G. Therefore the interior of NΓ is the set of all points
in G that are closer to Γ than to any other element of G.

Now let pΓ, where Γ ∈ G, denote the probability,
Pr(Γt ∈ NΓ), that Γt is within NΓ. The probability dis-
tribution for the point Γ that identifies the region NΓ

containing Γt is p : G → [0, 1]; Γ 7→ pΓ.

Now let us suppose, momentarily, that Γt is known to
be in region NΓ, and that NΓ is partitioned into WΓ

nonoverlapping subsets of equal measure v ≡ |NΓ|/WΓ.
Then, as Shannon demonstrated (Shannon, 1948), we
can quantify the amount of information that must be
revealed to determine which of these subsets Γt is in by
logWΓ = log |NΓ| − log v. In the limit WΓ →∞, v → 0,
the quantity of information required becomes infinite.
However it is impossible for an observer to hold an infinite
amount of information. Furthermore, observations have
many sources of uncertainty, including the unavoidably
perturbative nature of the act of observation. Therefore

v has a lower bound and WΓ has an upper bound.

Without losing generality, let us assume that these
bounds are |NΓ| and 1, respectively. In other words,
let us assume that when we originally partitioned G, we
chose the set G such that the following is true:

Given any microstate Γ ∈ G, and any microstate Γ′ ∈ G,
which is closer to Γ than to any other element of G, it
is theoretically possible to distinguish between Γ′ and any
element of G \ {Γ} by empirical means; and it is impos-
sible to distinguish between Γ′ and Γ by empirical means.

I will refer to G as a maximal set of mutually-
distinguishable microstates; I will refer to a sampling of
G with such a set as a maximal sampling; and I will use
h ≡ |NΓ| to denote the measure of each neighbourhood
NΓ in a maximal sampling of phase space.

B. Maxwell-Boltzmann statistics

This section draws heavily from the works of
Jaynes (Jaynes, 1957a) and Shannon (Shannon, 1948).

Let us add the assumption that we know that the expec-
tation value of the system’s energy is E . For example, the
system might be a classical crystal whose average energy
is determined by a heat bath to which it is coupled.

The system’s state of thermal equilibrium can be de-
fined as the probability distribution p that maximises the
Shannon entropy (Shannon, 1948), subject to the con-
straint that the Hamiltonian’s expectation value,

〈H〉 [p] ≡
∑
Γ∈G

pΓH(Γ),

is equal to E , and subject to the normalization constraint∑
Γ∈G pΓ = 1. The Shannon entropy is

〈S〉 [p] ≡
∑
Γ∈G

pΓI(pΓ), (1)

where I(pΓ) ≡ − log pΓ is the Shannon informa-
tion (Shannon, 1948) of p at Γ. From now on it will
be implicit that

∑
Γ means

∑
Γ∈G .

The Shannon information, I(pΓ), quantifies how much
would be learned, meaning by how much would the un-
certainty in the location of Γt reduce, if it was discovered
that Γt ∈ NΓ. The functions kI(pΓ), for any k ∈ R+, are
the only functions that satisfy the following three condi-
tions: (i) they would vanish if it was known that Γt was in
NΓ prior to ‘discovering’ it there, i.e., if pΓ = 1; (ii) they
increase as the discovery that Γt ∈ NΓ becomes more sur-
prising, i.e., as pΓ decreases; and (iii) they are additive.
Additivity means that if, for example, it was discovered
that Γt was in either NΓ or NΓ′ (i.e., Γt ∈ NΓ ∪NΓ′),
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the quantity of information about the location of Γt that
was unknown would decrease by I(pΓ) + I(pΓ′).

Any probability distribution, p, is a state of knowledge
that an observer could be in. The Shannon information,
I(pΓ), of pΓ, quantifies the information that would be
revealed by the discovery that Γt ∈ NΓ, and the Shan-
non entropy is the expectation value of the quantity of
information that would be revealed by discovering which
point Γ in the maximal set of mutually-distinguishable
microstates G the true microstate Γt is closest to. There-
fore 〈S〉 [p] quantifies the incompleteness of distribution
p, as a state of knowledge, when the identity of the el-
ement of G that is closest to Γt is regarded as complete
knowledge.

Whether or not 〈S〉 [p] is satisfactory, in all contexts, as
a quantification of uncertainty is probably irrelevant in
the present context, because we will be maximising its
value subject to the stated contraints. Therefore what is
relevant is that it increases monotonically as the location
of Γt in G becomes more uncertain.

We can express the stationarity of 〈S〉 [p] subject to con-
straints 〈H〉 [p] = E and

∑
Γ pΓ = 1 as

δ

{
〈S〉 [p]− β (〈H〉 [p]− E )− βλ

(∑
Γ

pΓ − 1

)}
= 0,

where β and βλ are Lagrange multipliers. If
we divide across by −β and define the constant
T ≡ (kBβ)−1, where kB is the Boltzmann constant,

this can be expressed as δ
(
F̃ [p] + λ

∑
Γ pΓ

)
= 0, where

F̃ [p] ≡ 〈H〉 [p]− kBT 〈S〉 [p]. By taking a partial deriva-
tive of F̃ [p] + λ

∑
Γ pΓ with respect to pΓ and setting it

equal to zero, we find that

pΓ = e−(H(Γ)−F)/kBT = Z−1e−H(Γ)/kBT , (2)

where Z ≡ exp (−F/kBT ) is known as the partition func-
tion and we refer to the quantity F = −kBT logZ, which
is the value taken by F̃ [p] when it is stationary with re-
spect to normalization-preserving variations of p, as the
free energy.

Equation 2 is the familiar Maxwell-Boltzmann distri-
bution and T is the temperature. The derivation of
Eq. 2 is a derivation, based on the premises that precede
it and those stated within it, of the only empirically-
unfalsifiable probability distribution for the true mi-
crostate. It is unfalsifiable because it explicitly rejects
bias by maximising uncertainty subject to one physical
constraint, which is the only thing that we know about
the state of the system; namely, that a heat bath ensures
that its average energy is E .

As discussed in Sec. II, the absence of bias guarantees us
that if we had enough independent replicas of the phys-
ical system, and if the only thing we knew about each

one was that its average energy was E , and if we could
determine by measurement which phase space partition
the microstate of each one was in, the fraction of those
whose microstate was in NΓ would be pΓ = e−βH(Γ)/Z.

Now let us make the simplifying assumption under which
the Bose-Einstein distribution is valid within quantum
mechanics: The total energy is a sum of the energies of
independent degrees of freedom (DOFs). Within quan-
tum mechanics these DOFs are often interpreted as par-
ticles.

Let each DOF be identified by a different index, η; let us
denote the coordinates of DOF η in its two dimensional
phase space Gη by Γη ≡ (Pη, Qη); and let the Hamilto-
nian of DOF η be denoted by Hη(Γη). Then we can
express the Hamiltonian of the set of all DOFs as

H(Γ) =
∑
η

Hη(Γη), (3)

and we can express the partition function as

Z ≡
∑
Γ

e−βH(Γ) =
∑
Γ

∏
η

e−βHη(Γη) (4)

where the product
∏
η is over all DOFs.

Now let us choose the maximal set of mutually-
distinguishable microstates, G, to be a lattice, which
is the direct product

∏×
η Gη, where Gη is both a two

dimensional lattice and a maximal set of mutually-
distinguishable points in the phase space Gη of DOF η.
The area of the non-overlapping neighbourhoods NΓη of
Γη whose union is Gη is hη ≡

∣∣NΓη

∣∣ = ∆Pη∆Qη, where
1
2∆Pη is the smallest difference in momentum Pη between
mutually-distinguishable microstates of η with the same
coordinate; and 1

2∆Qη is the smallest difference in coor-
dinate Qη between mutually-distinguishable microstates
with the same momentum.

These choices and definitions allow us to swap the order
of the sum and the product in Eq. 4, thereby expressing
it as Z =

∏
η Zη, where

Zη ≡
∑
Γη

e−βHη(Γη), (5)

and where
∑

Γη
denotes

∑
Γη∈Gη . If we know the par-

tition function Zη of each DOF η, we can calculate the
partition function Z of the system as a whole.

In Sec. IV we will explore other ways to calculate Z by
transforming away from (P,Q) and (Pη, Qη) to different
sets of variables. To avoid a proliferation of new symbols,
I will recycle the symbols G, Gη, H, Hη, Γ, Γη, NΓ, G,
Gη, hη, h, pΓ, and p. They will have the same meanings
in the new coordinates as they do for coordinates (P,Q).
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IV. BOSE-EINSTEIN STATISTICS

I will now derive the Bose-Einstein distribution for a
classical system of non-interacting oscillators or stand-
ing waves. Then I will briefly discuss how the derivation
can be generalized to other kinds of physical systems.

I will make three physical assumptions, of increasing
strength, along the way. I mention them here to give
them prominence and because they should be discussed
together. However, they can be taken at different points
of the derivation, and the consequences of each one be-
ing invalid is slightly different. The first, which I have
already made, is that the area hη of the set of microstates
of η that are empirically indistinguishable from a given
microstate Γη is the same for every Γη ∈ Gη. The second
is that hη = hν , for any two different DOFs, η and ν, of
the same physical system. The third is that hη is the
same for every DOF η of every physical system.

On the basis of the third assumption, I will sometimes
denote hη by h?. If h? is equal to Planck’s constant,
h, I will be deriving the Bose-Einstein distribution. If
h? < h, this work may be no more than a physically-
irrelevant curiosity. If h? is observably greater than h, the
conclusion that this work is wrong appears inescapable,
because somebody would surely have noticed if Planck’s
constant appeared to vary from one Bose-Einstein dis-
tributed physical system to another.

A. Oscillators and standing waves

If the potential energy of a classical dynamical system
is a smooth function U(Q) of its microstructure Q, the
system can be brought arbitrarily close to a minimum
of its potential energy, Qmin, by cooling it slowly. Once
‖Q−Qmin‖ is small enough, lowering its temperature
further brings its dynamics closer to a superposition of
harmonic oscillations of the normal modes of its sta-
ble equilibrium structure, Qmin. For example, a set of
mutually-attractive particles would condense into a sta-
ble vibrating cluster when cooled. The normal modes
of a finite crystal or a continuous bounded medium are
standing waves, so their dynamics become superpositions
of standing waves when they are cold enough.

If we specify the microstructure by the set of displace-
ments from mechanical equilibrium along the normal
mode eigenvectors, each DOF η is an oscillator or stand-
ing wave with a different angular frequency ωη, in gen-
eral, whose energy can be expressed as

Eη ≡
1

2
(Q̇2

η + ω2
ηQ

2
η), (6)

where the mode coordinate Qη has the dimensions of
distance×

√
mass. In the limit T → 0 the behaviour of

the system is described perfectly by a Hamiltonian of the
form

H(P,Q) = U(Qmin) +
1

2

∑
η

[
P 2
η + ω2

ηQ
2
η

]
, (7)

where U(Qmin) is a constant that is irrelevant to the
dynamics, and Pη ≡ Q̇η is the momentum conjugate to
Qη.

As illustrated in Fig. 1, the true path ∂Rη of mode η in
its phase space Gη is continuous. It is only the acces-
sible information about the path that is quantized. As
discussed in Sec. III.B and at the beginning of Sec. IV,
each point Γη ∈ ∂Rη is indistinguishable from all points
within a neighbourhood of it, whose area is hη.

Uncertainty manifests differently in the microstate prob-
ability distribution depending on which set of co-
ordinates is used to specify the microstate. Hav-
ing found that p is a Maxwell-Boltzmann distribu-
tion when standard position and momentum coordi-
nates (Pη, Qη) are used, let us now perform the canon-
ical transformation (Pη, Qη) 7→ (Iη, ϑη), where (Iη, ϑη)
are the action-angle variables (Arnold, 1989; Lanc-
zos, 1949; Landau et al., 1976). Then we will de-
duce the form of p when the microstate is specfied as
Γ = (I,ϑ) ≡ (I1, I2, · · · , ϑ1, ϑ2, · · · ).

The action variable is defined as

Iη ≡
1

2π

∮
∂Rη

Pη dQη =
1

2π

∫ ∫
Rη

dPη ∧ dQη ,

where the first integral is performed around the closed
continuous trajectory ∂Rη defined by the equation
Hη(Pη, Qη) = Eη and depicted in Fig. 1(a). The second
expression, which involves an integral over the region Rη
enclosed by the elliptical path ∂Rη, follows from the gen-
eralized Stokes theorem.

It follows from the definition of Iη that 2πIη is the area
enclosed by ∂Rη. From Eq. 6, it is easy to see that the
semi-axes of ∂Rη are

√
2Eη/ωη and

√
2Eη. Therefore,

equating two expressions for the area enclosed gives

2πIη =
2π

ωη
Eη =⇒ Iη =

Eη
ωη
.

The reason for choosing Iη as one of our variables should
now be apparent: It allows us to express the new mode
Hamiltonian as

Hη(ϑη, Iη) = Hη(Iη) = Iηωη. (8)

If we now followed precisely the same procedure with
the new coordinates as we used to derive the Maxwell-
Boltzmann distribution in Sec. III.B, we would reach
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Eν

Qη

∂Rη

Qη

∆Qη

(b) (c)(a) Pη

Eη

∆Qν

Qν

FIG. 1 (a) A portion of the phase space Gη of mode η. The continuous blue ellipse, ∂Rη, is a particular constant-energy path
that the oscillation follows when it is decoupled from other modes. The set of pale blue and green spots is a maximal set of
mutually-distinguishable microstates, Γη, of mode η. In statistical models of the mode’s microstates, each spot represents all
points within its rectangular neighbourhood. (b) A portion of the microstructure space of modes η and ν. The spots belong
to a maximal set of mutually distinguishable points and represent the rectangular regions they inhabit. The pale blue spots
mark regions visited during the motion of the modes, assuming that their energies, Eη and Eν , are constant and that neither
of their frequencies, ωη and ων , is an integer multiple of the other. Each of the 15 pale blue spots represents the four points

(Pη, Pν , Qη, Qν) =
(
±
√

2Eη − ω2
ηQ2

η,±
√

2Eν − ω2
νQ2

ν , Qη, Qν

)
in their joint phase space Gη ×Gν . (c) The pale blue spot is

the energy of the trajectory represented by pale blue spots in panels (a) and (b). We cannot calculate the partition function of

modes η and ν as ZηZν =
∑

Eη

∑
Eν
e−β(Eη+Eν) if the double summation is over a square grid in (Eη, Eν)-space. The numbers

of energies sampled along each axis are only in the same ratio as the numbers of mutually-distinguishable mode coordinates
along each axis in (Qη, Qν)-space, and the numbers of mutually-distinguishable points in Gη and Gν , if the spacings of sampled
values along the mode’s energy axes are their frequencies times the same constant.

Eq. 2, with Z and Zη expressed as sums over all
Γ ≡ (I,ϑ) ∈ G and over all Γη ∈ Gη, respectively. That
is,

Z =
∑
Γ

e−βH(Γ) =
∑
I
e−βH(I) =

∏
η

Zη,

where

Zη ≡
∑
Iη

e−βHη(Iη) =
∑
Iη

e−βIηωη , (9)

and the sum over Iη is over a maximal set,
Gη ≡ ∆Iη

(
Z+

0 + 1
2

)
, of mutually-distinguishable values

of Iη. The reason for the factor 1
2 is that the lower

bound, 1
2∆Iη, on the difference between mutually-

distinguishable values of Iη makes all points within the
interval [0, 1

2∆Iη) indistinguishable from zero, and makes
zero indistinguishable from all points in this interval.
Therefore, the sum in Eq. 9 can be viewed as 1/∆Iη
times a Riemann sum over R+, which samples intervals
of width ∆Iη centered at 1

2∆Iη, 3
2∆Iη, 5

2∆Iη, etc..

Now, since hη is a phase space area, and assuming that
the magnitude of hη is the same for every DOF of ev-
ery physical system, the unavoidable uncertainty in the
value of 2πIη must be hη = h?, and the unavoidable un-
certainty in the value of Iη must be ~? ≡ h?/(2π). There-

fore the partition function can be expressed as

Zη =
∑

nη∈Z+
0

e−β(nη+ 1
2 )~?ωη

=
e−

1
2β~?ωη

1− e−β~?ωη
=

e
1
2β~?ωη

eβ~?ωη − 1
,

where the second line has been reached by using the fact
that the right hand side of the first line is an infinite
geometric series. We can now express the free energy as

F = −β−1 logZ = −β−1
∑
η

logZη

=
∑
η

[
1

2
~?ωη + kBT log

(
1− e−β~?ωη

)]
.

The term 1
2~?ωη is commonly known as the zero point

energy of mode η.

We can also calculate the expectation value,

n̄η ≡ Z−1
η

∑
nη∈Z+

0

nηe
−β(nη+ 1

2 )~?ωη , (10)

of nη using Eq. 9 as follows:

∂

∂β

 ∑
nη∈Z+

0

e−β(nη+ 1
2 )~?ωη

 =
∂

∂β

(
e

1
2β~?ωη

eβ~?ωη − 1

)
.
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After taking the derivatives and simplifying, this can be
expressed as

n̄η =
1

eβ~?ωη − 1
.

The integer nη is commonly referred to as the occupation
number of mode η and n̄η is its thermal average.

When the modes’ amplitudes are large enough that they
do interact, their energies and frequencies vary, their
paths in their phase spaces are no longer elliptical, and
matters become more complicated. Nevertheless, sim-
plifying assumptions are often justified, which allow a
Bose-Einstein distribution to be used as the basis for a
statistical description of the system’s microstates and ob-
servables. For example, if the energy of mode η is mod-
ulated by a mode η′ whose frequency is sufficiently low
(ωη′ � ωη), then Iη is approximately adiabatically in-
variant under this modulation (Arnold, 1989; Lanczos,
1949; Landau et al., 1976), and the dominant effect of
the interaction on mode η is to modulate its frequency.

As another example, when the interactions between
modes are weak, the distribution of each mode’s energy
among frequencies is broadened and shifted relative to
its T → 0 limit. Therefore, it still has a well defined
mean frequency and mean energy, which allows the Bose-
Einstein distribution to be used effectively in many cases.

B. Generalizations to non-oscillatory systems

I have now derived the Bose-Einstein distribution for a
classical system whose dynamics is a superposition of in-
dependent harmonic oscillations. My derivation made
use of two properties of the system’s Hamiltonian: The
first was that it could be expressed as a sum H =

∑
ηHη

of the Hamiltonians Hη of independent DOFs. The sec-
ond was that each Hη could be expressed as a linear
function of only one variable. For oscillations, this was
achieved by transforming to action-angle variables, so
that each Hη took the form Hη(Iη) = Iηωη. Since varia-
tions of ωη are negligible when interactions are weak, Iη
is effectively the only variable that appears in Hη.

The Hamiltonians of many other kinds of physical sys-
tems, composed of mutually-noninteracting DOFs, can
be transformed canonically into forms that allow the
Bose-Einstein distribution to be derived. In princi-
ple it can be derived whenever there exists a curve
γη : R+ → Gη; t 7→ γη(t) in the phase space Gη of each
DOF such that energies of DOF η are represented on γη
in the same proportions as they are represented in Gη.
To be more precise, energies should be represented on
maximal samplings of γη in the same proportions as they
are represented on maximal samplings of Gη.

Once each Hη has been transformed canonically into
the form Hη(Xη) = AηXη +Bη, where Xη ∈ R is a
continuously-varying generalized coordinate or momen-
tum, and Aη and Bη are constants, the full Hamiltonian
becomes

H(X) ≡ U(Qmin) +
∑
η

Bη +
∑
η

AηXη (11)

where X ≡ (X1, X2, · · · ). Let 1
2∆Xη denote the smallest

difference between mutually-distinguishable values ofXη;

let εη ≡ Aη∆Xη; and let C ≡ e−β(U(Qmin)+
∑
η Bη). Then

the partition function can be expressed as

Z = C
∏
η

∑
nη∈Z+

0

e−β(nη+ 1
2 )εη ,

and it is straightforward to show that n̄η = 1/
(
eβεη − 1

)
.

One example of a system whose Hamiltonian can be
transformed canonically into the form of Eq. 11 is an
ideal gas. At any given point in time, its Hamiltonian
has the form, H(P) ≡

∑
ηHη(Pη) = 1

2

∑
η P

2
η , which is

the Hamiltonian of a set of independent free particles.
A free particle Hamiltonian can be transformed canoni-
cally into a harmonic oscillator Hamiltonian (Glass and
Scanio, 1977); therefore, it can also be transformed into
action-angle coordinates.

V. PROBABILITY DOMAIN QUANTIZATION

In this section I briefly discuss why the existence of a
fundamental limit on measurement precision implies that
the most informative probability distribution for the mi-
crostate of a physical system is not a probability den-
sity function, whose domain is G, but a probability mass
function whose domain is the quantized phase space G.

Let us suppose that M identical systems were prepared in
macrostate M, and that the microstate of each one was
measured with the highest precision possible, i.e., each
one was constrained to a region of phase space of measure
h. Then, even in the limit M →∞, the results of these
experiments would not determine a unique probability
density function ρ(Γ) for the true microstate of a system
in macrostate M: Each microstate Γt would only be
constrained to a neighbourhood of the measured value.
Therefore multiple probability density functions would
be consistent with the data.

For example, consider a denser partitioning of G than
the one described in Sec. III.B: Let G< denote a count-
able set of evenly-spaced points in G, which are closer to
one another than elements of G are, and let N<

Γ denote
the set of points in G that are closer to Γ ∈ G< than to
any other element of G<. Then, because

∣∣N<

Γ

∣∣ < h, the
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empirical data would not uniquely define a probability
distribution p< : G< → [0, 1]; Γ 7→ p<Γ ≡ Pr(Γt ∈ N<

Γ ) be-
cause some measurements would be consistent with Γt
being in more than one of the neighbourhoods in the set
{N<

Γ : Γ ∈ G<}. By contrast, the result of any accurate
measurement of Γt, whose precision is at the fundamen-
tal limit h, is consistent with Γt being in exactly one of
the neighbourhoods NΓ.

Therefore the distribution p defined in Sec. III.A and
Sec. III.B is both the most informative distribution
that can be determined uniquely from empirical data,
and the most informative empirically-unfalsifiable dis-
tribution that can be deduced theoretically. An infi-
nite number of probability density functions ρ(Γ) satisfy∫
NΓ

ρ(Γ′) dΓ′ = pΓ for all Γ ∈ G; but if it was claimed
that any one of them was the true microstate distribu-
tion in macrostateM, this claim could not be falsified or
validated.

The fact that G is countable does not imply that the
microstates of the underlying physical system are quan-
tized. It implies a quantization of the information con-
tained in statistical models that possess the quality of
being testable empirically. It is the domain of the mi-
crostate probability distribution that is quantized, not
the system’s true trajectory.

VI. DISCUSSION

I have shown that the Bose-Einstein distribution fol-
lows mathematically from probability domain quantiza-
tion, and that probability domain quantization is a con-
sequence of the existence of a limit, h?, on the precision
with which a system’s microstate can be determined ex-
perimentally. I have argued that such a limit must exist:
infinitely-precise measurements are impossible and it is
impossible for an observer to possess an infinite amount
of information.

If my argument and derivation are correct, it will be im-
portant to know whether my physical assumption that h?

has the same value in the phase spaces of all degrees of
freedom, and for all physical systems, is valid. If it is, and
if h? = h, this work might help to heal some fault lines
within physical theory, such as the cosmological constant
problem (Lea, 2021; Moskowitz, 2021).

One reason why h? might be a universal constant is that
electromagnetic radiation mediates all interactions be-
tween observers and what they are observing. Therefore,
if light were a classical wave, and if the frequencies of all
light waves were integer multiples of ∆f , this quantiza-
tion of frequencies would place a universal lower bound
on the value of h?: The energy of a classical harmonic

wave is Af2, for some constant A. Therefore, if a wave
of frequency f was used as a probe, the smallest observ-
able energy difference would be

∆E = A (f + ∆f)
2 −Af2 = (2A∆f) f +O

(
∆f2

)
,

which would imply that h? & 2A∆f .

Frequency quantization would not imply that the ener-
gies of classical oscillators and waves were quantized. It
would imply that, if probability domain quantization was
not recognized and accounted for, they would appear to
be quantized.
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