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This work examines the relationships between electrical structures at the microscale
and electrical structures at the macroscale. By structures I mean both physical struc-
tures, such as the spatial distributions of charge and potential, and the mathematical
structures used to specify physical structures and to relate them to one another. I do
not discuss magnetism and what little I say about energetics is incidental.

I define the fields that describe electrical macrostructure, and their rates of change,
in terms of the microscopic charge density ρ, electric field E, electric potential φ, and
their rates of change. To deduce these definitions, I lay some foundations of a general
theory of structure homogenization, meaning a theory of how any observable macroscopic
field V is related to spatial averages of its microscopic counterpart ν. An integral part of
structure homogenization theory is the definition of macroscopic excess fields in terms
of microscopic fields. The excess field of V : Rn → R on the boundary ∂Ω of a finite-
measure subset Ω of Rn is the field σV : ∂Ω→ R to which it is related by the generalized
Stokes theorem,

∫
Ω V dω =

∫
∂Ω σVω, where ω and dω are volume forms on ∂Ω and Ω,

respectively, and V dω ≡ d (σVω). For example, the macroscopic volumetric charge
density % in a material Ω is related to the areal charge density σ on its surface by∫
Ω % d3r =

∫
∂Ω σ d2s and by %d3r ≡ d

(
σ d2s

)
. I derive an expression for σV [ν], which

generalizes Finnis’s expression for excess fields at the surfaces of crystals (e.g., surface
charge density σ[ρ]) to disordered microstructures.

I use homogenization theory to define the macroscopic potential Φ ≡ Φ[φ], electric
field E ≡ E[E], and charge density % ≡ %[ρ], and I define the macroscopic current density
as J ≡ σ̇[ρ̇]. Using the microscopic theory, or vacuum theory, of electromagnetism as
my starting point, I deduce that the relationships between these macroscopic fields are
identical in form to the relationships between their microscopic counterparts. Without
invoking quantum mechanics, I use the definitions J ≡ σ̇ and σ ≡ σ[ρ] to derive the
expressions for so-called polarization current established by the Modern Theory of Po-
larization. I prove that the bulk-average electric potential, or mean inner potential, Φ,
vanishes in a macroscopically-uniform charge-neutral material, and I show that when a
crystal lattice lacks inversion symmetry, it does not imply the existence of macroscopic
E or P fields in the crystal’s bulk.

I point out that symmetry is scale-dependent. Therefore, if anisotropy of the mi-
crostructure does not manifest as anisotropy of the macrostructure, it cannot be the
origin of a macroscopic vector field. Only anisotropy of the macrostructure can bestow
directionality at the macroscale. The macroscopic charge density % is isotropic in the
bulks of most materials, because it vanishes at every point. This implies that, regardless
of the microstructure ρ, a macroscopic electric field cannot emanate from the bulk. I
find that all relationships between observable macroscopic fields can be expressed math-
ematically without introducing the polarization (P) and electric displacement (D) fields,
neither of which is observable. Arguments for the existence of P and D, and interpre-
tations of them, have varied since they were introduced in the 19th century. I argue
that none of these arguments and interpretations are valid, and that macroscale isotropy
prohibits the existence of P and D fields.
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PREFACE

I have tried to make this manuscript as modular as possi-
ble, while preserving the logic of the narrative as a whole.
My hope is that, if you have learned the gist of this
work from the abstract and Introduction, you will find
that many sections and subsections are reasonably self-
contained.

Those interested only in the homogenization transfor-
mation that turns microstructure into macrostructure,
should read Secs. VI and VII, and Appendix E. Those in-
terested in everything except the homogenization trans-
formation, and who are willing to trust the formulae de-
rived in Sec. VII and presented in Appendix A, can safely
skip those parts.

Those interested only in the mean inner potential, Φ,
should read Sec. IV (particularly Sec. IV.F), Sec. XIII
and Sec. XIV.

Those interested only in polarization current, J(p), or the
Modern Theory of Polarization should read Secs. IV, V,
X, and XI.

Those interested only in the macroscopic electric field, E,
should read Sec. IV and Sec. XIII.

Those interested only in surface charge, σ, should read
Secs. VI.C, VII and X.

Those interested only in single particle states should read
Secs. V.B, XI.B.1, and XII, and Appendices B, C, and D.

I would be grateful for critical feedback on any part of
this work (p.tangney@imperial.ac.uk).

I. INTRODUCTION

A. Background

Most of the classical electromagnetic theory that is com-
monly described in textbooks was established in the 19th
century before electrons were discovered or the existence
of atoms had been confirmed (Buchwald and Fox, 2013;
Heaviside, 1893; Lorentz, 1916; Maxwell, 1865, 1873,
1892). The constitutive relations, D = ε0E + P and
H = µ−1

0 B−M, between the macroscopic electric and
magnetic fields, E and B, the induced fields P and M,
and the auxiliary fields D and H, are an important part
of this theory. To deduce them, materials were approxi-
mated as continua at the macroscale and the polarization
(P) and magnetization (M) densities were introduced to
characterize how the state of the ether was altered by
their presence. When the concept of an ether was aban-
doned, they were reinterpreted as linear electromagnetic
responses of materials. However this appears to have

been done ad hoc and without due concern for consistency
with the nascent theory of material microstructure.

The microscopic or vacuum theory of electromagnetism
rightly underpins our microscopic theory of material
structure, composition, and energetics. The purpose of
macroscopic electromagnetism, which reduces to micro-
scopic electromagnetism when P and M vanish, is to
provide a unified description of materials and electro-
magnetic fields at the macroscale. Therefore it should be
underpinned by our mutually-consistent microscopic the-
ories of materials physics and vacuum electromagnetism,
and we should clearly understand the microscopic origins
of P and M. However development of the macroscopic
theory was completed before many of the discoveries on
which we base our microscopic understanding of materi-
als were made, and it quickly became an established part
of physics doctrine. Therefore it was not built on firm
microscopic foundations and, unfortunately, it has never
been reconciled fully and satisfactorily with microscopic
physics.

Inconsistencies between the microscopic and macroscopic
theories were not apparent to most scientists until after
crystallography had come of age and it had become pos-
sible to compute materials’ microstructures, by which I
mean the statistical distributions, on the nanoscale, of
their constituent charges and magnetic moments. It be-
came obvious that we lacked precise and viable defini-
tions of P and M when attempts were made to define
them in terms of microstructures (Aizu, 1962; Landauer,
1960, 1981; Larmor, 1921; Littlewood, 1980; Littlewood
and Heine, 1979; Martin, 1974; Resta, 1992; Tagantsev,
1991; Vogl, 1978; Woo, 1971). Neither P nor M is
directly measureable, but definitions of observables at-
tributed by classical electromagnetic theory to changes
in their values also proved elusive. For example, it was
not until the 1990s that researchers discovered how to
calculate the so-called polarization current, J(p), that
flows through an insulating inversion-asymmetric crys-
tal when it is uniformly perturbed by a stimulus, such
as a strain or a change in temperature (King-Smith and
Vanderbilt, 1993; Resta, 1993, 1994; Resta and Vander-
bilt, 2007; Vanderbilt and King-Smith, 1993). When they
did, they concluded that this current, which is what is
directly measured in experiments that produce P−E or
D−E hysteresis loops, has quantum mechanical origins
and does not exist within classical physics. Therefore
their Modern Theory of Polarization (MTOP) deviated
substantially from both the revised (20th century) defi-
nition of P as a dipole moment density and the physical
reasoning with which its use as a measure of dielectric
response to a uniform field was justified.

Another elusive and hotly-debated definition was the
areal density of charge at a surface or interface, σ. This
problem was solved, for crystals, by Finnis in 1998 (Fin-
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nis, 1998) and, although the discussion continued for a
time, there appears to be agreement now that Finnis’s
definition is correct (Bristowe et al., 2014, 2011; Go-
niakowski et al., 2008; Goniakowski and Noguera, 2014;
Noguera and Goniakowski, 2013; Resta and Vanderbilt,
2007; Stengel, 2011; Stengel and Vanderbilt, 2009; Van-
derbilt, 2018). Unfortunately, the literature is far from
clear on this point, because multiple equivalent defini-
tions of σ have been proposed, and some works continue
to make the unnecessary distinction between free charge
and bound charge, and to express the latter’s contribu-
tion to σ as σbound = P · n̂, where n̂ is the unit surface
normal and P is the polarization in the crystal’s bulk.
The definition is complicated further by the fact that the
MTOP definition of P is multi-valued.

A third illustration of the tension that exists between
the 20th century theory of material structure and 19th
century electromagnetism, is the question of how to
define and calculate the bulk macroscopic electric po-
tential, Φ, from the microscopic charge density. This
quantity, which is often called the mean inner potential
(MIP), plays an important role in several areas of re-
search, including theoretical electrochemistry and elec-
tron microscopy (Blumenthal et al., 2017; Cendagorta
and Ichiye, 2015; Gajdardziska-Josifovska and Carim,
1999; Gajdardziska-Josifovska et al., 1993; Hörmann
et al., 2019; Ibers, 1958; Kathmann, 2021; Kathmann
et al., 2011; Leung, 2010; Madsen et al., 2021; Miyake,
1940; Peng, 1999; Pratt, 1992; Rez et al., 1994; Saldin
and Spence, 1994; Sanchez and Ochando, 1985; Sokhan
and Tildesley, 1997a,b; Spence, 1993, 1999; Stillinger and
Ben-Naim, 1967; Wilson et al., 1987, 1988, 1989; Yesi-
bolati et al., 2020). An exact general definition of it
has not previously been found, but several approxima-
tions to it have been proposed and are in use (Kathmann
et al., 2011; Pratt, 1992; Saunders et al., 1992; Sokhan
and Tildesley, 1997b). Bethe derived one such expression
by approximating the microstructure as a superposition
of spherically-symmetric atomic charge densities (Bethe,
1928).

B. Motivations and objectives

Considered individually, the three examples cited above
suggest, at the very least, that the connection between
microscopic electromagnetism and macroscopic electro-
magnetism is subtle. However, considered collectively,
the situation appears more serious, because the fields
J(p) ≡ σ̇, σ, and Φ, are all measureable elements of elec-
tricity at the macroscale. Therefore, these are all ex-
amples of attempts to bridge, or to partially fill, the
same hole in existing physical theory, namely: We do
not understand the relationship between electricity at the
macroscale and electricity at the microscale well enough

to express the fields that specify a material’s electrical
macrostate in terms of the fields that specify its electri-
cal microstate.

An electrical microstate, (m, ṁ), is an electrical mi-
crostructure m and its time derivative, ṁ ≡ ∂m/∂t , at
the same instant. An electrical microstructure is the
most complete and detailed information pertaining to
the instantaneous spatial distribution of charge and elec-
tric potential that could, in principle, exist. It could be
specified by the wavefunction, density matrix, or posi-
tion probability density function of the set of all parti-
cles, but for many purposes the information required is
contained in the microscopic electric potential φ and the
microscopic charge density ρ ≡ −∇2φ, in which case we
say that the electrical microstate is (φ, φ̇) or (ρ, ρ̇). An
electrical macrostate, (M, Ṁ), is a specification of the
spatial distributions of charge and electric potential at
the macroscale, M, and their time derivatives, Ṁ.

In each of the three examples discussed in Sec. I.A, a dif-
ferent line of reasoning was followed to derive an expres-
sion for J(p) = J(p)[ṁ], σ = σ[m], or Φ = Φ[m]. How-
ever, none of these lines of reasoning were pursued far
enough to elucidate the relationship between macrostruc-
ture and microstructure fully, and with enough gener-
ality that what was learned could be applied, not only
throughout electromagnetic theory, but far beyond it: in
elasticity theory, meteorology, astrophysics, and count-
less other areas of research. For example, the MTOP did
not provide an expression for Φ[m], and Finnis did not
derive an expression for J(p)[ṁ] from his expression for
σ[m].

Objective 1

My first objective is to reconcile the fundamental ele-
ments of our macroscale theory of electricity in materi-
als with our mutually-compatible theories of electromag-
netism and material structure at the microscale.

Objective 2

My second objective is to begin laying robust founda-
tions on which a comprehensive theory of the relation-
ship between physics at the microscale and physics at
the macroscale can be built.

If you look around you, you will see surfaces, edges, and
corners everywhere. Everything you see is a feature of
the macrostructure, meaning that it is a blurred image
of the microstructure at a surface, edge, or corner. You
do not see the microstructure in its full horrendous com-
plexity, and you do not notice that it changes from one
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femtosecond to the next. You see a relatively simple and
relatively stable homogenized version of the microstruc-
ture.

There are many sources of imprecision, such as the
diffraction limit, and it would be impossible for you to
be aware of the full microstructure because, for example,
a cubic molar sample of an element has ∼ 1016 atoms at
each of its six faces, but the human brain only has ∼ 1011

neurons. Therefore homogenization of microstructure to
form macrostructure is intrinsic to the act of observation.

Nevertheless, given a microstructure ν and access to an
arbitrarily-powerful computer, it is not known how to
calculate the macrostructure, or even what mathemat-
ical form it would take. The inconsistencies between
Maxwell’s macroscopic and microscopic theories of elec-
tromagnetism are only one of many important conse-
quences of this gap in our understanding.

Therefore I begin to address the following question,
which is of general importance to mathematical physics:

How can a macrostructure be expressed mathemati-
cally in terms of the microstructure underlying it?

This question leads quickly to a more fundamental
question:

If the microstructure is a scalar field ν : R3 → R,
what is the mathematical form of the macrostructure?

As I will discuss in Sec. VI, qualitative differences ex-
ist between a macrostructure and a base microstructure,
where I use the term base microstructure to mean a mi-
crostructure that is not itself the macrostructure arising
from a structure on an even smaller length scale.

Objective 3

A third objective of this work is to emphasize how little
of the physics of electricity in materials requires physical
assumptions that are incompatible with classical physics.

Most textbooks on solid state physics or electronic struc-
ture theory do not clearly demarcate the features of
mathematical representations of quantum mechanical
microstates that, for fundamental physical reasons, are
peculiar to quantum mechanics, from features that are
perfectly consistent with a classical statistical microstate.
For example, when we see a statistical state expressed as
Ψ ≡ √peiθ, where p = p( #»r 1,

#»r 2, · · · ) is a joint position
probability density function, we often assume that quan-
tum mechanics is being ‘used’. However, it is perfectly
valid to express the statistical state of a system of clas-
sical particles in this form, and it can be useful to do so.
Having done so, the classical many-particle state Ψ can

be expanded in a basis of single particle states, just as in
quantum mechanics.

We largely base our physical intuition on what we observe
at the human scale. If the blurred lines between classical
and quantum physics were made more clear, we would
have a better understanding of when we could apply our
classical intuition to systems of quantum mechanical par-
ticles, and when our intuition was likely to fail us.

I begin to address this issue in the present work for two
reasons. The first is that fulfilling my first objective, and
relating my findings to the MTOP, requires me to survey
many parts of electronic structure theory and solid state
physics. Therefore I have the opportunity to point out
that much of the mathematical infrastructure that we
usually associate with quantum mechanics is perfectly
consistent with classical physics.

The second reason is that there are claims in the liter-
ature on the MTOP that some of the observable quan-
tities that I discuss in this work have quantum mechan-
ical origins and do not have analogues within classical
physics (Resta, 1993, 1994). It is important to examine
these claims carefully.

Single particle states play a prominent role in the MTOP.
Therefore I emphasize that there is nothing specific to
quantum mechanics about Bloch functions (Bloch, 1929)
and Wannier functions (Wannier, 1937). If the bulk of
a crystal is represented in a torus, which is equivalent
to using Born-von Kármán boundary conditions (Born
and von Kármán, 1912), and if Ψ is a stationary sta-
tistical state resulting from a classical process that pre-
serves the crystal’s periodicity, it can be expanded in a
basis of Bloch functions. Each set of Bloch functions can
be transformed into an infinite number of sets of Wan-
nier functions, which must include a maximally localized
set (Ferreira and Parada, 1970; Marzari and Vanderbilt,
1997) and a minimally localized set.

The MTOP approach to calculating J(p) gives exactly the
right result when the charge density can be expressed in
the form ρ( #»r ; ζ) =

∑
i qi|φi(

#»r ; ζ)|2, where ζ is the stim-

ulus whose rate of change ζ̇ gives rise to J(p), each φi
is a single particle basis function with a smooth depen-
dence on ζ, whose norm is independent of ζ, and each qi
is independent of ζ.

It is known that the MTOP can be applied to electrons
in an insulator, because the electron density can be rep-
resented by a set of smoothly-evolving Bloch or Wannier
states of fixed occupancies. However, it is not known
which classical systems and processes it can be applied
to, because the question of which charge densities admit
such a representation has not be solved. I do not shed
light on the answer to this representability problem, but
I attempt to clarify the question.
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C. Theoretical approach and outline of this work

I define the homogenization transformation that turns
a microstructure into a macrostructure as a spatial av-
eraging operation on a mesoscopic domain. This obvi-
ous approach, which appears physically reasonable, has
been attempted many times before by many authors (de
Groot and Vlieger, 1965; Frias and Smolyakov, 2012;
de Groot and Vlieger, 1964; Kirkwood, 1936; de Lange
and Raab, 2006; de Lange et al., 2012; Mazur, 1957;
Mazur and Nijboer, 1953; Raab and de Lange, 2005;
Robinson, 1971; Roche, 2000; Russakoff, 1970; Schram,
1960). Some of these attempts are presented in well
known textbooks (Ashcroft and Mermin, 1976; Jackson,
1998).

However none of these approaches have been adopted
by the research community as foundations for the devel-
opment of rigorous theory, because they do not lead to
Maxwell’s macroscopic theory of electricity. In Sec. II I
explain why we should not be deterred by this: I outline
the reasoning that Maxwell used to derive his macro-
scopic theory in order to demonstrate that his reason-
ing has been invalidated by what has since been learned
about spacetime and material microstructure. Therefore
we should not require unobservable elements of Maxwell’s
macroscopic theory, such as P, to be elements of a macro-
scopic theory that is derived from, and consistent with,
his vacuum theory of electromagnetism

In Sec. III, using the macroscopic polarization P as an
example, I briefly explain some of the ways in which def-
initions of macroscopic fields have failed in the past.

In Sec. IV I argue that many of my conclusions, and
many elementary aspects of electricity at the macroscale,
are demands of symmetry or asymmetry. For exam-
ple, any stimulus changes the microscopic charge den-
sity in the bulk of a crystal, to some degree. While ρ is
changing, microscopic polarization current (j(p)) flows,
because ∂ρ/∂t = −∇ · j(p). Whether or not a net, or
macroscopic, polarization current (J(p)) flows depends on
the symmetry of the composite crystal+stimulus system:
The component of J(p) in direction û vanishes if there is
a glide plane normal to û, because then the sum,

j(p)( #»r ) · û+ j(p)(ĝ #»r ) · û,

of the contributions to J(p) · û from an arbitrary point #»r
and its image under the glide symmetry, ĝ #»r , vanishes.
On the other hand, if symmetry does not demand that
J(p) · û vanishes, it must be finite: There is a vanish-
ing probability that, within each primitive unit cell, the
positive contributions to J(p) · û cancel the negative con-
tributions exactly (i.e., to infinite precision) by chance.
Therefore, either anisotropy demands that J(p) is finite,
or isotropy demands that it vanishes.

In Sec. V I discuss the Modern Theory of Polarization,
and I derive the MTOP expression for J(p) without in-
voking quantum mechanics.

In Sec. VI I explain in more detail what I mean by the
prefixes micro- and macro-. I briefly explain some of the
qualitative differences between a macrostructure and a
base microstructure, and their mathematical and physi-
cal origins.

In Sec. VII I discuss the macroscopic excess fields that
exist at surfaces, interfaces, edges, and line and point
defects. Excess fields are the manifestations at the
macroscale of abrupt changes of the microstructure,
meaning changes that occur across microscopic distances.
For example, the difference in microstructure between
a material and vacuum manifests as a surface charge
density, σ. I derive expressions for macroscopic excess
fields in terms of microscopic volumetric fields, which
generalize Finnis’s expression for surface excesses to non-
periodic microstructures.

In Sec. VIII I use spatial averaging of the microscopic
charge density ρ to calculate its macroscopic counterpart
%, and in Sec. X I define the surface charge density, σ,
as the integral of % along a path that crosses the sur-
face. This leads to Finnis’s expression for the surface
charge of a crystal, σ[ρ], and to my generalization of this
expression to noncrystalline materials.

In Sec. XI I derive the MTOP expression for J(p)

again, but this time I derive it by defining it as
J(p) ≡ σ̇ = dσ[ρ]/dt , where σ[ρ] is Finnis’s formula.

In Sec. XII I point out that there does not exist a theoret-
ical justification for interpreting the sets of single electron
states that appear in the MTOP definitions of polariza-
tion current as chemically meaningful substructures of
the electron density.

In Sec. XIII I prove that the macroscopic potential, or
mean inner potential, Φ vanishes in the bulk of any iso-
lated material whose surface is locally charge neutral.
Then I point out a flaw in the reasoning used by H.
A. Lorentz to deduce that a macroscopic electric field
exists in the bulk of a crystal whose microstructure is
anisotropic. In Sec. XIV I discuss flaws in Bethe’s deriva-
tion of an approximate expression for Φ, and I show that
Φ vanishes when these flaws are avoided.

This work comprises three interwoven strands, whose
individual objectives are the three objectives outlined
above. I conclude with a summary of each strand.

D. Notational conventions and some physical assumptions

I now explain a few non-standard notational conventions
that I use throughout this work. More notation will be



7

introduced as and when it is used. I also explain some of
the assumptions that I make about materials’ microstruc-
tures.

1. Macroscopic quantities

I use boldface type to distinguish macroscopic quantities
from microscopic quantities throughout this work. For
example, the macroscopic analogues of the microscopic
charge density ρ, the microscopic electric potential φ, and
the microscopic electric field E , are denoted by %, Φ, and
E, respectively; and r and #»r denote points, positions,
or displacements at the macroscale and the microscale,
respectively.

2. Intervals

If u is any quantity with a continuous range of possible
values (e.g., an x coordinate or an average of field ν), I
use I(u,∆), I[u,∆) and I(u,∆], and I[u,∆] to denote
interval subsets of this range, of width ∆ and centered at
u, which are open, half-open, and closed, respectively. I
use the more conventional notation (u1, u2), [u1, u2) and
(u1, u2], and [u1, u2], to specify intervals by their end
points. For example, I(u,∆u] = (u−∆u/2, u+ ∆u/2] is
an interval that is open at its lower boundary and closed
at its upper boundary.

3. Length scales

The microscale, a, is the smallest length scale of relevance
to the physics of materials, and the macroscale, L, is
a much larger length scale, on which materials appear
continuous, rather than particulate.

Whenever I use the prefixes micro and macro, it is
implicit that there also exists a mesoscale, l, where
a� l� L. The mesoscale is an intermediate length
scale, which is orders of magnitude larger than a bond
length, but small enough that all nonlinear contributions
to the spatial variations of all macroscopic fields are neg-
ligible. The assumption that there exists a mesoscale is
useful, and possibly necessary, for understanding the re-
lationship between microstructures and macrostructures.

The statements ∆a ∼ a, ∆l ∼ l, and ∆L ∼ L, mean that
∆a, ∆l, and ∆L are distances or displacements which are
microscopic, mesoscopic, and macroscopic, respectively.
I will explain precisely what I mean by the terms micro-
scopic, mesoscopic, and macroscopic in Sec. VI.

In Sec. VI, I will define the macroscale infinitesimal |dx|,

which is a lower bound on the magnitudes of displace-
ments that are measurable at the macroscale. On the
microscale I denote it by εx.

4. A quasi-one dimensional material

FIG. 1 Schematic of a quasi one dimensional material which
is macroscopically-uniform but microscopically non-uniform.

It may be useful to consider the macroscopically-uniform
material depicted schematically in Fig. 1. It can be
viewed as a three dimensional material with a large as-
pect ratio and a microstructure, ν : R→ R, which is only
one dimensional because its value ν(x) at x is really an
average of its three dimensional microstructure in the
plane perpendicular to the page.

The planes perpendicular to the page at x = xL and
x = xR = xL + S bound the material in the −x̂ and x̂
directions, respectively, where S is the length of the ma-
terial. Therefore ν(x) is negligible when x /∈ (xL, xR).

The bulk macrostructure is depicted as uniform in Fig. 1,
which is not the general case. I do not make any as-
sumptions about the macroscopic charge density %, ex-
cept that it is differentiable almost everywhere. By this
I mean that it is differentiable everywhere except where
it changes nonlinearly on an interval of width εx = |dx|.

For example, as I explain in Sec. VI, a surface is assumed
to have a width of less than εx at the microscale. This
is not a physical assumption about the surface, but a
consequence of the definition of εx. It means that the
microscopic charge density ρ changes from being char-
acteristic of the material’s bulk to being characteristic
of the vacuum above the surface (i.e., ρ = 0) on an in-
terval that is smaller than the macroscale infinitesimal.
Therefore, % cannot be assumed to be differentiable or
continuous at a surface.
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5. Microstructure dimensionality

Whenever the argument of a microscopic field ν has an
arrow over it (e.g., ν( #»r )), its domain is implicitly three
dimensional. When it does not (e.g., ν(x)) its domain is
implicitly one dimensional. When it has one argument
with an arrow and one without an arrow (e.g., ν(u, #»s )),
its domain is three dimensional and the argument with
the arrow ( #»s ) denotes a vector in the plane perpendic-
ular to the x axis at the x coordinate specified by the
argument without an arrow (u).

6. Boundaries of a material and the bulk of a material

I denote the set of all values of #»s for which the point
#»r = (x, #»s ) is within the material by P(x) and I denote
the cross-sectional area of the material at x by |P(x)|.

In Sec. VI we will see that homogenization of microstruc-
ture by spatial averaging is tantamount to spatial com-
pression, and that all points at the microscale within
εx/2 of a material’s boundary are mapped to the same
locally-planar surface at the macroscale. The set of x
values of points at the microscale that are mapped by
homogenization to the material’s left and right surfaces
are xL ≡ I(xL, εx) and xR ≡ I(xR, εx), respectively.

At the microscale, xL and xR are coincidence sets, (see
Sec. VI for a definition): they are the sets of all values of
x that are indistinguishable from xL and xR, respectively,
at the macroscale. However, at the macroscale they can
be regarded and treated as coordinates, because any in-
terval I(x, η) for which η ≤ εx only contains points that
cannot be distinguished from x by empirical means at
the macroscale.

I will use B to denote the set [xL + εx/2, xR − εx/2] of x
coordinates of points within the material’s bulk. I denote
the width of the bulk region by SB ≡ |B| = S − εx ≈ S.
I will also use B at the macroscale, where it denotes the
open interval (xL,xR). The closure [xL,xR] of (xL,xR)
is the union of the bulk and the surfaces, which is the
entire material.

7. Externally applied fields

I will primarily be concerned with materials that
are either isolated or under the influence of constant
or slowly-varying (f . GHz ⇐⇒ λ & 1 m) externally-
applied electromagnetic waves. I assume that the size (S)
of the material object is much less than the wavelength
(λ) and so, within the material, any external fields are
effectively spatially-uniform. I also assume that the pe-
riod of oscillation, 1/f & 1 ns, of the field is much longer

than the charge density’s relaxation time.

8. Microstructures of materials

To facilitate discussing materials in general terms I use a
fairly general mathematical representation of a material.
However I will assume that the net charge of the material
is zero and, because I am not concerned with magnetism,
I will assume that all particles have zero spin. For the
purposes of this work, the only relevant characteristics of
each particle are its charge and its mass. The relevance of
particles’ masses is that they determine how delocalized
each particle is and that nuclei move much more slowly
than electrons.

In quantum mechanics the state of an isolated thermally-
disordered object at time t can be specified completely
by the position probability density function of its N con-
stituent particles,

p : R3N+1 → R+ ; ( #»r 1, · · · , #»r N , t) 7→ p( #»r 1, · · · , #»r N , t).

The finite spatial and temporal precisions of all mea-
surements, and the fundamentally-perturbative nature of
the act of observation, mean that, even within classical
physics, an observer’s knowledge of the state of any phys-
ical system is a probability density function, rather than
a set of precise values of positions and momenta.

When the only properties of interest to the observer are
statistical properties of functions of particle positions,
such as the expectation value and variance of the electric
potential φ at a point, or the rates of change of those
quantities, momenta can be integrated out. Therefore,
both classically and quantum-mechanically the material’s
microstructure can be specified by a continuous proba-
bility density function p( #»r 1, · · · , #»r N , t).

The probability density p could only be non-analytic if
measurements had infinite precision in both space and
time. However, even if it were non-analytic, every delta
distribution, by which I mean a weighted sum of Dirac
delta functions, is the limit of a smooth density. This
means that there exists a smooth density arbitrarily close
to any given delta distribution, from which properties
of the delta distribution can be calculated to arbitrary
precision if smoothness is required for the calculation.
Therefore, I am not invoking quantum mechanics by us-
ing a position probability density function p( #»r 1 · · · #»r N , t)
to specify the structure of a material. I emphasize this
point because it has sometimes been claimed that electric
polarization P is a quantum phenomenon.

Until I discuss currents in Sec. XI I will assume that,
because nuclei move slowly, the electrons can respond
adiabatically to their motion. Therefore if, at a particu-
lar point in time, the subsystem of electrons is close to
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either a stationary state, such as its ground state, or a
metastable state, it will remain close to this state as the
state changes in response to the slowly-evolving confin-
ing potential from the nuclei. This means that, to a very
good approximation, the time dependence of the number
density of electrons, which I denote by n( #»r , t), can be re-
placed by a parametric dependence on nuclear positions.
I will not usually make this parametric dependence ex-
plicit, but I will omit t as an argument to n( #»r ) and to
the microscopic charge density ρ whenever I am making
this adiabatic approximation.

The quantity of primary interest in electrostatics at the
microscale is a material’s charge density function,

ρ( #»r ) =

N∑
i=1

qi

∫
R3

· · ·
∫
R3

δ( #»r − #»r i)

×p( #»r 1, · · · , #»r N ) d3r1 · · · d3rN (1)

where qi is the charge of particle i, #»r i is its position,
and δ is the Dirac delta distribution. From now on I
will denote the position of the nucleus with index i by
#»

Ri, to distinguish it from the positions of electrons. I will
assume that, to a good approximation, ρ can be expressed
in the form

ρ( #»r ) =

ρ−( #»r )︷ ︸︸ ︷
− e n( #»r ) +

ρ+( #»r )︷ ︸︸ ︷
Ze

∑
i∈nuclei

δ̃( #»r − #»

Ri) (2)

where −e is the charge of an electron, and Z is the atomic
number of the nuclei. For simplicity I will often assume
that the material contains only one species of nucleus.

The function δ̃( #»r − #»

Ri) is not quite the Dirac delta distri-
bution, but a highly localized smooth probability density
function for the position of nucleus i. In many situations,
but not all, we can treat it mathematically as we would
treat the Dirac delta distribution.

The energy of attraction between the nuclei and the elec-
trons can be expressed as

(n, vext) ≡
∫
R3

n( #»r )vext( #»r ) d3r ,

where vext is equal to −e times the positive electric po-
tential from the nuclei. In studies of the electronic sub-
system at fixed nuclear positions, it is common to refer
to vext as as the external potential.

For a one dimensional material aligned with the x−axis,
such as the one depicted in Fig. 1, the analogue of Eq. 2
is

ρ(x) = ρ−(x) + ρ+(x)

= −e n(x) + Ze
∑

i∈nuclei

δ̃(x−Xi) (3)

For most purposes, I will specfiy the (electrical) mi-
crostructure of the material as ρ or as (ρ+, ρ−)

II. MAXWELL’S THEORY OF THE ETHER

I now summarize some of the reasoning that led Maxwell
to his macroscopic theory of electromagnetism. My pur-
pose is to show that almost all of his reasoning is incon-
sistent with what has since been learned about materials
and spacetime and that, in hindsight, the existence of P
and D fields appears not to have a sound logical basis.
The sources I have relied on most heavily are Maxwell,
1865, Maxwell, 1873, Maxwell, 1892, Heaviside, 1893,
Lorentz, 1916, and Buchwald and Fox, 2013.

Maxwell believed that a luminiferous ether pervaded all
matter and was the domain in which all electromagnetic
processes occurred. He rejected the idea of electromag-
netic action at a distance, believing instead that the ether
was the medium by which, and through which, all forces
between electrified bodies were exerted.

In vacuum he regarded the ether as isotropic, homo-
geneous, and with properties characterised by only two
scalar constants, such as its permittivity ε0 and its per-
meability µ0, or either one and the speed of light c.
He believed that the ether’s properties were altered in
the presence of matter, but that the effects of matter
on electromagnetic phenomena were indirect and could,
to a first approximation, be described by the changes
ε0 7→ ε̃(r) and µ0 7→ µ̃(r) of the ether’s characteristic con-
stants from uniform scalars to tensor fields.

Maxwell used the term electricity in an abstract or vague
sense and he likened electricity in the ether to elasticity
in a solid. He regarded this analogy as so compelling
that, on the basis of it, he was willing to impute to the
ether the minimal set of physical properties necessary to
make his theory internally consistent. He reasoned that,
just as a slack rope or an unstrained rod cannot transmit
forces between its two ends, the ether must be in a state
of mechanical stress when electric forces are transmitted
through it. Therefore, just as an elastically-deformed
solid has a density of stored energy at each point, which
is released when the deforming force is removed and the
body resumes its original shape, he speculated that an
electric force field was always accompanied by a displace-
ment field in the ether, which stored potential energy.

As an alternative to specifying a deformed state of an
elastic solid with a vector field whose value at each point
is the point’s displacement from equilibrium, one can de-
scribe it by a flux density vector field that is parallel to
the direction of material flow at each point and has a
magnitude equal to the total quantity of material, per
unit area, that flowed through a small imaginary surface
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at the point during the deformation. Maxwell chose this
latter approach to describe the state of the ether and
the motion of electricity within it. One of his reasons
was that certain fluxes, namely electric currents, were
measureable, and measured fluxes were spatial averages,
which could not be calculated using the former approach
unless much more detailed information about the ether
was available. For example, a rate of fluid flow cannot
be calculated if one only knows the velocity of the fluid
at each point; knowledge of its density is also required.
Therefore Maxwell defined the confusingly-named elec-
tric displacement field D as a flux density. It specified
how much electricity passed through each point, and in
which direction, as an applied field that caused and main-
tained this displacement was ’switched on’. He regarded
D as a specification of the electrically-deformed state of
the ether, albeit one that was a spatial average of a more
detailed microscopic flux density. He regarded the cur-
rent density J as a rate of motion, or a velocity, of the
ether that was driven by the electric force E and which
changed the ether’s displacement D.

For reasons that remained mysterious to Maxwell, con-
ductors lacked the restoring force that returned the D
field in an electrically-deformed dielectric to its original
state when the electric field supporting it was switched
off. Therefore, instead of simply displacing, electricity
flowed freely as a current. As it flowed, it dissipated
some of the ether’s energy into heat within the mate-
rial; similarly, when a dielectric was placed in an electric
field a transient current

.
D flowed and dissipated energy

until the equilibrium displacement was reached. For en-
ergy to be conserved the energy stored in the ether by
the displacement field had to be lower in the presence of
a dielectric than it was in free space. It followed that,
for the same electric force E, D was different within a
dielectric to its value of ε0E in vacuum. Its value in a
dielectric was D = ε0E + P, where P was known as the
electric polarization of the dielectric.

Since D was different in dielectrics, it must change
abruptly at a dielectric’s boundaries. Maxwell viewed
charge, not as a substance that can accumulate, but as
a spatial discontinuity of D. He did not understand a
current to be a flow of charge but as a state of motion
of the ether, which changed the D field, creating those
discontinuities. So, although current did not transport
charge, it caused it to exist.

Although there are some similarities between Maxwell’s
conception of electric polarization and more modern
viewpoints, overall the physical picture described above
bears little resemblance to modern conceptions of elec-
tromagnetism, spacetime, or the structures and compo-
sitions of materials. Maxwell’s reasoning has become as
obsolete as his conception of an ether is and both he
and his contemporaries were alert to this eventuality.

They regarded the properties he imputed to the ether
as conjectures which would, when more was learned, ei-
ther be confirmed and developed further, amended, or
abandoned. Heaviside made his concern about the chal-
lenges the theory faced clear in 1893, more than a decade
after Maxwell’s death, when he wrote (Heaviside, 1893):
“Whether Maxwell’s theory will last, as a sufficient and
satisfactory primary theory upon which the numerous sec-
ondary developments required may be grafted, is a matter
for the future to determine. Let it not be forgotten that
Maxwell’s theory is only the first step towards a full the-
ory of the ether ; and, moreover, that no theory of the
ether can be complete that does not fully account for the
omnipresent force of gravitation.”

Maxwell’s theory should not be expected to make sense
conceptually as a theory of material response, because
he developed it as a theory of the ether. However, be-
cause he ensured that it reproduced all of the empirically-
known mathematical relationships between macroscale
observables, its accuracy as a macroscale tool is undi-
minished by the historical peculiarities of its mathemat-
ical form. It became confusing conceptually when the
concept of an ether became obsolete, thereby stripping
it of its logical foundations. More importantly, it fails
when used beyond the macroscale domain for which it
was constructed. At the microscale it conflicts with 20th
century theories of material structure and composition;
and this is why there has been so much confusion and
debate about how to calculate macroscopic fields from
microscopic ones.

III. HOW IS P DEFINED?

Many attempts have been made to reconcile Maxwell’s
auxiliary electric fields, P and D, with modern concep-
tions of material structure and composition. Most have
proposed definitions of P in terms of the microscopic
charge density ρ. Once definitions of E and P are in
hand, the definition of D follows from the constitutive
relation quoted in the Introduction.

None of the proposed definitions of P are viable, to my
knowledge, and I briefly explain their shortcomings in
this section. I do not attempt to refute every paper di-
rectly, but I outline a few of the most common definitions
of P and the reasons why they are unsatisfactory. The
literature on the Modern Theory of Polarization (MTOP)
(e.g., Resta and Vanderbilt, 2007), which is discussed in
Sec. V, can be consulted for more discussion about short-
comings of pre-MTOP definitions of P. I outline reasons
to look beyond the MTOP definition of P in Sec. V.
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1. Attempt 1

P has the dimensions of a dipole moment per unit volume
and so it is natural to try to define it as such. Let us con-
sider a material that occupies and fills a space Ω ⊂ R3,
whose volume is |Ω|. Many authors have assumed, often
tacitly, that Ω can be divided into microscopic partitions
in some natural or ‘right’ way. For example, in a molecu-
lar material there might be a separate partition for each
molecule. P is then defined as the macroscopic spatial av-
erage of the partitions’ dipole moments divided by their
volumes. This definition fails because, as Fig. 11 and
Fig. 12 illustrate, there are an infinite number of ways
to partition any material, which are equally justifiable
theoretically, and each different set of partitions leads, in
general, to a different magnitude and direction of P.

2. Attempt 2

One could also define P as the dipole moment of the
entire material divided by its volume, i.e.,

P ≡ 1

|Ω|

∫
Ω

ρ( #»r ) #»r d3r (4)

This definition is not satisfactory because it implies that
P is not a property of the bulk, in general. To understand
why, consider the dipole moment of a charge-neutral crys-
talline rod of length L and area of cross-section A, whose
surfaces perpendicular to its long axis and carry charges
of +q and −q. For simplicity, let us suppose that the
rod is carved from a perfect ionic crystal, immediately
isolated so that its composition cannot change, and pre-
vented from relaxing structurally. If L was large com-
pared to the crystal’s lattice constant the rod’s dipole
moment would be approximately equal to qL n̂, where
n̂ is an outward unit normal to the surface of charge q.
However, both the magnitude and the sign of q are de-
termined by where along the rod’s axis the bulk crystal
was cleaved to form its surfaces. As illustrated in Fig. 12,
two surfaces formed by cleaving a crystal along relatively-
shifted parallel planes have different charges, in general.
Therefore, by this definition P ≈ qLn̂/|Ω| = (q/A) n̂ is
mostly determined by the areal density of charge on the
rod’s surfaces σ ≡ q/A and it would vanish if the surfaces
were neutralized. Therefore, Eq. 4 does not define a bulk
property.

3. Attempt 3

One could consider basing a definition on either
−∇ ·P = % or −∇ · P = ρ, where P is a microscale ana-
logue of P. This approach fails because, without bound-

ary conditions, these equations only define P and P up
to arbitrary constants; with boundary conditions, their
values are determined by the charge at the material’s
surfaces, so they are not a property of the bulk.

4. Attempt 4

Finally, several well-known textbooks, including those
by Jackson (Jackson, 1998) and Ashcroft and Mer-
min (Ashcroft and Mermin, 1976), use variants of a
method refined by Russakoff (Russakoff, 1970) to define
P. They assume that the microscopic charge density can
be expressed in the form ρ( #»r ) =

∑
i ρi(

#»r − #»r i), where
each ρi is a charge density that is localized around the ori-
gin and microscopic in extent, such that ρi(

#»r ) ≈ 0 when
| #»r | � a. For example, each ρi might be the distribution
of a different molecule’s charge.

The next step is to find the spatial average of ρ by con-
volving it with a smooth spherically-symmetric averaging
kernel µ(ε) : R3 → R≥0 whose width is proportional to ε
and which has an integral of one, as follows:

〈ρ;µ〉ε ( #»r ) ≡
∫
R3

µ( #»u ; ε) ρ( #»r + #»u ) d3u

=
∑
i

∫
R3

µ( #»r − #»r i − #»u ; ε) ρi(
#»u ) d3u ,

where I have changed the variable of integration and
made use of µ’s spherical symmetry. Taylor expanding
µ(ε) in each integrand to first order in #»u gives

〈 ρ 〉 ( #»r ) ≈
∑
i

∫
R3

[µ( #»r − #»r i; ε)− #»u ·∇µ( #»r − #»r i; ε)]

× ρi( #»u ) d3u

=
∑
i

µ( #»r − #»r i; ε) qi −
∑
i

∇µ( #»r − #»r i; ε) ·
#»

d i

where qi ≡
∫
R3 ρi(

#»r ) d3r and
#»

d i ≡
∫
R3 ρi(

#»r + #»u ) #»u d3u
are the net charge and the dipole moment of distribution
ρi, respectively. If we identify 〈ρ;µ〉ε as the macroscopic
charge density % and express the second sum on the right

hand side as ∇ ·
(∑

i µ( #»r − #»r i; ε)
#»

d i

)
, we find that

% = %free −∇ ·P = %free + %bound

where %bound ≡ −∇ ·P, and %free and P are volumetric
densities of the molecules’ net charges and dipole mo-
ments, respectively.

There are multiple fatal flaws in these definitions of
%bound, %free, and P: The value of each quantity de-
pends sensitively on the value of ε, which is arbitrary,
and both %bound and P vanish in the limit ε→∞. Each
field also depends on how ρ is partitioned into localized
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distributions ρi. However, even if the set {ρi} was given,
if %free 6= 0 then the values of %bound, %free, and P would
depend on the choice of origin. This is because the dipole
moment of any charge distribution is origin dependent
unless its net charge is zero.

IV. DEMANDS OF SYMMETRY AND ASYMMETRY

In this section I discuss some properties that we should
expect a macrostructure to have, on symmetry grounds,
if it is a spatial average of the microstructure.

I begin, in Sec. IV.A, by discussing consequences of the
linearity of the spatial averaging operation ν 7→ 〈ν;µ〉ε.
I discuss general macroscopic vector fields in Sec. IV.E,
and I discuss the macroscopic potential Φ, the macro-
scopic polarization P, and the polarization current J(p)

in Secs. IV.F, IV.G, and IV.H, respectively.

A. Linearity and the superposition principle

It is well known that, given two microscopic charge densi-
ties, ρ1 and ρ2, from which the microscopic electric fields
E1 ≡ Êρ[ρ1] and E2 ≡ Êρ[ρ2] emanate, where Êρ is a func-
tional; and given any two scalar constants ω1, ω2 ∈ R; the
following relation holds:

Êρ[ω1ρ1 + ω2ρ2] = ω1Êρ[ρ1] + ω2Êρ[ρ2]. (5)

Analogous relations hold for other functionals, such as
φ̂ρ[ρ], Êφ[φ], and ρ̂φ[φ], which relate φ to ρ, E to φ and ρ

to φ, respectively. The property of Êρ expressed by Eq. 5
is known as linearity, but in the context of electricity it
is better known as the principle of linear superposition
or simply the superposition principle. The superposition
principle follows from the fact that derivatives and inte-
grals are linear operations and the fact that E = −∇φ
and ρ/ε0 ≡∇ · E = −∇2φ are both negative derivatives
of φ.

A one dimensional spatial average has the general form

〈ν;µ〉ε (x) ≡
∫
R
ν(x′)µ(x′ − x; ε) dx′ , (6)

where ε is a parameter that is proportional to the width
of the averaging kernel, µ(ε). It is straightforward to use
Eq. 6 to show that this is also a linear operation, i.e.,
〈ω1ν1 + ω2ν2;µ〉ε (x) = ω1 〈ν1;µ〉ε (x) + ω2 〈ν2;µ〉ε (x),
for any numbers ω1, ω2 ∈ R and any functions ν1 = ν1(x)
and ν2 = ν2(x). The spatial averages in two and three
dimensions are also linear operations.

B. Spatial averaging commutes with derivatives

It can be shown from Eq. 6 that spatial averages and
derivatives commute. For example,

∂nx 〈ν;µ〉ε ≡
n times︷ ︸︸ ︷

∂x∂x · · · ∂x 〈ν;µ〉ε = 〈∂nxν;µ〉ε ,

where ∂x is the partial derivative with respect to x. The
analogous results for the gradient and laplacian in three
dimensions, when ν = ν( #»r ), are ∇ 〈ν;µ〉ε = 〈∇ν;µ〉ε
and ∇2 〈ν;µ〉ε =

〈
∇2ν;µ

〉
ε
.

1. Relationships between Φ, E, and %

Because spatial averaging commutes with derivatives,
it would follow from defining macroscopic fields as
spatial averages of their microscopic counterparts that
the relationships between Φ, E, and % are the same
as those between φ, E , and ρ, i.e., E = −∇Φ and
% = −ε0∇2Φ = ε0∇ ·E. In Sec. VI we will identify Φ,
E, and % with spatial averages of φ, E , and ρ, respec-
tively, but we will see that their definitions are a bit more
complicated than, for example, Φ ≡ 〈φ;µ〉ε for some av-
eraging kernel µ and some width parameter ε. Neverthe-
less, they are spatial averages and the homogenization
transformation is linear and the macroscopic counterpart
of the derivative ν(1) of ν is the derivative V(1) of the
macroscopic counterpart of ν. Therefore homogenization
does not create new fields, P and D. Calculating Φ and
E from % should be equivalent to first calculating φ and
E from ρ and then spatially averaging them to find Φ
and E, respectively.

C. Symmetry is scale-dependent

It appears to follow from the fact that derivatives
and spatial averaging commute that symmetry is scale-
dependent. For example, a crystal with microstruc-
ture ρcrystal and a glass with microstructure ρglass can
have exactly the same bulk macrostructure %; and they
usually do because % = 0 in the bulk of any stable
electromagnetically-isolated material whose surfaces are
not charged.

The superposition principle implies that the macroscopic
field emanating from the bulk of the crystal can be ex-
pressed as

Ebulk
crystal = Êρ[ρcrystal] =

〈
Êρ[ρcrystal]

〉
= Êρ[〈ρcrystal〉]

= Êρ[%] = Êρ[〈ρglass〉] = Êρ[ρglass] = Ebulk
glass
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where Êρ is a linear functional of ρ, which satisfies

Êρ[ρ] = Êρ[%], and for simplicity I am denoting the spa-
tial average of each field ν simply as 〈ν〉. It follows that
neither a crystal’s symmetry, nor any other characteris-
tic of its microstructure that differs from the glass, alters
the macroscopic electric field or the macroscopic electric
potential emanating from its bulk.

The only symmetries that manifest at the macroscale are
symmetries of the macrostructure.

D. Nonlinear relationships and response functions

It is important to note that the superposition principle
applies only to linear physical systems. A more accurate
way to state this is that a linear physical system is de-
fined to be a system for which the superposition principle
applies.

The superposition principle could not apply to all of the
quantities α(x), β(x) and γ(x) if they were related by
α(x) = β(x)γ(x) because β and γ are not linearly re-
lated. For example, if α = α1 + α2 where α1 = β1γ1 and
α2 = β2γ2, then

α = α1 + α2 = β1γ1 + β2γ2 6= (β1 + β2) (γ1 + γ2) .

This has important implications for material-specific re-
sponse parameters, such as conductivities, which are not
simply spatial averages of their microscopic counterparts.

For example, if a material’s macroscopic response to an
arbitrarily-weak applied field Eext is ∆%, and if the
change ∆σ in its surface charge is the integral of ∆%
across the surface, then ∆σ ∝ Eext. However, the con-
stant of proportionality does not have an analogue at the
microscale to which it can be related by spatial averaging.

In fact, because the material is macroscopically uniform
at equilibrium before and after Eext is switched on, %
vanishes in the bulk both with and without Eext. There-
fore the macroscopic response to Eext is not a response
of the bulk, but a change of the excesses of charge at sur-
faces and interfaces. At the microscale, by contrast, the
response of the material’s equilibrium microstructure to
Eext is a change of the charge density at surfaces, inter-
faces, and at all points in the bulk.

The macrostructure of the bulk is indistinguishable from
vacuum and the macroscale response to a uniform field
manifests only at surfaces and other macroscopic hetero-
geneities. Therefore it may be better to view a macro-
scopic response function, such as a conductivity or per-
mittivity, as a property of a pair of surfaces, rather than
as a property of the material occupying the space between
them.

For example, a macroscopic response function

χ12(σ1,σ2, σ̇1, σ̇2, · · · ) for a pair of surfaces, whose
charge excesses are σ1 and σ2, might describe the
(change in the) rate of change σ̇1 = −σ̇2 when a field is
applied, the rate of energy dissipation during this change,
etc.. The bulk composition and microstructure would
help to determine χ12, but so would the microstructures
and compositions of both surfaces.

E. Macroscopic vector fields

As discussed in Sec. IV.C, and as Fig. 1 illustrates, sym-
metry is scale-dependent: A material whose microstruc-
ture ρ is highly inhomogeneous and anisotropic can have
a bulk macrostructure with local continuous translational
symmetry,

%(x+ u) = %(x), ∀x ∈ B and ∀u : x+ u ∈ B, (7)

which implies local isotropy,

%(x+ u) = %(x− u), ∀x,u : I(x, 2|u|) ⊂ B. (8)

By local I mean that for any x ∈ B there are limits to
the magnitudes of u for which Eqs. 7 and 8 hold. Eq. 7
holds for u ∈ (−|x− xL|, |x− xR|) and Eq. 8 holds for
|u| < umax(x) ≡ min {|x− xL|, |x− xR|}.

As noted in Sec. IV.C, the material cannot be stable un-
less its bulk is charge-neutral (% = 0) on average. There-
fore it is macroscopically uniform and locally isotropic at
each point x. It follows that any observable directional-
ity at x must be a consequence of the inequivalence of
% at distances larger than umax(x) in the two directions.
Therefore, a macroscopic vector field whose value at each
point is a linear functional of % (or ρ), cannot emanate
from the bulk of a macroscopically uniform material be-
cause the bulk macrostructure cannot bestow direction-
ality. This implies that E vanishes and Φ is constant in
the bulk.

Similarly, the existence of P is attributed to the bulk
microstructure lacking inversion symmetry. However, re-
gardless of the microstructure, the bulk macrostructure
has inversion symmetry and a macroscopic P field ap-
pears incompatible with that.

1. Current density

There is one macroscopic vector field in a uniform ma-
terial’s bulk that is, in a certain sense at least, retained
by the homogenized theory. This is the current density
J, which is not observable at the macroscale in the uni-
form bulk, but whose consequences, namely, the rates of
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change of accumulations of charge at macroscopic het-
erogeneities (surfaces, defects, etc.), are both observable
and bestow directionality to it.

The rate of change of an accumulation of charge at a
macroscopic defect or interface can be calculated from
−∇ · J or from the difference ∆J in the values of J on
either side of an interface. Therefore, instead of defining
J at each point in the bulk, at the macroscale we need
only concern ourselves with ∆J = σ̇ or −∇ · J|dx| = Q̇,
which are the rates of change of the excesses of charge at
an interface and at a point, respectively.

It is not possible, in general, to deduce the direction of
J from the rate of change of areal charge density σ at
an interface. However if, in a closed system, one knows
the rates of change of accumulations of charge on every
source of macroscopic heterogeneity, one could calculate
the magnitude and direction of the current density every-
where in the uniform regions surrounding and separating
these heterogeneities. This is the essence of circuit the-
ory.

My argument in this section is that symmetry is scale de-
pendent and that, regardless of a material’s microstruc-
ture, no directionality should be observable at the
macroscale if the macrostructure is isotropic. J should
not be regarded as either invalidating this argument or as
an exception to this principle because J is not observable
at the macroscale. Only its consequences, such as σ̇ and
the rate of change of temperature Ṫ, are.

F. Mean inner potential, Φ

The arguments of the previous section, and the linear re-
lationship between the mean inner potential Φ and ρ and
%, imply that Φ vanishes if a material’s surfaces are not
charged. This contradicts a great deal of existing litera-
ture, including textbooks and many recent research arti-
cles (Bethe, 1928; Blumenthal et al., 2017; Cendagorta
and Ichiye, 2015; Gajdardziska-Josifovska et al., 1993;
Hörmann et al., 2019; Kathmann, 2021; Kathmann et al.,
2011; Leung, 2010; Madsen et al., 2021; Miyake, 1940;
Pratt, 1992; Sanchez and Ochando, 1985; Sokhan and
Tildesley, 1997a; Spence, 1993, 1999; Wilson et al., 1987,
1988, 1989; Yesibolati et al., 2020). However, those works
often assume that Φ and the average potential experi-
enced by a particle moving through the bulk are the same
quantity, or approximate the latter as the former.

Even if a particle spends a very long time in a material,
it does not sample space uniformly. It samples regions
of positive electric potential, where the electron density
is high, more than regions of negative potential. Fur-
thermore, an electron is a perturbing probe of electric
potential. It does not sample a material’s equilibrium

microscopic potential φ( #»r ) because its presence at posi-
tion #»r reduces the probability density of other electrons
being in a neighbourhood of #»r , which reduces the nega-
tive potential it experiences from other electrons.

Therefore if the spatial average of φ is zero, meaning that
a non-perturbing probe would measure an average mi-
croscopic potential of zero if it sampled the entire space
within a material uniformly, the average potential expe-
rienced by an electron would be positive. For the same
reason, the average potential experienced by a diffusing
cation is negative because it attracts electrons to it and
repels nuclei and other cations.

The superposition principle helps to understand why Φ
vanishes in a material’s bulk (⇒ −∇Φ = 0). It means
that the potential emanating from any nucleus is the
sum of the potentials emanating from its constituent pro-
tons. Therefore the spatial average of the potential inside
a charge-neutral material can be expressed as the sum
of the spatial averages of the potentials emanating from
point particles of charge +e (protons) and point parti-
cles of charge −e (electrons). The spatial average of the
potential from an electron is the negative of the spatial
average of the potential from a proton. Therefore, since
there are equal numbers of protons and electrons in a
charge-neutral material, Φ can be expressed as a sum of
vanishing contributions from proton-electron pairs.

G. Bulk polarization, P

In this section I examine some consequences of assuming
that P can be expressed as some functional P̂ρ of ρ. I do

so under the assumption that E ≡ Êρ[ρ] and % ≡ %̂ρ[ρ]
are both linear functionals of ρ. If they were not linear,
either the superposition principle would not apply at the
macroscale, or the ρ 7→ % homogenization transformation
would not conserve net charge. They are linear if E and
% are spatial averages of E and ρ, respectively.

A polarization field is believed to exist in any crystal
whose microstructure lacks inversion symmetry. There-
fore P̂ρ[ρ] must be a nonlinear functional because the su-
perposition ρ = ρ1 + ρ2 of two inversion-symmetric crys-
tal structures does not have inversion symmetry, in
general. If P̂ρ[ρ1] = 0, P̂ρ[ρ2] = 0, and P̂ρ[ρ] 6= 0, then

P̂ρ[ρ1 + ρ2] 6= P̂ρ[ρ1] + P̂ρ[ρ2].

Let us assume that D ≡ D̂ρ[ρ] = D̂l
ρ[ρ] + D̂nl

ρ [ρ] and

P ≡ P̂ρ[ρ] = P̂ lρ[ρ] + P̂nlρ [ρ], where the superscripts ‘l’
and ‘nl’ identify linear and nonlinear parts of the func-
tionals, respectively. It follows from the linearity of Êρ
and the relation D = ε0E + P⇒ D̂ρ = ε0Êρ + P̂ρ that

D̂nl
ρ = P̂nlρ and ε0Êρ = D̂l

ρ − P̂ lρ.

Any microscopic charge density ρ can be written as
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a (possibly infinite) sum of inversion-symmetric charge
densities; the Fourier series of a periodic ρ being one ex-
ample. It follows that Pl ≡ P̂ lρ[ρ] = 0 for any ρ, that the

linear part of D is Dl ≡ D̂l
ρ[ρ] = ε0E, and that its non-

linear part Dnl is simply P.

With these constraints the set of relationships that con-
stitute the macroscale theory of electricity can be ex-
pressed as

% = ε0∇ ·E, ∇ · J +
.
% = 0

∇×H = J + ε0
.
E, ∇×E = −

.
B

where J ≡ J(c) +
.
P, J(c) is the conduction current, and

a dot denotes a partial time derivative at fixed position.
The linear and nonlinear parts of

.
D appear separately

in these equations as ε0
.
E and

.
P, respectively, and the

only purpose served by P is to define its time derivative,
J(p) =

.
P.

Let us consider two ways to proceed from here. The first
is to follow convention by finding a way to define P. This
would lead to definitions of D, %bound, %free, Jbound, and
Jfree, where Jbound ≡ J(p) and Jfree ≡ J(c) are currents
of bound charge density (%bound) and free charge density
(%free), respectively. I denote them by J(p) and J(c) to
avoid distinguishing between free and bound charges. In-
troducing these six fields to the theory does not make it
any more predictive or useful. Furthermore, P and D are
not observable; Jfree is only observable when Jbound = 0
and vice versa; and free charge is only observable where
the net bound charge vanishes and vice versa.

A much simpler and less conventional way to proceed is
to not introduce any unobservable quantities into the the-
ory, but to find a way to calculate J(p). We do not need to
distinguish between different contributions to J in either
Maxwell’s equations or the contintuity equation if we are
not distinguishing between %free and %bound. Therefore
J(c) +

.
P can be replaced by J with the understanding

that J is the net flow of charge from all mechanisms.

We are left with only the four equations above, which are
identical in form to their counterparts at the microscale,
and in which all three electrical quantities that appear
in them (%, J, E) are observables with clear and intu-
itive meanings. There is no downside to scrapping P and
D and it circumvents many problems, such as the fact
that we do not have a definition of P, and the fact that,
because P is nonlinear and E is linear, P 6= ε0χE.

It is important to note that a key premise or conclu-
sion of the Modern Theory of Polarization is that my
central premise in this section, namely that P can be
calculated from ρ, is false (Resta and Vanderbilt, 2007).
It is claimed, instead, that P is a property of the phase θ
of the material’s wavefunction Ψ =

√
p eiθ. I will discuss

this claim in Sec. V and Sec. XI.

H. Polarization current as a demand of anisotropy

Fig. 2 shows several stages in the evolution of the equi-
librium charge density ρ in the bulks of three crystals
as some stimulus ζ is applied uniformly to them. The
stimulus might be a change in temperature, a strain, a
displacement of one of the crystal’s sublattices relative
to the others, or anything else that changes a crystal’s
charge density uniformly throughout the bulk.

The charge density in Fig. 2 (c) has inversion symmetry,
with two centers of inversion in each primitive unit cell,
and it maintains this inversion symmetry as ζ changes
and ρ(x; ζ) evolves. Clearly, the motion of charge relative
to one of its centers of symmetry must be the same in the
−x̂ and +x̂ directions. Therefore the existence of a net
current is prohibited by symmetry. On the other hand,
the only symmetries possessed by the charge densities in
Figs. 2(a) and 2(b) are their periodicities. It is impossible
that the motion of charge in the −x̂ and +x̂ directions is
equitable, because those directions are inequivalent and
two numbers cannot be equal to infinite precision except
by reason of symmetry.

To tighten this argument let us consider the center of
electron charge, C, of the six unit cell segment shown in
Fig. 2(b). Let ċ(xb) be the rate of change of the center of
charge of the ne electrons in the primitive cell of width
a whose boundary is at xb. There is no symmetry rea-
son to expect ċ(xb) to vanish; therefore it does not. The
rate of change of C is the average of the rates of change
of the centers of charge of the six cells, and therefore is
also equal to ċ(xb). The current per unit length associ-
ated with this motion of electrons is −Me e ċ(xb)/a. To
find the total current density the contribution from nuclei
should be added to it.

Let us now turn to the material in Fig. 2 (c). However,
instead of expressing Ċe in terms of the rates of change
of the centers of electron charge of the six complete cells
delimited by vertical black lines, we can express it as the
average over the five complete green-bordered cells and
the remaining cell, which is shaded in grey and divided
into two pieces on either side of the five. The centers
of charge of the green cells are time-invariant, by sym-
metry, which implies that Ċ = ċ/6, where c is the center
of electron charge of the grey cell. Now suppose that
the number of primitive cells in the segment was not six,
but of order l/a, such that the segment was mesoscopic.
The rate of change of its center of electron charge, and
therefore the current, would be of order a/l and therefore
negligible.

Just as a polarization current flows when a material with-
out inversion symmetry is uniformly stimulated, it also
flows when the crystal has inversion symmetry, but the
stimulus that changes ρ breaks this symmetry. This is
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FIG. 2 Charge density ρ as function of position x in three
one dimensional crystals. The crystals in (a) and (b) lack
inversion symmetry, but the crystal in (c) has inversion sym-
metry, with two inversion centers per primitive cell Ω. In (c)
a choice of primitive unit cell whose dipole moment is zero is
outlined in green. If ρ(x) changes continuously and uniformly
between the densities plotted in red and blue, a macroscopic
current flows in crystals (a) and (b) because the probability
that the net movement of charge in direction x̂ equals the net
movement of charge in the inequivalent direction −x̂ is zero.
In (c) the symmetry of the crystal forbids a macroscopic flow
of charge because the net movement of charge relative to an
inversion center cannot differ between the two equivalent di-
rections x̂ and −x̂. One way to see this is to note that in
(c) most of space can be tiled with unit cells Ω whose dipole
moment remains zero throughout the changing of the density.
There remains only the two shaded regions of combined width
a = |Ω| at the left and right boundaries of the chunk of bulk
crystal comprised of NΩ = 6 primitive cells. In the limit of
large NΩ the change in the distance between xb and the cen-
ter of charge of the NΩ cells, divided by their combined width
NΩa, vanishes. In (a) and (b) the current cannot vanish be-
cause the x̂ and −x̂ directions are inequivalent. An important
question, which the MTOP solved for quantum systems, is
how the current can be calculated from an evolving bulk mi-
crostructure, i.e., without knowing or calculating how much
charge accumulates at surfaces. If the integrals q1 and q2 of
the two peaks per unit cell in (a) remain constant, the current
per unit length is simply (q1ẋ1 + q2ẋ2) /a, where ẋ1 and ẋ2

are the velocities with which the peaks move. However if the
charge density is not organized into packets of fixed charge,
as in (b), the definition of current is much less obvious.

the case when, for example, the stimulus is an applied
electric field or a non-uniform strain (flexoelectricity).

Crystals can be categorized based on what sorts of stimuli
are capable of causing these transient polarization cur-
rents. An electric field induces a polarization current
in any crystal, whereas only crystals that lack inversion
symmetry tend to be pyroelectric, because temperature
does not reduce a crystal’s symmetry, in general, and
so they remain inversion symmetric as they are heated.
A larger set of crystal symmetries are compatible with
piezoelectricity because uniform uniaxial strain can break
inversion symmetry.

V. MODERN THEORY OF POLARIZATION

A. Introduction

The Modern Theory of Polarization (MTOP), which was
developed in the 1990s by Resta and Vanderbilt and their
collaborators (King-Smith and Vanderbilt, 1993; Resta,
1993, 1994; Resta and Vanderbilt, 2007; Vanderbilt and
King-Smith, 1993), solved the problem of how to define
the polarization current J(p) of an insulating material
in terms of the evolving electronic structure of its bulk,
and provided a widely-applicable method of calculating
it. I emphasize that the MTOP defines J(p) in terms
of the changing bulk microstructure because the alterna-
tive, namely defining it as J(p) = σ̇, would be of much
less practical use: calculations of it would require knowl-
edge of the time-dependent surface microstructure, mak-
ing accurate calculations of it intractable in many or most
cases due to the number of electrons in the surface re-
gion. By contrast, the MTOP can be used to calculate
the electronic contribution to σ̇ from a simulation that
takes explicit account of only the electrons in a single
primitive unit cell in the bulk of a crystal. Therefore the
method can be applied to a wide range of materials and
has a low computational overhead. In Sec. V I present an
explanation of the MTOP definition of polarization cur-
rent that is based on the relation J = σ̇ and on Finnis’s
expression for the (macroscale) surface excess of charge,
σ, in terms of the microscopic densities of positive and
negative charge. This perspective makes it clear that the
MTOP definition of polarization current, in its original
form, is basically exact.

To clarify what I mean by the MTOP providing an ex-
act definition of J(p), let us suppose that ζ is one or
more parameters on which a material’s electron density
n has a continuous dependence. Let us suppose that
this density is known exactly as ζ(t) changes slowly, and
that it has a ζ-dependent decomposition into packets
n(x; ζ) =

∑
i ni(x; ζ) such that each packet ni(ζ) evolves

smoothly with ζ and each packet’s integral −qi/e is in-
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FIG. 3 See Sec. V.

dependent of ζ. Then the polarization current density in
the bulk is given exactly by

J(p) =
1

|V |
∑
xi∈V

qiẋi =
ζ̇

|V |
d

dζ

(∑
xi∈V

qixi

)
, (9)

where the sum is over all xi within a region V that is
representative of the bulk. If the material is a crystal, V
can be a single primitive unit cell, Ω. In an amorphous
system V must be large enough to sample all relevant
features of the microstructure and, by expanding it to
improve the sampling of the bulk, J(p) can be calculated
to any desired precision.

The physical idea underpinning Eq. 9 is simple, and eas-
iest to understand for the isolated nonconducting crystal
depicted in Fig. 3. Dx̂ is the crystal’s dipole moment
and there are two planar surfaces perpendicular to x̂ that
carry excesses of charge. The width εx of the surface re-
gions is exaggerated. In reality it would be many orders
of magnitude smaller than the width of the crystal, S.
Therefore SB ≡ |B| ≈ S. Between the two charged sur-
faces, the crystal’s shape and cross-sectional area |P| is
uniform.

Now let us suppose that the electron density in the
bulk can be expressed as a superposition of NΩ iden-
tical electron densities nΩ( #»r ; ζ), such that each prim-
itive unit cell Ω contains the center of exactly one of
them, i.e., n( #»r ; ζ) =

∑
i nΩ( #»r − #»

Ai; ζ), ∀ #»r ∈ B, where

the sum is over all lattice vectors
#»

Ai for which the center
of nΩ( #»r − #»

Ai; ζ) is in the bulk, B. The charge neu-
trality of the crystal’s bulk implies that ρΩ, defined as
the sum of the delta charge distributions of the nuclei in
a particular primitive cell and the electron charge den-
sity −e nΩ whose center is in the same cell, is a charge
neutral distribution with a well defined (origin indepen-
dent) dipole moment dΩ. When the sum of all NΩ of
the distributions ρΩ centered in different cells is sub-
tracted from the total charge density ρ, the result is

zero in the bulk and its integrals along x̂ at the two sur-
faces are σs and −σs, which are not, in general, equal
to σ and −σ, respectively (see Sec. X). If, for sim-
plicity, we assume that the widths of all surfaces par-
allel to x̂ can be neglected, the volume of the crystal is
S|P| = (SB + Ss) |P| = NΩ|Ω|+ Ss|P|, where Ss is the
sum of the widths of the surface regions normal to x̂, and
Ss|P|/(NΩ|Ω|) ∼ a/S < a/L� a/l� 1. The crystal’s
dipole moment is D = NΩdΩ + σs|P|(NΩ|Ω|/|P|+ Ss)
(its direction x̂ is assumed not to change and is omit-
ted) and the spatial average, over the entire crystal, of
the current density flowing within it is

J(p) = σ̇ = Ṗ =
Ḋ

NΩΩ + Ss|P|

=
NΩḋΩ + σ̇s(NΩ|Ω|+ Ss|P|)

NΩ|Ω|+ Ss|P|

=
ḋΩ

|Ω|
+ σ̇s +O(a/S) =

ḋΩ

|Ω|
+O(a/S),

where P ≡ D/(NΩ|Ω|+ Ss|P|) is the crystal’s dipole
moment per unit of its volume, and σ̇s vanishes because
there is no conduction current and the crystal is isolated.
The term O(a/S) on the right hand side is negligible and
neglecting it leads to the simple expression J(p) = ḋΩ/|Ω|
for the bulk polarization current, which, in one dimen-
sion, is equivalent to Eq. 9 when the set {(xi, qi)} is the
union of two subsets: one containing the positions and
charges of the nuclei, and the other containing the cen-
ters and −e times the integrals of a set of packets of
electron density whose sum is nΩ and whose integrals
do not change as ζ changes. Note that this derivation
also neglects contributions to Ḋ from redistributions of
charge within the surface regions because changes of sur-
face polarization should not be counted as contributing
to the bulk polarization current.

I describe the MTOP definition of J(p) as ‘exact’ to em-
phasize that the partitioning of the electron density into
packets (nΩ) does not constitute an approximation. Fur-
thermore, although the integral of each packet tends to
be either one or two in applications of the MTOP, it is
clear from the derivation of Eq. 9 in sections X.F and XI,
which is based on the homogenization theory of Secs. VI
and VII, that any method of partitioning the electron
density into moving packets of fixed charge would give
the same result, regardless of whether or not the pack-
ets’ charges are integer multiples of −e. The question
is: how can n(ζ) be partitioned into packets that evolve
smoothly as ζ change, but whose integrals are indepen-
dent of ζ? It is not clear that this is always possible for a
distribution of any species of particle evolving smoothly
via any physical process. However, we do know, from
Kohn-Sham theory, that it is possible for the ground
state density of electrons in an insulator when the ex-
ternal potential from the nuclei and externally-applied
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fields, vext(ζ), varies smoothly with ζ (Kohn and Sham,
1965; van Leeuwen, 2003).

The MTOP approach is to use the Kohn-Sham construc-
tion (Kohn and Sham, 1965), whereby n(ζ) is expressed
as a sum of the densities of the integer-occupied or-
thogonal eigenstates of an independent-electron Hamil-
tonian ĥ(ζ). In an insulator, the Ne-dimensional Hilbert
space spanned by the occupied eigenstates, Hζ , changes
smoothly with ζ, i.e., it rotates within the infinite-
dimensional Hilbert-Lebesgue space, L2(RdNe), of which
it is a subspace, where d is the dimensionality of the
system. There is a charge of −e associated with each of
the real space eigenfunctions ϕi(

#»r ; ζ) ≡ 〈 #»r |ϕi(ζ)〉 of ĥ(ζ)
and their centers, #»r i, move during this rotation. There-
fore a current flows as ζ changes, which is the polarization
current. The value of the electronic contribution to J(p)

is given, in one dimension, by Eq. 9 with qi = −e. Its
generalization to three dimensions is trivial, but the re-
mainder of this section will focus on the 1-d case and so
ϕi = ϕi(x; ζ) and the center of ϕi will be denoted by xi
instead of #»r i.

As discussed in Sec. XI and the caption of Fig. 13, it
is the space Hζ that determines n(ζ), not its basis of
eigenstates. Therefore we are free to use a different basis
to calculate J(p) and it is common to transform the set
{ϕi(ζ)} to one for which the density packets {|ϕi(ζ)|2}
are highly localized. However, this step is unnecessary,
in principle: the centers of the eigenstates can be used
directly in Eq. 9.

An alternative is to Fourier transform the eigenfunctions
and to compute xi as the expectation value of the Fourier
transformed position operator x̂(k) ≡ i ∂/∂k . This is

equivalent to Fourier transforming ĥ(ζ) and finding the
centers of the eigenfunctions of its Fourier transform,

F
[
ĥ(ζ)

]
. For example, the center of ni(x) = |ϕi(x)|2,

when 〈ϕi|ϕi〉 = 1, is

xi ≡
∫

dxni(x)x =

∫
dxϕ∗i (x) (xϕi(x))

=
1

2π

∫
dx

∫
dk eikxF [xϕi] (k)

∫
dq ϕ̃∗i (k + q)e−i(k+q)x

=
1

2π

∫
dk i

∂ϕ̃i(k)

∂k

∫
dq

(∫
dx e−iqx

)
ϕ̃∗i (k + q)

=

∫
dk ϕ̃∗i (k)

(
i
∂

∂k

)
ϕ̃i(k) =

∫
dk ϕ̃∗i (k) x̂(k) ϕ̃i(k).

Despite my use of suggestive notation, there is no quan-
tum mechanical content in what I have just done. It is a
purely mathematical procedure. Any classical probabil-
ity density ni(x) can be expressed as the square modulus
of a Hilbert space vector

√
ni(x)eiθ(x); and this is not

only a valid way to represent a classically-evolving prob-
ability density function, it is necessary to represent it this
way, in general, to ensure that it is a smooth function of

time and position (see Appendix B).

The phase θ(x) is often irrelevant and arbitrary when
studying the stationary states of an isolated system, but
becomes important when dividing a system into subsys-
tems (e.g., nuclei and electrons and/or surface and bulk)
or when studying the time dependence of a nonequilib-
rium probability density.

B. The bulk subsystem

In theoretical solid state physics it is common to study
a material’s bulk subsystem, meaning the material with-
out its surfaces, by placing it in a torus. For a 1-d mate-
rial the bulk would be represented in a 1-torus T, whose
circumference is the width, SB, of the material’s bulk.
Representing bulk wavefunctions in T is equivalent to en-
forcing periodic Born-von Kármán boundary conditions
on wavefunctions in R (Born and von Kármán, 1912). In
textbooks on solid state physics these conditions are usu-
ally discussed in the context of crystalline materials, but
they are also commonly used for amorphous materials.
The bulks of amorphous materials can be represented
in T by ensuring that SB is large enough to contain a
representative sample of the material, where ‘representa-
tive’ means that the sample’s microstructure shares, or
approximates, whatever statistical characteristics of the
true material are relevant to the properties of the mate-
rial that are being studied.

Suppose that we have found an orthonormal set of Ne
states ψi(x; ζ), which vary smoothly with ζ, and such
that the material’s electron density as a function of ζ is
given everywhere (bulk and surfaces) by

∑Ne
i=1 |ψi(x; ζ)|2.

Then we can use Eq. 9 to calculate the average of J(p)

over the entire material and we can define any number of
eigenoperators ĥ(ζ) ≡

∑Ne
i=1 εi |ψi(ζ)〉〈ψi(ζ)| for this basis

and density, with each eigenoperator corresponding to a
particular choice of the Ne eigenvalues {εi}. The opera-
tor in question is usually a single-electron Hamiltonian,
and I will refer to it as such, but this is not necessary.
When it is a single-electron Hamiltonian, the eigenval-
ues are energies (dimensionally) and the Ne eigenstates
|ψi(ζ)〉 contributing to the density are those with the low-
est eigenvalues. I make no assumption about the eigen-
values, but I order the eigenstates such that it is those
with indices (i) between 1 and Ne that contribute to the
density.

Let us assume that the material’s surfaces do not carry
any net charge, and let us replace ĥ, which is the single-
electron Hamiltonian of the material in the position (x)

basis, with a Hamiltonian ĥ that is bulk-like everywhere
in space, and which becomes equal to ĥ in the center of
the material in the limit SB → ∞. Therefore the new
Hamiltonian approximates the true Hamiltonian in the
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bulk, but differs greatly from it at surfaces and outside
the material, where it remains bulk-like. Next we assume
that each eigenfunction ψi(x) of ĥ can be expressed as
ψi(x) = ϕi(x)eiθiw(x) + ∆ψi(x), for some x-independent

θi, where ϕi(x) is an eigenfunction of ĥ, ∆ψi(x) is negli-
gible in the bulk, and w(x) > 0 is almost one in the bulk
and drops rapidly to zero beyond the bulk. Therefore,
if the material was a crystal, the eigenfunction’s density
|ψi(x)|2 would be almost periodic in the bulk, it would
deviate from periodicity near surfaces, and vanish outside
the crystal.

We are now in a position to move from R to T. We do
so by enforcing the Born-von Kármán condition that ϕi
has SB-periodicity.

1. Calculating J(p) in T

Let us assume that we have found a set of Ne
SB-periodic orthonormal functions ϕi(ζ) ∈ L2(R) such

that the density in T is
∑Ne
i=1 |ϕi(x; ζ)|2. The SB-

periodicity of ϕi means that we can express it as the
Fourier series ϕi(x; ζ) ≡

∑
g∈2πZ/SB

ϕ̃i(g; ζ)eigx, where

ϕ̃(g; ζ) ≡ S−1
B

∫ SB

0
ϕi(x; ζ)e−igx dx. Let us normalize

each ϕi to one in T, i.e.,
∫
T |ϕi(x; ζ)|2 dx = 1, where∫

T ≡
∫ SB

0
. This implies that the normalization of ϕ̃i is∑

g |ϕ̃i(g; ζ)|2 = 1/SB. Now we can express the center of
ϕi(ζ) in T as

xi(ζ) ≡
∫
T
x |ϕi(x; ζ)|2 dx =

∑
g

ϕ̃∗i (g; ζ)
∑
g′

ϕ̃i(g + g′; ζ)

∫
T
xeig

′x dx

= −i
∑
g

ϕ̃∗i (g; ζ)
∑
g′

ϕ̃i(g + g′; ζ)

[
lim
h→0

1

h

∫
T

(
ei(g

′+h)x − eig
′x
)

dx

]
= −i

∑
g

ϕ̃∗i (g; ζ) lim
h→0

(
ϕ̃i(g − h; ζ)− ϕ̃i(g; ζ)

h

)
,

where I have used the fact that the integrals of exp{ig′x}
and exp{i(g′ + h)x} vanish unless g′ = 0 and g′ = −h,
respectively. Defining h ≡ 2π/SB allows us to take the
h→ 0 limit by taking the SB →∞ limit, and also en-
sures that the sum includes the value g′ = −h. In this
limit the sum over g becomes an integral over the set R∗
of all real wavenumbers, i.e.,

∑
g → (SB/2π)

∫
R∗ dg, and

we get

xi(ζ) = i
SB

2π

∫
R∗
ϕ̃∗i (g; ζ)∂gϕ̃i(g; ζ) dg

⇒ dxi
dζ

= i
SB

2π

∫
R∗

[
∂ζϕ̃

∗
i (g; ζ)∂gϕ̃i(g; ζ)

+ ϕ̃∗i (g; ζ)∂ζ∂gϕ̃i(g; ζ)

]
dg

= −SB

2π
× 2 Im

{∫
R∗
∂ζϕ̃

∗
i (g; ζ)∂gϕ̃i(g; ζ) dg

}
where I have integrated by parts and used the fact that
limg→∞ ϕi(±g; ζ) = 0 to reach the final expression. If we
substitute this into Eq. 9, we find that the polarization
current density is

J(p) =
eζ̇

π

∑
i

Im

{∫
R∗
∂ζϕ̃

∗
i (g; ζ)∂gϕ̃i(g; ζ) dg

}
. (10)

Now let us assume that the material represented in T
is a crystal, which means that ĥ(ζ) is |Ω|-periodic as
well as being SB-periodic. Therefore, let us express the
Fourier series expansion of ϕi as a nested sum over recip-
rocal lattice vectors G ∈ 2πZ/|Ω| and vectors in the set

Ω∗ ≡ {k ∈ 2πZ/SB : 0 ≤ k < 2π/|Ω|}, i.e.,

ϕi(x; ζ) =
∑
k∈Ω∗

eikx
∑

G∈2πZ/|Ω|

ϕ̃i(G+ k; ζ)eiGx (11)

=
∑
k∈Ω∗

eikxui(k, x; ζ) =
∑
k∈Ω∗

bi(k, x; ζ) (12)

where ui(k, x; ζ) ≡
∑
G ϕ̃i(G+ k; ζ)eiGx is a

Fourier series and therefore |Ω|-periodic, and

bi(k, x; ζ) ≡ eikxui(k, x; ζ). Now, because ĥ(ζ) is

|Ω|-periodic, if ϕi(x; ζ) is an eigenfunction of ĥ(ζ), then
ϕi(x−m|Ω|; ζ), where m ∈ {1, · · · , NΩ − 1}, is also an

eigenfunction of ĥ(ζ) with the same eigenvalue, εi(ζ).
Therefore, using the |Ω|-periodicity of ui, we can write

ĥ(ζ)ϕi(x−m|Ω|; ζ) =
∑
k∈Ω∗

e−ikm|Ω|ĥ(ζ)
(
eikxui(k, x; ζ)

)
= εi(ζ)

∑
k∈Ω∗

e−ikm|Ω|eikxui(k, x; ζ)

⇒
∑
k∈Ω∗

e−ikm|Ω|
[
ĥ(ζ)bi(k, x; ζ)− εi(ζ)bi(k, x; ζ)

]
= 0

If we multiply this by eik
′m|Ω|, where k′ ∈ Ω∗, and sum

over all NΩ values of m between 0 and NΩ − 1, we
find that only the k = k′ term survives and that if
bi(k, x; ζ) ≡ eikxui(x, k; ζ) does not vanish everywhere in

T, it is an eigenfunction of ĥ(ζ) with eigenvalue εi(ζ).
Furthermore, the eigenfunctions bi that do not vanish
everywhere must all have the same eigenvalue εi. Oth-
erwise ϕi would not have eigenvalue εi. Eigenvalues
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are only degenerate when symmetry demands it, and
there is nothing in our construction that demands that
bi(k + ∆k, x; ζ) and bi(k, x; ζ) are related by symmetry
for k + ∆k,∆k ∈ Ω∗ \ {0}. Therefore, in general, they
have different eigenvalues and, in general, only one term
contributes to the sum in Eq. 12. Therefore, by as-
suming only that each eigenfunction ϕi of ĥ is still an
eigenfunction of ĥ after it has been translated by a lat-
tice vector, we have found that nondegenerate eigen-
functions of a |Ω|-periodic Hamiltonian in T have the
form bi(k, x; ζ) ≡ eikxui(x, k; ζ) for a particular value of
k ∈ Ω∗.

Note that there is some flexibility in how we define ui.
For example, given any reciprocal lattice vector G0, we
can use the definition of ui as a Fourier series to write

bi(k +G0, x; ζ) = ei(k+G0)xui(k +G0, x; ζ)

= ei(k+G0)x
∑

G∈2πZ/|Ω|

ϕ̃(G+ k +G0; ζ)eiGx

= eikx
∑

G∈2πZ/|Ω|

ϕ̃(G+G0 + k; ζ)ei(G+G0)x

= eikx
∑

G̃∈2πZ/|Ω|

ϕ̃(G̃+ k; ζ)eiG̃x,

where G̃ = G0 +G. Therefore, we are to free to choose
to define ui such that eiGxui(k +G, x; ζ) = ui(k, x; ζ) for
any reciprocal lattice vector G. If we make this choice,
the functions bi are periodic in reciprocal space, i.e.,

bi(k +G, x; ζ) = bi(k, x; ζ) = eikxui(k, x; ζ), ∀G ∈ 2πZ
|Ω|

Because each nondegenerate eigenfunction bi is associ-
ated with one particular value of k ∈ Ω∗, it makes sense
to replace the label i and the functional dependence of
bi on k with a composite label αk, where k is one of the
NΩ elements of Ω∗ and α is an index that runs over all
eigenstates associated with the same value of k. In other
words, the eigenfunctions of ĥ can be expressed as

bαk(x; ζ) = eikxuαk(x; ζ) (13)

where uαk is |Ω|-periodic and bαk(x; ζ) may be chosen
to be |Ω∗|-periodic. Functions of this form are known as
Bloch functions and are discussed in most textbooks on
condensed matter physics.

Let us now return to Eq. 10 and replace
∑
i with∑

α

∑
k∈Ω∗ and ϕ̃i with the Fourier transform b̃αk of

bαk. Eq. 13 implies that b̃αk(g) = ũαk(g − k) and the
|Ω|-periodicity of uαk means that this vanishes unless
g − k = G for some reciprocal lattice vectorG ∈ 2πZ/|Ω|.
Therefore, if we express

∫
R∗ dg as

∑
G

∫
Ω∗

dk′, the only
nonvanishing term in the sum over k is k = k′. Putting

all of these ingredients together, we find that

J(p) =
eζ̇

π

occ∑
α

Im

{∫
Ω∗

dk
∑
G

∂ζ ũ
∗
αk(G; ζ)∂kũαk(G; ζ)

}
,

where the sum over α is restricted to ‘occupied’ states
(those that contribute to n(x; ζ)). This can also be ex-
pressed in the form

J(p) =
eζ̇

π

occ∑
α

Im

{∫
Ω∗

dk 〈∂ζuαk|∂kuαk〉
}
. (14)

Eq. 14 is one of the most commonly-quoted forms of the
MTOP definition of J(p).

I emphasize, again, that I have not made any use of
quantum mechanics in this derivation or anywhere in
Sec. V. I assumed that the density could be represented
as n(x; ζ) =

∑
i |ϕi(x; ζ)|2, where the functions ϕi are

mutually orthogonal and normalized to one. However
they could also have different normalizations as long as
n(x; ζ) was normalized to Ne and the normalization of
each ϕi did not vary with ζ. Such a representation of n
is possible for at least some classically-generated proba-
bility densities. For example, when the nuclei are treated
as classical particles, their delta distribution can be rep-
resented in this way. All of what followed from the as-
sumption that a representation of this form existed was
simply mathematics in a torus with a ‘Hamiltonian’ de-
fined by ĥ(ζ) ≡ 〈x| (

∑
i |ϕi(ζ)〉〈ϕi(ζ)|) |x〉.

The MTOP can be applied to a system of classical iden-
tical particles in an evolving steady state n(x; ζ) that
can be expressed as a sum of densities from orthogonal
functions ϕi whose normalizations do not change as ζ
changes. Mathematically, this means that the MTOP is
applicable whenever n can be expressed as a sum of con-
tributions from eigenstates of a self-adjoint one-particle
operator, such as the solutions of any Sturm-Liouville
equation, and when the subset of eigenstates contribut-
ing to n does not change suddenly as ζ changes; rather,
each contributing eigenstate must evolve smoothly with
ζ, while preserving its normalization.

C. Interpretation of the MTOP

I have derived the MTOP expression for J(p) via a very
different route to the one originally used to derive it, and
I have shown that it is more widely applicable than previ-
ously believed. Previous derivations have used quantum
mechanical perturbation theory, which is nothing more
than a Taylor expansion of a microstate about a station-
ary state (i.e., an eigenstate) of a Hermitian operator.
The applicability of such an expansion is not restricted
to quantum mechanical systems.
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An alternative derivation of Eq. 9, based on the homoge-
nization theory proposed in Secs. VI and VII, is presented
and discussed in Sec. X.F and Sec. XI.

Although I have concluded that the MTOP definition of
polarization current is correct, and exact, I am not sat-
isfied that the MTOP solves the problem discussed in
Sec. III and I do not agree with one interpretation of
the MTOP; namely, that polarization is a fundamentally
quantum mechanical phenomenon (Resta, 1993, 1994)
and a property of the phase of a material’s wavefunction.

The wavefunction of an isolated material at equilibrium
does not have a relevant phase. It is real, apart from an
arbitrary and irrelevant constant phase factor. There-
fore if P were exclusively a property of a wavefunction’s
phase, P would only exist in an isolated material when
it was being observed. This particular strain of quantum
weirdness may be palatable to some, but it should be
noted that delving more deeply into it leads to difficult
philosophical questions.

Note that, by applying the kinetic energy operator to a
wavefunction Ψ =

√
peiθ whose phase θ({xi}) is nontriv-

ial, the phase can be shown to be equivalent to a potential
∝
∑
i |∂θ/∂xi |

2
. Although this potential is positive, po-

tentials are only defined up to a constant applied to the
entire physical system of interest. This means that any
positive or negative potential is either equivalent to, or
arbitrarily close to, the combination of a phase and this
irrelevant constant. Therefore, when studying the bulk
subsystem, the interaction between the bulk and surface
subsystems could be expressed as a phase. Then J(p) = σ̇
would manifest as a time-dependence of this phase, which
is equivalent to a changing interaction with the surface.
However this is not the rationale used to relate J(p) to a
phase in the MTOP.

Furthermore, it has sometimes been implied or stated
that P ‘is’, rather than ‘can be’, a property of the phase
and that this means that it does not have an analogue
within classical physics. This interpretation of the math-
ematics cannot be correct because the only assumption
that I made in Sec. V.B to derive Eq. 14, which is identi-
cal to the MTOP expression for J(p), is that the electron
density n can be represented by a sum of contributions
from smoothly-evolving mutually-orthogonal functions in
an L2 Hilbert-Lebesgue space.

The ‘quantum’ MTOP definition of P was developed to
solve the problem discussed in Sec. III and the problem
of how to calculate the currents demanded by asymmetry
(Sec. IV.H). However, I did not invoke quantum mechan-
ics to explain those problems because they are problems
that exist within classical physics. This implies that, de-
spite the development of the MTOP, there was more to
understand because classical mechanics and classical sta-
tistical mechanics have never been derived from quantum

mechanics. The correspondence principle is conjecture:
Quantum mechanics is not known to be more general
than classical statistical mechanics, it is assumed to be.

Classical physics is arguably no less internally-consistent
than quantum physics. The problem with classical
physics is not internal inconsistency but that, in its cur-
rent state of development, it does not agree with exper-
imental observations of very small or sensitive systems.
Therefore, with the exception of a disagreement with ex-
periment, any physical problem that can be stated within
the classical realm, and which does not expose an internal
inconsistency in classical physics, must have a solution
within the classical realm.

The well-defined problem of how to calculate the po-
larization current from the changing charge densities in
Fig. 2 is an excellent example. There exist classical
processes that result in the equilibrium distribution of
charges (e.g., ions in solution) changing. In most cases
the charges are either too numerous or too sensitive to
the act of observation to allow the net flow of charge to be
calculated within classical deterministic mechanics, and
one must turn to statistical mechanics. How can the cur-
rent resulting from an adiabatic evolution of a classical
equilibrium statistical state be calculated? The MTOP,
as it was originally derived and interpreted, does not an-
swer this question directly, but if a classically evolving
charge density can be decomposed into packets whose
integrals are constant, it answers it indirectly: J(p) can
be calculated from Eq. 9.

My approach to deriving Eq. 9 in Sections X.C and XI
is conceptually very simple. In Secs. VI and VII I
use a systematic and unbiased approach to structure
homogenization to derive expressions for interfacial ex-
cesses and changes in macroscopic fields across interfaces.
From these I derive an expression for σ in terms of the
microstructure (a generalization of Finnis’s expression),
which leads to an expression for J ≡ σ̇ that is slightly
more general than the MTOP expression, but otherwise
equivalent to it.

I do not find any reason to retain the concept of a P field,
and it appears to violate macroscale symmetry. However,
as I will discuss in Sec. X.E.1, if one chooses to retain it,
and if one also demands that P determines the excess
charge on a pristine surface of a perfect crystal, which
is devoid of extrinsic charges, then, even within classical
physics, P must be quantized in the same way as the
MTOP prescribes.
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VI. MACROSTRUCTURE AS HOMOGENIZED
MICROSTRUCTURE

A. Introduction

In this section I present elements of a classical theory
of structure homogenization, meaning a theory of how
microstructures determine macrostructures, and of the
resulting natures of macrostructures. In later sections I
will use this theory to elucidate the relationships between
the microscopic fields φ, E , and ρ and their macroscopic
counterparts Φ, E, and %.

The most obvious and intuitive approach to deriving elec-
tromagnetic theory at the macroscale from Maxwell’s
vacuum theory is to define macroscopic fields as spatial
averages of their microscopic counterparts. However, de-
spite this having been tried many times and in many
ways (Ashcroft and Mermin, 1976; Bethe, 1928; de Groot
and Vlieger, 1965; de Groot and Vlieger, 1964; Jackson,
1998; Kamenetskii, 1998; Kirkwood, 1936, 1940; Mazur,
1957; Mazur and Nijboer, 1953; Miyake, 1940; Robinson,
1971; Russakoff, 1970; Schram, 1960; Vinogradov and
Aivazyan, 1999; van Vleck, 1937; Wilson et al., 1987),
we lack a fundamental understanding of the relationship
between microstructure and macrostructure.

There are two main reasons why previous attempts have
not succeeded, or have not succeeded fully. The first is
that more fields appear in Maxwell’s macroscopic theory
than appear in his vacuum theory. Therefore, for ex-
ample, the fields P and D cannot be defined as spatial
averages of their counterparts at the microscale because
they do not have counterparts at the microscale.

The second reason is that, to define one field as the spa-
tial average of another, it is necessary to introduce one
or more parameters specifying the size and shape of the
region of space that is averaged over, and the distribution
of weights with which points in this region contribute to
the average. The dependences of macroscopic fields on
these parameters has been interpreted as a fatal flaw in
their definitions as spatial averages.

However, this non-uniqueness should not be interpreted
as a fatal flaw, but as intrinsic to the nature of
macrostructure, which is not determined by microstruc-
ture alone. It is determined, in part, by the relationship
between the observer and the microstructure: A macro-
scopic field is a microscopic field observed on a large
length scale. What is observed depends on how large
that scale is. Therefore any definition of a macroscopic
field in terms of its microscopic counterpart must depend
on a parameter that specifies it.

In addition to the scale on which the underlying mi-
croscopic field is observed, a macroscopic field depends
on the perspective from which the microstructure is ob-

served, the apparatus with which it is observed, and the
fields that mediate the observation. Therefore, when
defining reproducibly-measureable macrostructure it is
necessary to choose which of these influences are incor-
porated into the definition, and which of them are left to
observers as apparatus-specific corrections. For simplic-
ity and generality, I will assume that the only parameter
on which the definition of macrostructure depends is the
smallest distance, |dx| across which changes in macro-
scopic fields are observable at the macroscale. All other
observer-specific influences are left as corrections to be
applied when a specific observation is compared to the
theory built on this one-parameter definition.

Perhaps unsurprisingly, there is a trade-off between the
precisions to which gradients of macroscopic fields are
defined and the spatial precision at the macroscale, |dx|.
When the uncertainty in position is small, the uncer-
tainty in the gradient of a macroscopic field is large, and
vice-versa, with the product of these uncertainties being
proportional to the uncertainty in the value of the macro-
scopic field itself. This uncertainty principle is derived in
Sec. VI.I, but I begin discussing its consequences for the
nature of macrostructure in Sec. VI.C, so that readers
understand why defining a macroscopic field in terms of
its microscopic counterpart is only one of two primary
objectives of this structure homogenization theory. An
equally important objective, which is arguably more im-
portant from a practical perspective, is to define macro-
scopic excess fields, such as surface charge densities, σ.

I begin by outlining the simplifying assumptions that I
make about the nature of the microstructure.

B. Assumed properties of the microstructure, ν

Here, and throughout this work, I will assume that the
microstructure only varies significantly on the microscale
and on the macroscale, and that the macroscale is many
orders of magnitude larger than the microscale. For ex-
ample, the microscale might be the nanometer scale, and
the smallest distance across which variations of macro-
scopic fields are observed might be |dx| ∼ 1 mm.

I will assume that the physical system of interest does not
contain any material with a microstructure that varies
significantly on intermediate length scales. For exam-
ple, the microstructure of wood varies on every length
scale between ∼ 1 nm and the scale (∼ 10 m) of the tree
from which it was harvested (Toumpanaki et al., 2021).
When it is observed on any length scale in this ten order-
of-magnitude range, its surface is observed to have tex-
ture. Therefore the theory presented herein does not ap-
ply to wood. It applies when texture is only observable
on the microscale and on the macroscale. The texture
observed on the macroscale is caused by excess fields at
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interfaces between regions with different microstructures,
or by changes of the microstructure that occur gradually
across macroscopic distances.

For simplicity, I will assume that the microstructure is
specified by a single scalar field, ν : Rn → R, and I will
denote its counterpart on the macroscale by V . Although
the value of n is three, the results derived for the n = 1
case can be applied in three dimensions by defining ν(x)
to be the average of a function of (x, y, z) on the y − z
plane at x. Therefore, to make discussions of the main
physical ideas simpler, in this section I will mainly focus
on the one dimensional microstructure ν : R→ R.

I make the following assumption about how observations
and measurements occur at the macroscale.

Physical assumption 1: At the macroscale, all posi-
tions, distances, and displacements are deduced from
measurements of V .

Generalizing the theory to the case of multiple pairs
(νi,Vi) of microscopic fields and their macroscopic coun-
terparts is straightforward. Therefore, in the context of
electricity, this is the assumption that all measurements
and observations at the macroscale are measurements
and observations of the electric potential, Φ, its deriva-
tives Φ(1) = −E and Φ(2) = −%, and/or their excesses
(see Sec. VI.C.1 and Sec. VII).

A microstructure ν may fluctuate, to some degree, on
every length scale. However, as discussed above, the the-
ory proposed in this section applies under the assump-
tion that ν may vary significantly on the macroscale L
and on the microscale a, which are widely separated, but
its variations on any intermediate scale, or mesoscale,
l are negligible. Generalizing the theory to microstruc-
tures that vary on three or more widely-separated length
scales appears straightforward, but generalizing it to mi-
crostructures that vary on all length scales does not.

To define the microscale and the macroscale more pre-
cisely, I introduce the distances a and L. Roughly-
speaking, L is the largest distance such that nonlin-
earities in the variation of V across distances less than
L are negligible; and a is orders of magnitude smaller
than L, but large enough that every interval in the set
{I(x, a) : x ∈ dom ν}, whose center x is not in vacuum,
contains many local extrema of ν.

These conditions do not define a and L uniquely, but
it will not be necessary to define them uniquely. Their
primary purpose will be to define a mesoscopic distance
|dx|, which is the macroscale infinitesimal, and is much
larger than any reasonable choice of a and smaller than
any reasonable choice of L. At the microscale I will de-
note |dx| by εx.

I define the microscale, the mesoscale, and the macroscale

in terms of a and L as follows:

ηa ∼ a ⇐⇒ ηa < a

ηl ∼ l ⇐⇒ a < ηl < L

ηL ∼ L ⇐⇒ ηL > L.

My physical assumption that all fluctuations of the mi-
crostructure whose wavelengths are between a and L have
negligible amplitudes can be expressed in terms of the
Fourier transform ν̃(k) of ν(x) as follows.

Physical assumption 2:∫ kL

0

|ν̃(k)|2 dk �
∫ ka

kL

|ν̃(k)|2 dk �
∫ ∞
ka

|ν̃(k)|2 dk ,

where kL ≡ 2π/L ≪ ka ≡ 2π/a.

Obviously, if this assumption holds true for particular
values of a and L, it also holds true for larger values of a
and smaller values of L, as long as a < L.

C. The nature of macrostructure

I now outline some important features of macrostructure,
which are consequences of finite spatial precision at the
macroscale.

At the macroscale we observe homogenized microstruc-
ture. Under the two simplifying assumptions presented in
Sec. VI.B, the macrostructures of the bulks of materials
are uniform, except, possibly, for the existence of macro-
scopic point, line, or locally-planar defects. If there are
no such defects, all materials appear uniform (texture-
less) at the macroscale and we only perceive a difference
between the bulks of two materials on either side of an in-
terface via observable properties of their microstructures,
such as their colours.

A material’s colour is determined by the microscopic
wavelengths of electromagnetic radiation with which its
microstructure interacts. Since the wavevectors of this
radiation are normal to the plane on which the spatial
average that produces the observed macrostructure from
the microstructure is performed, we observe the radia-
tion, rather than the averages of its electric and magnetic
fields along its axis of propagation, which would vanish.

We have assumed, via Physical Assumption 2, that dif-
ferences in texture are not observable at the macroscale.
Physical Assumption 1 implies that differences in colour
are irrelevant to macroscale electricity. For example,
colour differences cannot be detected as changes in
the distributions of electric potential or charge at the
macroscale. Therefore the only observable structure
at the macroscale is the network of interfaces separat-
ing otherwise-indistinguishable regions of uniformity, and
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any macroscopic defects within these otherwise-uniform
regions. Interfaces and other macroscopic heterogeneities
are observable because, and only if, they carry observable
excess fields.

1. Excess fields

At the macroscale, an excess field can be understood from
Stokes’ theorem. For example, the net charge within a
material Ω is ∫

Ω

%(r) d3r =

∫
∂Ω

σ(s) d2s , (15)

where the integral on the right hand side is an integral
of the areal charge density, σ, on the material’s surface,
∂Ω. In this case, σ is an excess field: it is the surface
excess of field %.

Stokes’ theorem also holds at the microscale, but if the
microstructure comprises point charges, each charge oc-
cupies a subset of Ω or ∂Ω whose measure is zero. There-
fore, in the microscale analogue of Eq. 15, both integrals
vanish, and we must take a different route to understand
surface excesses.

A further complication is that surfaces are ill-defined
at the microscale: A surface’s microstructure differs, to
some degrees, from the microstructures of both the bulk
and the atmosphere or vacuum above the surface. Its dif-
ference with respect to the bulk microstructure lessens
gradually with increasing depth below the surface, so
there does not exist a depth below which the material
is bulk-like and above which it is not. Therefore surfaces
are ill-defined regions of indeterminate widths at the mi-
croscale.

The surface ∂Ω of material Ω that appears in Eq. 15 is
well defined because, although the thickness of the sur-
face region is indeterminate at the microscale, it is less
than εx ≡ |dx|. Therefore the depths of any two points
within it differ by less than εx, which implies that, at the
macroscale, the distance between the atmosphere outside
a material and the material’s bulk is |dx|. Surfaces are
well-defined at the macroscale because every curve that
crosses the surface exactly once contains exactly one sur-
face point. In other words, locally, surfaces are literally
planar at the macroscale.

Figure 4 illustrates, from a microscopic perspective, why
surfaces carry excess fields: The average of a microscopic
charge density, ρ, vanishes in the green-shaded bulk of
the one-dimensional materials depicted, but not at points
near a surface, in general. For example, consider a point
very close to the left-hand edge of one of the unshaded
surface regions on the left-hand side. The macroscopic
charge density, %, vanishes in the green-shaded bulk be-
cause the contribution to the spatial average at a point

FIG. 4 Excess fields: Each of the four vertically-stacked pan-
els is a schematic plot of the microscopic charge density ρ(x) of
a different one dimensional material, with positive and nega-
tive charge(s) coloured red and blue, respectively. If, at each
value of x, we calculate the average, 〈ρ〉a (x), of all charge
within a distance a/2 of x, we find that it vanishes every-
where in the green-shaded ‘bulk’ of each material, but is finite
in the white surface regions. At each surface, the integral of
〈ρ〉a (x) over all points that are not in the bulk, but are within
a distance a of it, is the surface’s excess of charge, σ. The
symbols +, −, and 0 next to each surface indicate whether σ
is positive, negative, or zero, respectively. The macroscopic
analogue, %, of ρ is defined, to a finite precision ε%, as its
mesoscale average ρ̄. % vanishes everywhere in the bulk, but
not at interfaces, in general. Therefore, because spatial aver-
aging conserves charge, the excess charge at an interface, σ,
is simply the integral of % across it.

x from all points {x+ u : 0 < u < a/2} to its right is
cancelled exactly by the contribution from all points
{x− u : 0 < u < a/2} to its left. However, this cancel-
lation cannot happen at a point near the left-most edge
of one of the surfaces on the left-hand side, because most
of the points to its left are in vacuum, where ρ vanishes.

Therefore, % vanishes in the green-shaded bulk, but does
not necessarily vanish in the unshaded surface regions.
Since the widths of these regions are much less than
εx = |dx|, each one corresponds to a single point at the
macroscale. This one-dimensional example illustrates
that % vanishes everywhere in the bulk and it vanishes
in the vacuum outside the material, but it is finite, in
general, at a surface.

Therefore, in general, the value of a macroscopic field V
on any curve that intersects a surface or interface has a
jump discontinuity or a removable discontinuity at the
point of intersection, xs. The easiest way to deal with V
being discontinuous at xs is by treating all surface points
separately: they can be omitted from the domain of V
and an excess field, σV(xs) ≡ V(xs)|dx|, can be defined
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FIG. 5 A 2D macrostructure: An electrical microstructure in
A ⊂ R2 is an areal charge density σ : A→ R; (y, z) 7→ σ(y, z),
which may be the excess of a volumetric charge density
ρ(x, y, z) on a surface or interface normal to the x-axis. An
excess field (see Fig 4 and Sec. VII) is created at an interface
whenever a higher dimensional microstructure is homogenized
along an axis normal to the interface. The macrostructure of
A consists of continua that are punctuated with, and sepa-
rated by, subspaces si of dimensions zero or one, on which
excess fields are defined. If si has dimension one its excess
field is a linear charge density Li; and if it has dimension
zero its excess field is a point charge q(i).

on each surface, interface, or locally-planar defect.

More generally, excess fields describe macroscopically-
observable accumulations whose manifestations at the
macroscale are best described by distributions whose do-
mains are manifolds of dimension n < 3. For example,
the excess of charge on the ith surface or interface, which
is a two dimensional manifold (or simply 2-manifold),

M
〈2〉
i , is an areal density of charge, σi : M

〈2〉
i → R; the

jth linear charge density, Lj : M
〈1〉
j → R, is a charge ex-

cess defined on a curve (the 1-manifold, M
〈1〉
j ); and the

kth macroscopic point charge, qk : M
〈0〉
k → R, is a charge

excess defined at a point (the 0-manifold, M
〈0〉
k ). The

macrostructure arising from a two-dimensional micro-
scopic charge density is illustrated in Fig. 5.

What this means is that, despite the microstruc-
ture being defined by a single field ν, there
is more to the macrostructure than the single
field V . The macrostructure comprises V , where

domV ≡ R3 \
(
{M〈2〉i } ∪ {M

〈1〉
j } ∪ {M

〈0〉
k }

)
, and the set

{σV,i} ∪ {LV,j} ∪ {qV,k} of excess fields.

We will see that % vanishes in the bulk of any stable mate-
rial, and that Φ and E vanish in a material’s bulk if the
material is isolated and its surfaces are charge-neutral.

Therefore, defining a material’s electrical macrostructure
entails finding a way to define excess fields in terms of
the microstructure, ν. Finnis solved this problem for pe-
riodic microstructures (Finnis, 1998), such as those plot-
ted in Fig. 4, and I generalize his work to non-periodic
microstructures in Sec. VII.

D. Assumed properties of V

Defining V in terms of ν is trickier than it first appears,
so it is useful to list and discuss the properties that V is
assumed to have. There are three of them, which I list
below and discuss in Secs. VI.D.1, VI.D.3, and VI.D.2.

Physical assumption 3: V is reproducibly measurable.

Physical assumption 4: ν fluctuates microscopically
about V(x) at each x ∈ domV .

Physical assumption 5: V is differentiable, except, pos-
sibly, on a set of zero measure.

1. Reproducible measurability of V

V is measurable by a blunt probe or as an average of
the values of ν measured by many sharp probes whose
locations cannot be controlled or known to microscopic
precisions.

For example, when you look at a surface, light enters
your eye from many closely-spaced points of the surface’s
microstructure, but each ray enters at a different angle
and with a different intensity and a different frequency,
in general. The contributions from all of the rays merge
to produce an image of homogenized microstructure in
your mind. This is the macrostructure. The merger that
homogenizes the microstructure occurs in many stages,
involves many different mechanisms, and occurs at many
different locations along the path from the surface to your
eye to your brain.

When I say that V is reproducibly measurable, I mean
that when a particular spatial resolution |dx| is chosen,
and shared by all repeated measurements, the value of
V at each point can be defined independently of any
measuring technique or apparatus. This means that, al-
though a measured value of V at a point always contains
artefacts of the method used to measure it, if the magni-
tudes of these artefacts could be made sufficiently small,
or if corrections could be applied to remove them, any two
measurements of V at the same point would both yield
values that were both consistent with the microstructure
ν, and with the definition of V in terms of ν.

Despite the complexity of the processes that turn mi-
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crostructure into macrostructure, I base the homogeniza-
tion theory presented herein on the following assumption.

Physical assumption 6: Any accurate measurement of
V at precisely the point x is a measurement of a weighted
spatial average of ν on a mesoscopic domain centered at
a point that is macroscopically-indistinguishable from x,
i.e., a point in the interval I(x, |dx|).

2. Definition of “fluctuates microscopically”

When I say that ν fluctuates microscopically, or that ν is
a microscopic quantity or a microscopic function, I mean
that ν fluctuates on length scale a. This means that
every extremum of ν is within a distance a of another
extremum of ν. Defining the statements “ν fluctuates
microscopically about υ at x” and “ν fluctuates micro-
scopically about V at x” is more difficult, so I defer dis-
cussing them until Sec. VI.H.

3. Macroscale differentiability

The purpose of a macroscopic field theory is to de-
scribe changes over macroscopic distances. There-
fore if V fluctuated microscopically it would, effec-
tively, be nondifferentiable. For example, if the
value of ∆V1 ≡ V(x + hl + ha)− V(x) differed signifi-
cantly from the value of ∆V2 ≡ V(x + hl)− V(x), when
|dx| < |hl| < L and |ha| < a, then it would not be pos-
sible to approximate V(x + hl) with a truncated Taylor
expansion of V about x containing few terms.

V being differentiable at the macroscale means
that, given any point x ∈ domV , the values of
(V(x + h)− V(x)) /h and (V(x)− V(x− h)) /h are
equal in the limit |h| → |dx|, to within the precisions to
which they are defined.

E. Spatial averages

I will define V in terms of (not as) spatial averages of ν
of the form

〈ν;µ〉ε (x) ≡ (ν ∗ µ(ε)) (x) ≡
∫
R
ν(x′)µ(x′ − x; ε) dx′ ,

where the parameter ε of the averaging kernel, µ(ε), is
twice its standard deviation, i.e.,∫

R
u2 µ(u; ε) du =

( ε
2

)2

.

I will assume that µ(ε) has three other properties for
every value of ε. The first property is∫

R
µ(u; ε) du = 1,

which implies that the homogenization of ν is conserva-
tive. The second property is∫

R
uµ(u; ε) du = 0,

which implies that the value of 〈ν;µ〉ε at x is a weighted
average of ν from points whose weighted-average position
is x. The third property is

µ(u; sε) = s−1µ(u/s; ε), (16)

which simply means that the effect of changing ε is to
scale µ without changing its shape or its integral.

These properties do not place strong or unphysical con-
straints on the form of µ(ε), because any function with
a well-defined mean and standard deviation can be nor-
malized and translated to give a function whose integral
is one and whose mean is zero. That function can be
identified as µ(1) and Eq. 16 can be used to define the
narrower or wider function µ(u; ε) ≡ µ(u/ε; 1)/ε.

The reason for giving µ a parametric dependence on its
width is that it makes it easier to discuss separately the
effects on 〈ν;µ〉ε of varying the width and the shape of
µ(ε). For example, it follows from Eq. 16 that the nth

derivative of µ satisfies

µ(n)(su; sε) =
µ(n)(u; ε)

sn+1
. (17)

Therefore, whereas the average magnitude of µ(ε) scales
as 1/ε, the average magnitude of its first derivative scales
as 1/ε2, and higher-order derivatives decay even faster as
ε increases. An important implication of this is that the
shape of µ has less of an influence on the value of 〈ν;µ〉ε
as ε increases.

Note that if µ(u; ε) has all of the properties discussed
above, then so does the function µ(−u; ε). Therefore the
general form of the spatial averages considered in this
work may also be expressed as

〈ν;µ〉ε (x) ≡
∫
R
ν(x+ u)µ(u; ε) du . (18)

1. Schwartz and non-Schwartz averaging kernels

For some averaging kernels, µ(u; ε), there exist values of
m such that their rates of decay in the limits u→ ±∞
are slower than 1/|u|m. Other kernels, such as Gaussians,
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decay faster than any power law. A smooth function
that decays faster than any power law is known as a
Schwartz function, so I will refer to kernels of the first
and second types as non-Schwartz kernels and Schwartz
kernels, respectively.

Non-Schwartz kernels tend to describe relatively-direct
and physical weightings of microstructures, such as the
shape of a blunt probe or the decay of light intensity with
distance. Schwartz kernels tend to arise from disorder
and uncertainty: They describe limiting cases of homog-
enizing physical processes, such as the N →∞ limit of
the combined effects of N homogenizing influences, each
of which can be described by non-Schwartz kernels.

For example, the central limit theorem demonstrates how
a Gaussian distribution arises from a very large num-
ber of contributions from independent random variables
whose distributions do not necessarily decay faster than
a power law (see, for example, Riley et al., 2006, Chap-
ter 30).

Non-Schwartz kernels make it easier to illustrate the com-
plications that arise from defining macroscopic fields as
spatial averages of their microscopic counterparts, and
top-hat kernels are among the simplest of non-Schwartz
kernels. Therefore I will introduce top-hat kernels in
Sec. VI.E.2 and use them to illustrate an important con-
sequence of Eq. 17; namely, the fact that 〈ν;µ〉ε depends
less and less on the shape of µ as ε increases. Then,
in Sec. VI.F, I will use top-hat kernels to illustrate why
precision is finite at the macroscale.

2. Top-hat kernels

A very simple non-Schwartz kernel is the top-hat func-
tion,

µ
(
u; ε/
√

3
)

= T (u ; ε) ≡


0 if |u | > ε/2

1/(2ε) if |u | = ε/2

1/ε if |u | < ε/2.

(19)

This function is discontinuous at u = ±ε/2, but I will
sometimes use it when I require µ to be differentiable.
In those cases I use it with the understanding that I am
using a differentiable function that approximates the top-
hat function arbitrarily closely.

I will refer to the average with a top-hat kernel as a simple
spatial average, I will denote it by 〈ν〉ε (x), and although
I will express it as

〈ν〉ε (x) ≡ 1

ε

∫ ε/2

−ε/2
ν(x+ u) du , (20)

I do so with the understanding that whenever 〈ν〉ε (x) is
required to be a differentiable function of either x or ε, it

is implied that the spatial average is defined by Eq. 18,
with a top-hat kernel µ(ε/

√
3) whose corners are arbi-

trarily sharp, but differentiable.

FIG. 6 A periodic function ν(x) and two smooth ‘top-hat’
averaging kernels, µ(ε) and µ(4ε), which differ only by the
value of the parameter determining their widths. Increasing
the kernel’s width increases the number of periods of ν that
contribute to the average. The derivative of µ is only non-
zero at the edges. Therefore, the rate at which it decays to
zero becomes less and less significant to the average of ν as
µ is widened. This illustrates a result that applies to a much
wider class of kernels than top-hat kernels: the average is
independent of the kernel’s shape in the ε→∞ limit.

Figure 6 depicts a periodic microstructure and two differ-
entiable top-hat averaging kernels that might be used to
find its spatial average. One of the kernels is four times
the width of the other, but both are almost constant al-
most everywhere: their derivatives are only finite near
where they decay to zero.

The wider kernel averages four times more periods of the
microstructure than the narrower kernel, but the weight-
ing it applies to each one is smaller by a factor of four.
Therefore, any difference between the averages calculated
with the two kernels is a result of them applying different
non-uniform weights to points near where they decay to
zero.

As ε increases, the contribution to the average of points
where the derivative µ(1)(ε) is non-negligible becomes
smaller relative to the contribution from points where
µ(1)(ε) almost vanishes. This illustrates the fact that the
average magnitudes of derivatives of µ(ε) decay faster as ε
increases than the average of µ(ε) does (Eq. 17). There-
fore it illustrates the fact that the shape of µ becomes
increasingly irrelevant to the value of 〈ν;µ〉ε (x) as ε in-
creases.

In much of what follows I will assume that ε is large
enough that the shape of µ is irrelevant and, for simplic-
ity, I will only consider simple spatial averages.
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F. Why V ≡ 〈ν〉ε fails as a definition

FIG. 7 The black curve is a microstructure, ν(x), after its
fluctuations have been scaled by 1

2
for visibility. The blue line

within the green band is its simple spatial average 〈ν〉ε when
ε is equal to the horizontal width of the vertical blue band.
The red dot is the average of ν(x) over all points x within
the blue band. The green band is the range of values that
〈ν〉ε takes on the segment of its domain shown. Increasing
the width, ε, of the blue band reduces the width of the green
band, but its width only vanishes in the limit ε→∞.

Figure 7 is a plot of a microstructure ν and its spatial
average, 〈ν〉ε (x). The range of values taken by 〈ν〉ε in a
microscopic neighbourhood of the red dot is indicated by
the almost-horizontal green band. As ε increases, the mi-
croscopic fluctuations of 〈ν〉ε (x), and therefore the width
of the green band, reduce in magnitude as 1/ε (Eq. 16).
However they do not vanish. They vanish only in the
limit ε→∞, which is the limit in which the average is
performed over the entirety of ν’s domain. Therefore it is
the limit in which 〈ν〉ε has the same value at every point,
meaning that all structure has been lost.

Now let us assume that V(x) ≡ 〈ν〉ε (x), for some finite
value of ε, so that the reasons why this definition fails
become clear.

One reason why it fails is that two points x1

and x2, which are separated by a microscopic dis-
tance |x1 − x2| < a, would be indistinguishable at the
macroscale. Measurements of V(x1) and V(x2) would
differ, despite appearing to have been performed at the
same macroscale point. Therefore V is not reproducibly-
measureable at the macroscale.

Another reason why it fails is that the finite difference
derivative (V(x+ h)− V(x)) /h depends sensitively on x
and h and fluctuates microscopically as a function of each
one, as illustrated in Fig. 8. Therefore V is not differen-
tiable at the macroscale, because its derivative does not
converge with respect to h while h is still macroscopic
or mesoscopic. It does not converge until h is much
smaller than the microscopic distances between succes-
sive extrema of V .

Both of these problems can be resolved by defining V(x)

to be the set of all values that would be measured at
the same macroscale point, x. This is a set of all spa-
tial averages of ν centered at points in an interval whose
width is the lower bound, εx = |dx| on distances that are
observable at the macroscale.

Since |dx| is the limit of spatial precision at the
macroscale, the most precise measurements of V are ei-
ther performed with microscopically-blunt probes (radii
& εx), or with sharper probes whose positions can only
be controlled or known to within an interval of width εx.

Therefore if εx is large enough that 〈ν;µ〉εx is indepen-
dent of the shape of µ, the set of all measured values of
V(x) is the set of values of 〈ν〉εx (x) at microscale points
x that are within an interval of width |dx| centered at x.
This set is an interval, I(V(x), εV(x)). Therefore V(x)
is only defined to a precision, εV(x), that is finite.

FIG. 8 The blue curve, which is the simple average, 〈ν〉ε, of
ν, fluctuates microscopically about the set of values plotted
with a green band. The magnitudes of these fluctuations can
be reduced by increasing ε, but no matter how small the fluc-
tuations are, if they are finite, the finite-difference derivative
of the blue curve differs from the slope of the green band, to
some degree, for most choices of the two red points used to
calculate it.

G. The macroscale infinitesimal, |dx|

In this section I illustrate the fact that if V is only defined
to a finite precision, εV , the value of εV imposes a lower
bound on the macroscale spatial precision, |dx|. I will
then make the following assumption.

Physical assumption 7: The only limit on spatial preci-
sion at the macroscale, |dx|, is the limit imposed by the
finite precision, εV , to which V can be defined.

In other words, I will neglect all other sources of spatial
imprecision in order to isolate and investigate impreci-
sions and uncertainties that are intrinsic to acts of obser-
vation in which the observer inhabits a length scale that
is orders of magnitude larger than a.

Figure 9 illustrates why measurements of V can-
not conclusively distinguish between x1 and x2 if
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FIG. 9 Plot of V versus x when the precision εV to which
V is defined is finite. εV is finite if the results of repeated
accurate measurements of V at the same macroscale point
are not all equal, but only within εV of one another. It means
that if the slope V(1) was known, measurements of V could
not be used to distinguish between two points, x1 and x2,
reliably and conclusively, or to measure the distance between
them. Therefore, when measurements and observations at
the macroscale are mediated by macroscopic fields, there is
an unavoidable imprecision εx ≡ |dx| in positions, distances,
and displacements.

|x1 − x2| < εV/
∣∣V(1)

∣∣. In Sec. VI.I I will present a dis-
cussion, for an arbitrary choice of the averaging kernel µ,
of the relationship between εx, εV , and the precision εp
to which the derivative V(1) of V is defined.

The macroscale infinitesimal |dx| is the smallest distance
between empirically-distinguishable points, i.e.,

|dx| ≡ inf

{
|∆x| : |x1 − x2| >|∆x|/2⇒ x1 6= x2,

∀x1,x2 ∈ domV
}
.

This definition implies that distances smaller than |dx|
do not have meaning at the macroscale. However, they
do have meaning at the microscale, where |dx| is denoted
by εx. For simplicity, this definition also assumes that the
value of |dx| is the same everywhere in domV .

At the microscale, |x1 − x2| < εx/2 = |dx|/2 does not
imply that x1 = x2. Therefore each point x at the
macroscale corresponds to an interval of width εx at the
microscale. I denote the midpoint of this interval by x̄(x)
and I refer to the interval as the coincidence set of x̄(x).
Mathematically, it is defined as

[x̄(x)]L∼
≡
{
x : x

L∼ x̄(x)
}

= I(x̄(x), εx),

where macroscale coincidence,
L∼, which is nontransitive

and therefore not an equivalence, is defined by

x1
L∼ x2 ⇐⇒ |x1 − x2 | < εx/2.

The one-to-many relationship between points at the
macroscale and points at the microscale has important

implications for the nature of macrostructure, which have
already been discussed in Sec. VI.C. It implies that the
transition from the microscale to the macroscale can be
viewed as a compression of space, which shrinks all mi-
croscopic distances to zero, resulting in surfaces and in-
terfaces becoming literally planar, locally.

H. Mutually-consistent values of εV and εx

It seems natural to say that ν fluctuates microscopically
about its spatial average. However the dependence of
〈ν〉ε (x) on ε means that the spatial average of ν at x
is not unique, and its dependence on x means that the
sets of all spatial averages on intervals of width less than
ε centered at different macroscopically-coincident points
are different. In other words, if |x1 − x2| > 0, then, in

general, and notwithstanding the fact that x1
L∼ x2,{

〈ν〉η (x1) : 0 < η < ε
}
6=
{
〈ν〉η (x2) : 0 < η < ε

}
.

As discussed in Sec. VI.F, the set of all possible
accurately- and precisely-measured values of V(x) is

V(x) ≡
{
〈ν〉εx (x) : x ∈ [x̄(x)]L∼

}
. (21)

However, on its own, this does not constitute a definition
of V(x) because εV determines εx, so we cannot define
εV in terms of εx.

Furthermore, we must take care to satisfy the require-
ment that ν fluctuates microscopically about V(x) at x.
If we choose an arbitrary mesoscopic value of εx, and
then use Eq. 21 as the definition of the set of values about
which ν fluctuates microscopically at x, this requirement
may not be satisfied. For example, as Fig. 9 illustrates,
if
∣∣V(1)

∣∣ is large enough, the sets{
〈ν〉εx (x− εx/2 + u) : 0 < u < a

}
(22)

and {
〈ν〉εx (x+ εx/2− u) : 0 < u < a

}
(23)

do not intersect. Therefore, although x1 ∈ [x̄(x)]L∼
is re-

quired to imply that 〈ν〉εx (x1) is among the set of values
of V that might be measured at x, if εx is not chosen
carefully, and if the phrase ‘ν fluctuates microscopically
about υ at x’ is defined to mean

υ ∈
{
〈ν〉εx (x+ u) : −a/2 < u < a/2

}
,

〈ν〉εx (x1) may not be a value about which ν fluctuates
microscopically at another point x2 ∈ [x̄(x)]L∼

.

To remedy this problem we should define this phrase
without referring to εx, and then choose εx such that
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FIG. 10 Schematic. The red and blue curve represents a microstructure and the horizontal green line is its average on the
green-shaded interval whose center is marked by a black spot. Although it seems natural to say that a microstructure fluctuates
microscopically about its average, its average is a microscopic function of both the width and the position of the averaging
interval. This means that the green line moves up and down as either one of them changes, and that the distances between
successive extrema of these fluctuations of the average are microscopic. There does not exist a unique value about which a
microstructure fluctuates microscopically, in general. because there is no reason to choose one interval width over another, or
to choose to center the interval at a particular point instead of one a microscopic distance away,

V(x), as defined by Eq. 21, is a subset of the set of
values about which ν fluctuates microscopically at every
x ∈ [x̄(x)]L∼

.

I now propose possible definitions of the phrases ‘fluctu-
ates microscopically about υ at x’ and ‘fluctuates micro-
scopically about υ at x,’ which I have not justified rig-
orously. I present them to illustrate the difficulties with
circular definitions, and because they might be useful as a
starting point for the development of rigorously-justified
definitions that seamlessly link microstructure to what is
measured and observed at the macroscale.

Definition. ν fluctuates microscopically about υ at x if
and only if there exists a microscopic interval centered at
x on which the average of ν is υ, i.e., if and only if

υ ∈ Aa[ν](x) ≡ int
{
〈ν〉η (x) : η < a

}
, (24)

In this expression ‘int’ denotes the interior of the set,
meaning the set without its boundary points. Although
it is not necessary to define Aa to be an open set here,
in more rigorous investigations of its properties I have
found it useful or necessary to define it as open.

Definition. ν fluctuates microscopically about υ at x if
and only if

υ ∈ Bεxa [ν](x̄(x)) ≡
⋂

x′∈I(x̄(x),εx)

Aa[ν](x′).

Definition. ν fluctuates microscopically about V if and
only if

V(x) ⊆ Bεxa [ν](x̄(x)), ∀x ∈ domV .

Note that Eq. 21 implies that

V(x) ⊆
⋃

x′∈I(x̄(x),εx)

clAεx [ν](x′),

where Aεx [ν](x′) ≡ int{〈ν〉η (x′) : η < εx}, and the clo-
sure operator, cl , closes a set by adding its boundary
points to it.

The following assumption specifies the domain of validity
of the three definitions proposed above.

Physical assumption 8: There exist values of a and εx
such that a� εx < L, and such that

V(x) ≡
{
〈ν〉εx (x) : x ∈ [x̄(x)]L∼

}
⊆ Bεxa [ν](x̄(x)),

at every point x ∈ domV .

Note that microstructures with perfect periodicities are
pathological in various ways, but they are also unphysi-
cal because there always exists some degree of disorder.
Even the periodicity of the time average of a crystal’s mi-
crostructure on an interval of length τ only has perfect
periodicity in the limit τ →∞. Therefore I propose, as
a conjecture, that Physical Assumption 8 holds true for
a useful subset of physical (disordered) microstructures,
which satisfy the first seven physical assumptions stated
earlier in Sec. VI.

I. Uncertainty principle

I have discussed the case of a simple average, with a top-
hat kernel, in some detail. The purpose of this section
is to discuss, in more general terms, how the shape and
width of the averaging kernel determine unavoidable un-
certainties in measured values of V and its derivative,
V(1). By analogy with Eq. 21, the set of values of V(1)

that could be measured at a point x is

V(1)(x) ≡
{
〈∂xν〉εx (x) : x ∈ [x̄(x)]L∼

}
, (25)
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and I denote the width of this interval by εp, where the
subscript ‘p’ is intended to be reminiscent of momentum
in quantum mechanics.

I will now derive a relationship between εV , εp, and εx.
For simplicity I will denote the spatial average, 〈ν;µ〉εx ,
simply as 〈ν〉, I will denote the average of the average as
〈〈ν〉〉 ≡

〈
〈ν;µ〉εx ;µ

〉
εx

, etc..

To a first approximation, the uncertainty in the value of
V(1) can be quantified by the variance of 〈∂xν〉. Let us
use the fact that spatial derivatives commute with spatial
averaging to write

〈∂xν〉 − 〈〈∂xν〉〉 = ∂x [〈ν〉 − 〈〈ν〉〉] = ∂x 〈ν − 〈ν〉〉
= ∂x 〈∆ν〉 = ∂x (µ(εx) ∗∆ν) = µ(εx) ∗ (∂x∆ν) ,

where ∆ν(x) ≡ ν(x)− 〈ν〉 (x). In more explicit notation,
this can be expressed as

〈∂xν〉 (x)− 〈〈∂xν〉〉 (x) =

∫
R
µ(u; εx)∂x∆ν(x+ u) du .

Let us replace
∫
R with

∫ `
−`, where the value of ` = `(εx)

has been chosen such that∣∣∣∣∣
∫ `

−`
µ(u; εx)∂x∆ν(x+ u) du

− lim
`→∞

∫ `

−`
µ(u; εx)∂x∆ν(x+ u) du

∣∣∣∣∣
is negligible. If we also replace µ(u; εx) with its Taylor
expansion about u = 0, we find

〈∂xν〉 − 〈〈∂xν〉〉 = µ(0; εx)

∫ `

−`
∂x∆ν(x+ u) du

+

∞∑
m=1

µ(m)(0; εx)

m!

∫ `

−`
um∂x∆ν(x+ u) du .

The integrals appearing in the sum on the right hand side
can be expressed as∫ `

−`
um∂x∆ν(x+ u) du

=

∫ `

0

um [∂x∆ν(x+ u)± ∂x∆ν(x− u)] du ,

where ± is + when m is even and − when m is odd. In
both cases there is partial cancellation, which reduces the
magnitudes of the integrals by a factor of about 1/

√
2.

We know from Eq. 17 that when εx is large the mth

derivative of the kernel, µ(m)(0; εx), scales as 1/εx
m. Fur-

thermore, if µ is symmetric, then µ(1)(0; εx) = 0 and the
m = 1 term vanishes.

Therefore, to a first approximation, or in the limit of
large εx, the variance of the slope of V is(εp

2

)2

≡
〈(

∆V(1)
)2
〉

=
〈

(〈∂xν〉 − 〈〈∂xν〉〉)2
〉

≈ µ(0; εx)2
〈

(∆ν(x+ `)−∆ν(x− `))2
〉

= µ(0; εx)2

[ 〈
∆ν(x+ `)2

〉
+
〈
∆ν(x− `)2

〉
− 2 〈∆ν(x+ `)∆ν(x− `)〉

]
If we now assume that, for the purpose of calculat-
ing 〈∆ν(x+ `)∆ν(x− `)〉, the values of ∆ν(x+ `) and
∆ν(x− `) can be treated as independent random vari-

ables with means of zero and variances of (εV/2)
2
, then

〈∆ν(x+ `)∆ν(x− `)〉 vanishes and we get(εp
2

)2

≈ 2µ(0; εx)2
(εV

2

)2

⇒ εxεp ≈ rµεV , (26)

where rµ ≡
√

2µ(0; εx)εx ∼ 1, is dimensionless and with
a value that depends on the shape of µ. If µ is Gaus-
sian, then µ(0; εx) = (1/εx)

√
2/π and rµ = 2/

√
π. If µ

is a top-hat, then µ(0; εx) = 1/
(
εx
√

3
)

and rµ =
√

2/3.
If σx ≡ εx/2, σV ≡ εV/2, and σp ≡ εp/2, Eq. 26 can be
expressed as

σxσp = rµσV/2 (General kernel)

σxσp = σV/
√
π (Gaussian kernel)

σxσp = σV/
√

6 (Top-hat kernel)

These relations imply that there is a trade-off between
macroscale spatial precision and the uncertainty in V(1).
When microscopic fluctuations of ν are large, εV = 2σV
is large, and εxεp = 4σxσp is large.

J. Summary of the fundaments of homogenization theory

In this section I have discussed some of the fundamen-
tal features of the homogenization transformation that
turns microstructure into macrostructure. I have pointed
out that macrostructure cannot be defined uniquely, be-
cause it depends on the scale, εx = |dx|, at which the
microstructure is observed, and which defines the small-
est distance, |dx|/2, between mutually-distinguishable
points at the macroscale.

However the value of |dx| cannot be chosen to be arbi-
trarily small if distances and displacements are measured
with macroscopic fields. This is because εx both deter-
mines, and is bounded from below by, the finite preci-
sions, εV and εp, to which macroscopic fields and their
derivatives, respectively, are defined. Therefore εx, εV ,
and εp are all interrelated, and can be interpreted ei-
ther as unavoidably-finite precisions or as measures of



32

unavoidable uncertainty. In Sec. VI.I I derived uncer-
tainty relations which imply that reducing εx increases
the uncertainty εp in derivatives of the macroscopic field
used to measure distances and displacements.

I have not presented a rigorously-justified relationship
between εx and εV , for an arbitrary microstructure, ν,
which satisfies my physical assumptions. In part, this
is because any such definition would have to be accom-
panied by further physical assumptions, which specified
more precisely the set of microstructures to which it
would apply. However, I have highlighted some of the
difficulties that must be overcome to devise rigorously-
justified definitions, and I have proposed a definition that
I have found to be viable for a useful subset of microstruc-
tures that satisfy my physical assumptions. I will present
these numerical and theoretical findings elsewhere.

The domain of validity of my proposed definitions is
not relevant to the two most fundamental conclusions of
Sec. VI. The first of these is that homogenization intro-
duces unavoidable uncertainty at the macroscale, making
spatial precision, and the precisions to which macroscopic
fields are defined, finite. The second is that finite spa-
tial precision has important implications for the nature
of macrostructure, which I discussed in Sec. VI.C, and
will discuss further in Sec. VII.

Briefly, it means that surfaces and interfaces, which do
not exist in a well-defined sense at the microscale, are cre-
ated by the homogenization transformation. When they
are created they carry excess fields, in general, and these
fields are an integral component of macrostructure. In
fact, because the macroscopic charge density % vanishes
in the bulks of stable materials, in the context of electric-
ity it can be the case that the excess fields, and the 2-, 1-,
and 0-manifolds they inhabit, are the macrostructure.

Therefore the task of laying foundations for a homoge-
nization theory that defines macrostructure in terms of
microstructure, ν, is far from complete. Completing the
foundations entails defining excess fields in terms of ν.
This is the subject of Sec. VII.

It is straightforward to generalize the theory presented in
this section to systems in which the microstructure varies
significantly on three or more widely-separated length
scales. In that case homogenization proceeds in stages
from the base microstructure, on the smallest length
scale, to the apex macrostructure, on the largest length
scale. The base microstructure is the only microstruc-
ture that is not also a macrostructure determined by a
microstructure on a smaller length scale, and the apex
macrostructure is the only macrostructure that is not also
a microstructure which determines a macrostructure on
a larger length scale.

It may not be straightforward to adapt the theory
presented in this section to materials whose struc-

tures vary significantly on every length scale, such as
wood (Toumpanaki et al., 2021). However, such an adap-
tation may not be useful because, unlike most artificial
materials, wood does not appear to be locally homoge-
neous when observed with either the naked eye or a mi-
croscope at any level of magnification.

VII. EXCESS FIELDS

A. Introduction

As discussed in Sec. VI, macrostructure essentially con-
sists of smoothly-varying continua interspersed with het-
erogeneitites such as defects, interfaces, and inclusions.

An inclusion is an embedded region whose microstruc-
ture differs from that of its host. If all of its dimen-
sions are smaller than εx = dx, an inclusion is a singular
point in the volumetric macroscopic field V and therefore
a macroscale point defect. Similarly, a macroscale line
[planar] defect is an inclusion that is larger than εx along
only one [two] of its dimensions. Macroscale defects may
require special treatments when applying the macroscale
theory, but their macrostructures can be calculated from
the microstructures by reasonably-straightforward appli-
cation of the three-dimensional mesoscale averaging op-
eration.

Macroscale defects should not be confused with their mi-
croscale counterparts. For example, consider vacancies
and impurities in crystals, which are microscale point
defects. Although they may be charged, and therefore
may contribute directly to the microscopic charge den-
sity ρ, and they may perturb the arrangement of atoms,
thereby indirectly changing ρ, their concentrations are
usually high enough and/or their effects on averages of ρ
small enough, that they can be regarded as just another
feature of the microstructure. Their presence in a crystal
does not alter the relationship between % and ρ in most
cases.

Exceptionally, microscopic defects might increase the up-
per bound, a, on distances regarded as microscopic so
much that it becomes comparable to L, thereby render-
ing Physical Assumpion 8, and much of the theory pre-
sented in Sec. VI invalid. However, I restrict attention to
systems in which a� L.

If all of an inclusion’s dimensions are much larger than
εx, the curvature of its macroscale boundary with the
host material will be negligible on the mesoscale. There-
fore, the inclusion is simply another macroscale material
whose boundary with its host is locally flat. On either
side of that boundary V is differentiable and the bound-
ary itself can be treated like any other mesoscopically-
planar interface. As discussed in Sec. VI, not only does



33

V tend to be discontinuous at interfaces, but interfaces
carry excesses σV of V , in general, which play important
roles in physics at the macroscale.

I am trying to emphasise that, for a large class of systems,
and from a practical perspective, the only ingredient of
a mutually-consistent description of macrostructure and
microstructure that we lack is the relationship between
microstructure ν and the macroscale interfacial excess
σV . The purpose of this section is to derive this rela-
tionship. Specifically, I derive expressions for excesses
at surfaces (interfaces with a vacuum), which are trivial
to generalize to interfaces by treating them as adjoined
surfaces.

1. Notation

In this section, and henceforth, I will assume that V
is a single-valued field at the macroscale, which is a
mesoscale spatial average of ν that I will often denote
by ν̄. At the microscale I will denote the midpoint of in-
terval V(x) ≡ I(V(x), εV), by V(x̄(x)), and I will assume
that V(x) is the average of V(x) over all x ∈ [x̄(x)]L∼

.

As in Sec. VI.I, ` = `(εx) > εx will denote the mesoscopic
width of the domain of a mesoscale spatial average. In-
creasing its value makes the approximation

ν̄(x) ≡ 〈ν;µ〉εx (x) ≡
∫
R
ν(x+ u)µ(u; εx) du

≈
∫ `/2

−`/2
ν(x+ u)µ(u; εx) du

an arbitrarily close one. I introduce this finite width
to help with derivations and I do not attach physical
meaning to it.

In Fig. 9, while considering the example of a top-hat
kernel, I defined εx = |dx| such that if the distance be-
tween two macroscale points was greater than |dx|/2,
they could be distinguished from one another, with cer-
tainty, by macroscale measurements. However, real mea-
surements do not provide certainty - only probabilities
and degrees of certainty.

In this section I will consider spatial averages with an ar-
bitrary kernel, but to avoid cluttering and complicating
the theory and discussion, I will not discuss probabili-
ties. I will continue to refer to εx as the macroscopic
spatial precision, and as the width of an interface at the
microscale, but with the understanding that εx/2 is now
the standard deviation of the position probability den-
sity function, µ(εx). In other words, I will continue to
use precise non-probabilistic language and mathematics,
while cognisant of the fact that this preciseness is unjus-
tified. For example, I will continue to regard the coin-
cidence set [x̄(x)]L∼

of x as a well-defined set of points,

and I will continue to discuss an interface as having the
precisely-defined width, εx.

If this sloppiness introduces doubt about the validities of
the derivations that follow, this doubt can be removed by
strengthening our physical assumptions about the nature
of microstructure: We can assume that a/εx and εx/L
are both so small that the shape of µ has a negligible
influence on the macrostructure (see Eq. 17). Then µ is
effectively a top-hat kernel. To achieve further comfort,
by reverting to perfect consistency with our discussion
of top-hat kernels in Sec. VI, we could mentally replace
every instance of µ(εx) in what follows with µ(εx/

√
3).

B. Surface excesses in three dimensions

Far from an interface, the relationship between the
macrostructure and the microstructure is as described,
but not rigorously and precisely defined, in Sec. VI. Ho-
mogenizing the interface region presents new problems
as a consequence of the fundamental difference between
interfaces at the macroscale and interfaces at the mi-
croscale, which I briefly discussed in Sec. VI.C.1. These
are that interfaces are ill-defined at the microscale, be-
cause their widths are indeterminate, whereas at the
macroscale they are well-defined two dimensional man-
ifolds which carry excess fields.

In Sec. VI.C.1 we considered excesses of one dimensional
microstructures. Let us begin our discussion of excesses
of three dimensional microstructures by considering an
excess field on a surface that is perpendicular to the
x−axis and whose macroscale x−coordinate is xL (see
Fig. 11). Let xL ≡ x̄(xL). Above the surface, by which
I mean x < xL at the macroscale and x < xL − εx/2 at
the microscale, there is vacuum, meaning that both ν
and V are zero. Let us assume that V is also zero far
below the surface, but that the average ν̄yz(x) of ν on
the plane parallel to the surface at x does not vanish for
every x. This means that the mesoscale average of ν only
vanishes if∫ `/2

0

ν̄yz(x+ u)µ(u;εx) du

= −
∫ 0

−`/2
ν̄yz(x+ u)µ(u; εx) du ,

and, in general, neither of these integrals is zero. There-
fore, unless the average of ν vanishes on all planes paral-
lel to the surface, V can only vanish if the contributions
to it from different depths below the surface cancel one
another.

It follows that if we create a surface perpendicular to
the x−axis by removing all material from one side of an
imaginary plane passing through the bulk, the removal
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of this material disrupts the cancellation that causes V
to vanish. Therefore, within ±εx/2 of the surface, V
does not vanish. The integral of V(x,y, z) between any
point above the surface, x1 < xL − |dx|/2, and any point
below it, x2 > xL + |dx|/2, is∫ xL−|dx|/2

x1

V(x,y, z)dx +

∫ xL+|dx|/2

xL−|dx|/2
V(x,y, z)dx

+

∫ x2

xL+|dx|/2
V(x,y, z)dx = V(xL,y, z)|dx| 6= 0

The first and the third integrals are zero because
V(x,y, z) = 0 if |x− xL| > |dx|/2. Therefore, at po-
sition (y, z) on the surface plane, the excess of V is
σV(y, z) ≡ V(xL,y, z)|dx|. The surface average, σV , of
σV is Vyz(xL)|dx|, where Vyz is the macroscale coun-
terpart of ν̄yz, meaning its average on a mesoscopic two
dimensional domain.

C. Calculating interfacial excesses from the microstructure

To address the question of how excess fields can be cal-
culated from the microstructure, ν. let us continue to
assume that the x-axis is normal to the surface and,
to simplify the notation by keeping the problem one-
dimensional, let us assume that ν(x) is the average of
some other microscopic quantity on the plane parallel to
the surface at x. As before, let us assume that V = 0
in the bulk. An obvious starting point is to define the
microscale surface excess, σν , as

σν(xb) =

∫ xb

xL−εx/2
ν(x) dx (27)

where ν(x) = 0 if x < xL − εx/2, and xb is a point deep
below the surface (‘b’=‘bulk’).

To see that σV ≡ σν(xb) is not a good definition of the
macroscale surface excess, consider the example depicted
in Fig. 11. In this example, the material could be a three
dimensional crystal and ν the average of the charge den-
sity over planes parallel to the surface. The value of ν is
zero everywhere except at a discrete set of x−values, cor-
responding to lattice planes, on which it is either +1 or
−1. Therefore, calculating σν(xb) is as simple as count-
ing these charges from x < xL to x = xb. By inspection,
we find that σν(x1) = 0 and σν(x2) = +1, where x1 and
x2 are the positions indicated in Fig. 11. If one contin-
ues counting beyond x = x2, the value of σν continues to
jump between 0 and +1 and it never converges.

The problem with defining σV ≡ σν(xb) is twofold. First,
identifying σν(xb) as the surface excess appears to imply
that x < xb is the surface region and x > xb is the bulk.
However, as discussed in Sec. VI.C.1, there is no clear
boundary between surface and bulk at the microscale and

so the “surface region” is ill-defined. Second, although V
vanishes in the bulk, the same is not true of ν, and any in-
tegral of a microscopic quantity is a microscopic function
of its upper and lower bounds of integration. Therefore,
σν(xb) fluctuates microscopically as xb is varied.

This simple example, which is typical rather than patho-
logical, illustrates how interfaces being ill-defined at the
microscale can be troublesome when one attempts to cal-
culate macroscale properties of interfaces from the mi-
crostructure. It also underscores the importance of a
careful understanding of the relationship between mi-
croscale physics and macroscale physics.

To deduce the relationship between σV and ν, consider
the following two slightly-different lines of reasoning. The
first is to define σV as the mesoscale average of σν(xb).
This means that, instead of terminating the integral at
a single plane (at xb) we take an average over an ensem-
ble of terminating planes. This was the approach taken
by Finnis (Finnis, 1998), who appears to have been the
first to solve the problem of calculating what he called
thermodynamic excesses of charge and other quantities
at interfaces. In Finnis, 1998 he reasoned that, by av-
eraging over terminating planes, “we can reconcile the
atomistic picture, in which excesses appear to oscillate
on the atomic length scale as a function of the region
size, with the thermodynamic picture”. He used this ap-
proach to derive an expression for the surface charge in
crystals. One purpose of Sec. VII.H is to generalize his
result to noncrystalline materials.

The second line of reasoning, which may seem more nat-
ural in the present context, begins with the fact that
surfaces, and therefore surface excesses, are only well-
defined at the macroscale. Therefore, σV must be the
integral of V across the surface, i.e., σV ≡

∫ x2

x1
V(x) dx,

where x1 < xL and x2 > xL. This integral must con-
verge to the surface excess because V = 0 in the bulk
and above the surface, and because the spatial averaging
operation is conservative, by virtue of µ being normalized
to one. It is straightforward to show that this viewpoint
and Finnis’s thermodynamic viewpoint are equivalent,
because the spatial average of an integral of ν is equal to
the integral of the spatial average of ν.

D. Changes of macroscale quantities across interfaces

To calculate the change in V between a point x2 on one
side of an interface and a point x1 on the other, one could
simply calculate V(x1) and V(x2) from the microstruc-
ture, ν. However, this is not always the easiest approach.
For example, if ν(1) is known, but ν is not, it might be
easier to recognise that the change of V across the inter-
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face is the interfacial excess of V(1). Therefore,

V(x2)− V(x1) = σV(1) ≡
∫ x2

x1

V(1)(x) dx. (28)

There are many important physical systems in which ν
is related to a source function, ψ, by the Poisson equa-
tion, ν(2) = ψ. Since differentiation and spatial averaging
commute, their macroscale counterparts have the same
relationship, V(2) = Ψ. When V has different values on
either side of the interface, but is constant on both sides,
the step change in its value across the interface can be
calculated from ψ by integrating Eq. 28 by parts and
substituting the Poisson equation to give

V(x2)− V(x1) = −
∫ x2

x1

x Ψ(x) dx (29)

In Sec. XIII we will find that Eq. 29 is useful way for cal-
culating the change in the macroscopic potential Φ across
an interface, and therefore for calculating the mean in-
ner potential (Bethe, 1928; Cendagorta and Ichiye, 2015;
Gajdardziska-Josifovska et al., 1993; Kathmann, 2021;
Kathmann et al., 2011; Leung, 2010; Miyake, 1940; Pratt,
1992; Sanchez and Ochando, 1985; Sokhan and Tildes-
ley, 1997a; Spence, 1993; Wilson et al., 1987, 1988, 1989;
Yesibolati et al., 2020).

For the purposes of calculating the interfacial excesses,
and step-changes in macroscopic quantities across inter-
faces, that are required in this work about electricity,
we only need to deduce relationships between the right-
hand-sides of Eqs. 28 and 29 and the microstructures
ν and ψ, respectively. Mathematically, the problem at
hand is to find simple and general expressions for〈∫ x2

x1

ν(x) dx ;µ

〉
εx

and

〈∫ x2

x1

x ν(x) dx ;µ

〉
εx

(30)

in terms of ν, where the spatial average is performed over
the upper bound, x2, of the integrals at a fixed value
of x1. Once these expressions are in hand, it will be
straightforward to find expressions for the averages of
these integrals over x1 or over both x1 and x2.

E. Mesoscale averages of integrals

The goal of this section is to deduce general relationships
between the microstructure and the integral averages in
Expression 30, which are equivalent to the right-hand-
sides of Eqs. 28 and 29, apart from the appearance of Ψ
instead of V in the latter.

Calculating the integral of V, which is constant or linear
on both sides of an interface, is straightforward. There-

fore, let us define ∆ν(x) ≡ ν(x)− V(x), and instead cal-
culate the mesoscale average over xb of

S [∆ν]
r (xb) ≡

∫ xb

xL

xr ∆ν(x) dx (31)

for r = 0 and 1. I will denote these averages by S [∆V]
0

and S [∆V]
1 . The reasons for replacing ν by ∆ν are that

for r = 0 the derivation is made easier by the fact that
∆ν fluctuates microscopically about zero, and that the

average of S [ν]
1 (xb) does not converge with respect to xb

unless ν fluctuates about zero.

Apart from those stated and discussed in Sec. VI, we
will not make any assumptions about the microstruc-
ture. Therefore, our goal of deriving generally-applicable

expressions for S [∆V]
r in terms of ν is only possible if

S [∆V]
r can be related to some calculable characteristics of

the microstructure. Guided by Finnis’s expression for the
surface excess (Finnis, 1998), we will characterize the mi-
crostructure using moments and moment densities. This
is explained in Sec. VII.F and Sec. VII.G.

F. Partitioning space into microscopic intervals

To characterize the microstructure in the mesoscopic
neighbourhood of xb, let us assume that the macrostruc-
ture is either uniform or linearly-varying in this neigh-
bourhood. Let us partition an interval of width ` cen-
tered near xb into a set of 2M contiguous microscopic
subintervals, or microintervals, demarcated by the set of
points

Π(xb, `) ≡ {xm : m ∈ Z, |m| ≤M, x0 ≡ xb, xm+1 > xm,

xm+1 − xm < α, x−M = xb − `/2, |xM − xb − `/2| < a}

Notice that, although |xM − x−M | = `(εx), the midpoint
of (x−M , xM ) is displaced from xb by a microscopic dis-
tance. The reason for this will soon become clear. The
microinterval designated ‘interval m’ and denoted by
Im ≡ I(x̄m,∆m) has midpoint

x̄m ≡

{
1
2 (xm+1 + xm) if m < 0
1
2 (xm−1 + xm) if m > 0,

(32)

and width

∆m ≡

{
xm+1 − xm if m < 0

xm − xm−1 if m > 0.
(33)
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FIG. 11 Cartoons depicting the surface (at x = xL) of a one dimensional material. The sums σs(x1) and σs(x2) of the charges
between the surface at x = xL and x1 and x2, respectively, are very different. Therefore neither can be identified as the surface
charge. The blue shaded regions are two different equally-valid choices of the unit cell of the bulk crystal, which have very
different dipole moments d(x1 + a

2
) and d(x2 + a

2
), where d(x) is the dipole moment of the unit cell centered at x. It was shown

by Finnis(Finnis, 1998) that the excess surface charge is σ = σs(x1) + d1
a

= σs(x2) + d2
a

. Although the choice of unit cell to
describe the periodicity of the crystal changes the “dipole moment density” P(x) = d(x)/a at every point, the excess surface
charge is independent of this choice and is well defined.

Now we can write the mesoscale average of ν as the fol-
lowing sum of integrals over microintervals:

ν̄(xb) =

∫ `/2

−`/2
µ(xb − x; εx) ν(x) dx

=
∑
m

∫ ∆m/2

−∆m/2

µ(xb − x̄m − u; εx) ν(x̄m + u) du

=
∑
m

∆mµ(xb − x̄m; εx) 〈ν〉∆m
(x̄m), (34)

where
∑
m denotes summation over all 2M microinter-

vals and we have used the fact that the change of µ across
each microinterval is negligible when a/εx is sufficiently
small.

Now let us place one further constraint on Π(xb, `),
which explains why xb is not the midpoint of (x−M , xM):
The microinterval boundary points are chosen such
that 〈∆ν〉∆m

(x̄m) = 0 for all m, which implies that

ν̄(x) = V(x). This choice is possible because ∆ν fluc-
tuates microscopically about zero everywhere in I(xb, `).
Therefore, starting from xb, the nearest point x1 > xb
such that the average of ∆ν on [xb, x1] is zero must be a
microscopic distance ∆1 away. The nearest point x2 > x1

such that 〈∆ν〉∆2
(x̄2) = 0 is a microscopic distance ∆2

away, and so on. Having chosen a set Π(xb, `) for which
the average of ∆ν on each microinterval vanishes, Equa-
tion 34 becomes

ν̄(xb) =
∑
m

∆mµ(xb − x̄m; εx)V(x̄m)

=

∫ ∞
−∞

µ(xb − x; εx)V(x) dx = V(xb),

which is independent of µ, as expected from Eq. 17 in
the limit that a/εx vanishes.

G. Characterising microstructure with moment
distributions of microscopic intervals

Let us characterise the microstructure in interval m by
the set of moment densities

M〈n〉∆ν (x̄m,∆m) ≡ 1

∆m

∫ ∆m/2

−∆m/2

∆ν(x̄m + u)un du ,

where n = 0, 1, 2, etc.. The zeroth moment density is
simply the average of ∆ν on interval [xm, xm+1], i.e.,

M〈0〉∆ν(x̄m,∆m) = 〈∆ν〉∆m
(x̄m).

Each moment density M〈n〉∆ν (x̄m,∆m) can be considered
a microscopic quantity because its value fluctuates mi-
croscopically as a function of x̄m, at fixed ∆m, and as
a function of ∆m, at fixed x̄m. Therefore, the set of all
moment densities depends strongly on the choice of set
Π(xb, `), which is, to a large extent, arbitrary.

Let us define the mesoscale average M̄〈n〉∆ν (xb) of

M〈n〉∆ν (x̄m,∆m) as follows.

M̄〈n〉∆ν (xb) ≡
〈
M(1)

ν ;µ
〉∗
εx

(xb) ≡
1

`

∑
m

∆mM(n)
ν (x̄m,∆m).

I have introduced the notation 〈 . 〉∗ to denote a partic-
ular kind of spatial average - one which cannot be calcu-
lated by a continuous integral. It is a weighted average,
over a discrete and finite set of values, each of which
is calculated on a different microinterval from the set
{Im ≡ I(x̄m,∆m)} that partitions I (x−M + xM )/2, `).

In general, the average moment densities M̄(n)
ν can de-

pend strongly on the choice of Π(xb, `) and so they are
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not physically very meaningful. Nevertheless, we will see
that it is possible to derive useful expressions that relate
them to macroscopic observables, and which are valid for
any choice of Π(xb, `) that satisfies the conditions speci-
fied above.

In a crystal whose periodicity along the x−axis is a (i.e.,
ν(x+ a) = ν(x), ∀x), the 〈 . 〉∗ average is unnecessary
because, by choosing ∆m = a, ∀m, all microintervals are
identical and so

M̄〈n〉∆ν (xb) =M〈n〉∆ν (xb + a/2, a)

=

∫ a/2

−a/2
∆ν(xb + a/2)un du .

H. Surface excess

Equation 31 can be written as

S [∆ν]
r (xb) =

∫ ∞
xL

xr ∆ν(x)F (x− xb) dx

where F (x) = 1−H(x) = H(−x) is one for x < 0 and
zero for x > 0, and H(x) ≡ d

dx max{x, 0} is the Heaviside

step function. The mesoscale average of S [∆ν]
r (xb) is

S̄〈∆ν〉r ≡
∫ ∞
−∞

µ(x′ − xb; εx)

(∫ x′

xL

xr ∆ν(x) dx

)
dx′

=

∫ `/2

−`/2
µ(u; εx)

(∫ xb−`/2

xL

xr ∆ν(x) dx

)
du

+

∫ `/2

−`/2
µ(u; εx)

(∫ xb+u

xb−`/2
xr ∆ν(x) dx

)
du

= S̄〈∆ν〉r,s (xb) + S̄〈∆ν〉r,b (xb)

where we have assumed that xb > xL + `/2 and we have

split the mesoscale average, S̄〈∆ν〉r , into the sum of a

‘surface’ term, S̄〈∆ν〉r,s (xb), and a ‘bulk’ term, S̄〈∆ν〉r,b (xb),
which can also be expressed as

S̄〈∆ν〉r,s (xb) ≡
∫ xb−`/2

xL

xr ∆ν(x) dx (35)

and

S̄ [∆ν]
r,b (xb) =

∫ `/2

−`/2
(xb + u)

r
∆ν(xb + u)Fµ(u; εx) du ,

(36)

where Fµ(u; εx) ≡
∫ ∞
−∞

F (u− u′)µ(u′; εx) du′ decays

smoothly from a value of almost one at u = −`/2 to
almost zero at u = `/2. Both its average value and
its value at u = 0 are one half and its derivative is
F (1)
µ (u; εx) = −µ(u; εx). The split of S̄〈∆ν〉r into bulk

and surface terms is not unique: both terms are micro-
scopic functions of xb, which is an arbitrarily-chosen
point in the bulk. However, we will find that their sum
is independent of xb.

Now let us split the integral in Eq. 36 into a sum of inte-
grals over the microintervals, Im ≡ I(x̄m,∆m). We can
again exploit the slowness of the variation of µ and Fµ
on the microscale, when a/εx is very small, to replace
Fµ(x − xb; εx) in each microinterval by its Taylor ex-
pansion about the microinterval midpoint. If a/` is suffi-
ciently small, we can discard the second and higher-order
terms, which involve first- and higher-order derivatives of
µ. Therefore, we get

S̄ [∆ν]
r,b (xb) =

∑
m

[
Fµ(x̄m − xb; εx)

∫ ∆m/2

−∆m/2

(x̄m + u)r∆ν(x̄m + u) du

− µ(x̄m − xb; εx)

∫ ∆m/2

−∆m/2

u(x̄m + u)r∆ν(x̄m + u) du

]
(37)

1. Case I: S[∆V]
0

Setting r = 0 in Eq. 37 gives

S̄ [∆ν]
0,b (xb; εx) =

∑
m

∆m Fµ(x̄m − xb; εx)M〈0〉∆ν(x̄m,∆m)

−
∑
m

∆m µ(x̄m − xb; εx)M〈1〉∆ν(x̄m,∆m)

Assuming that the microstructure is the same every-
where in a mesoscopic neighbourhood of xb, the aver-
age of the microintervals’ nth moment density on every
sufficiently-wide subinterval of [xb − `/2, xb + `/2] should

be the same and equal to M̄〈n〉∆ν (xb) in the limit a/εx → 0.
Therefore the first term on the right hand side is simply
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equal to (`/2)M̄〈0〉∆ν = (`/2)∆ν(xb), and

S̄ [∆ν]
0,b (xb; l) =

`

2
∆ν(xb)−

〈
M〈1〉∆ν ;µ

〉∗
εx

(xb)

=

∫ xb

xb−`/2
ν(x) dx− M̄〈1〉∆ν(xb). (38)

Adding S̄ [∆ν]
0,s (xb) and identifying the macroscopic quan-

tity

S [∆V]
0 (xb) =

∫ xb

xL

∆V(x) dx

as S̄ [∆ν]
0 = S̄ [∆ν]

0,s (xb) + S̄ [∆ν]
0,b (xb), we find that

S [∆V]
0 (xb) =

∫ xb

xL

∆ν(x) dx− M̄〈1〉∆ν(xb) (39)

Note that S̄〈∆ν〉0,s (xb) = S [∆ν]
0 (xb), which suggests that

S̄〈∆ν〉0,b (xb) = −M̄〈1〉∆ν(xb) can be viewed as a correction

to S [∆ν]
0 (xb) that removes its sensitivity to xb.

2. Case II: S[∆V]
1 when V(xb) = 0

Returning to Eq. 37, setting r = 1, and using the fact
that, for all m,

M〈0〉∆ν(x̄m,∆m) =
1

∆m

∫ x+
m

x−m

∆ν(x) dx = ∆ν(xb) = 0,

we find that

S̄ [∆ν]
1,b (xb; εx) =

∑
m

∆m

{
M〈1〉∆ν(x̄m,∆m)

[
Fµ(x̄m − xb; εx)

− x̄m µ(x̄m − xb; εx)

]
−M〈2〉∆ν(x̄m,∆m)µ(x̄m − xb; εx)

}
As in Sec. VII.H.1, the M〈n〉∆ν Fµ term on the right hand

side is equal to (`/2)M̄(n)
ν (xb), with n = 1 in this case.

S̄ [∆ν]
1,b (xb; εx) =

`

2
M̄〈1〉∆ν(xb)− M̄〈2〉∆ν(xb)

−
∑
m

∆m µ(x̄m − xb; εx) x̄mM〈1〉∆ν(x̄m,∆m) (40)

The third term on the right hand side is

−
〈
xM〈1〉∆ν ;µ

〉∗
εx

(xb). Subtracting xb

〈
M〈1〉∆ν ;µ

〉∗
εx

(xb)

from the first term and adding it to the third term gives

S̄ [∆ν]
1,b (xb; εx) = −

(
xb −

`

2

)〈
M〈1〉∆ν ;µ

〉∗
εx

(xb)

−
〈
M〈2〉∆ν ;µ

〉∗
εx

(xb)−
〈

(x− xb)M〈1〉∆ν ;µ
〉∗
εx

(xb)

It can be shown that the uniformity of the microstructure
on the mesoscale implies that the third term scales like
a/εx when εx � a. This is because the distribution of
microinterval moment densities is the same on either side
of xb, but the sign of (x − xb) is different. Therefore,
the contributions to this term from (xb − `/2, xb) and
(xb, xb + `/2) cancel one another. Assuming that εx � a,
we get

S̄ [∆ν]
1,b (xb; εx) = −

(
xb −

`

2

)
M̄〈1〉∆ν(xb)− M̄〈2〉∆ν(xb) (41)

Now, because M〈0〉∆ν(x̄m,∆m) = 0, we can write∫ xb

xb−`/2
x ∆ν(x) dx =

∑
x̄m<xb

∫ ∆m/2

−∆m/2

u∆ν(x̄m + u) du

=
∑

x̄m<xb

∆mM〈1〉∆ν(x̄m,∆m) =
`

2
M̄〈1〉∆ν(xb)

Therefore, adding S̄ [∆ν]
1,s (xb; εx) to Eq. 41 gives

S [∆V]
1 (xb) =

∫ xb

xL

x ∆V(x) dx

=

∫ xb

xL

x∆ν(x) dx− xb M̄〈1〉∆ν(xb)− M̄〈2〉∆ν(xb) (42)

As with S [∆V]
0 , we can write S [∆V]

1 as an xb-independent

sum of an xb-dependent surface term, S̄〈∆ν〉1,s (xb), which
is simply the original microscopically-varying integral

S [∆ν]
1 (xb), and an xb−dependent bulk term, S̄〈∆ν〉1,s (xb),

which can be viewed as a correction that removes the
strong dependence on the arbitrarily-chosen position xb.

3. Idempotency of the mesoscale average

In Sec. VI.I we assumed, implicitly, that the mesoscale
averaging operation is not idempotent. This allowed us
to deduce that there is a trade-off between spatial preci-
sion/uncertainty and the precision/uncertainty of macro-
scopic fields and their derivatives. However, the un-
certainty relations were derived under a ‘first approxi-
mation’, and are far from exact. Throughout Sec. VII
we have assumed that we are much closer to the limit
a/εx → 0, and therefore closer to the limit in which the
averaging operation is idempotent. Bearing this in mind,
let us consider one important consequence of idempo-
tency.

Idempotency of the averaging operation would allow the
following deduction to be made about the mesoscale aver-

ages,M〈1〉
∆ν andM〈2〉

∆ν , of M̄〈1〉∆ν and M̄〈2〉∆ν , respectively.〈
S̄ [∆ν]

0

〉
εx

= S̄ [∆ν]
0 ⇒M〈1〉

∆ν(xb) ≡
〈
M̄〈1〉∆ν

〉
εx

(xb) = 0〈
S̄ [∆ν]

1

〉
εx

= S̄ [∆ν]
1 ⇒M〈2〉

∆ν(xb) ≡
〈
M̄〈2〉∆ν

〉
εx

(xb) = 0
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The finding that both M〈1〉
∆ν and M〈2〉

∆ν are zero would
have some very important consequences. Therefore,
guided by the knowledge that they vanish in the idem-
potent limit (a/εx → 0, εx/L→ 0), I show that they
vanish without assuming idempotency in Appendix E.
The importance of them vanishing will become clear
in Sec. XIII. The idempotency limit is the limit
a/εx → 0, εx/L→ 0, whereas the limit in which they
vanish is a/εx → 0.

4. Mesoscale average over the lower limit of an integral

Either by following similar procedures to those that led
to Eq. 39 and Eq. 42, or by invoking symmetry, one can
find the following expressions for mesoscale averages of
integrals in which the average is performed over the lower
bound, xb, of the integrals from xb to xr, where xr > xb.

∫ xR

xb

∆V(x) dx =

〈∫ xr

xb

∆ν(x) dx ;µ

〉
εx

(xb) =

∫ xr

xb

∆ν(x) dx+ M̄〈1〉∆ν(xb) (43)∫ xR

xb

x ∆V(x) dx =

〈∫ xr

xb

x∆ν(x) dx ;µ

〉
εx

(xb) =

∫ xr

xb

x∆ν(x) dx+ xbM̄〈1〉∆ν(xb) + M̄〈2〉∆ν(xb) (44)

VIII. CHARGE DENSITY (%) AND DIPOLE MOMENT
DENSITY (P)

In this section I consider the mesoscale averages of charge
and dipole moment densities. For simplicity I define the
mesoscale average as the simple average introduced and
discussed in detail in Sec. VI.

A. Charge density

If we ignore the microscale variability of the mesoscale
average, ρ̄, of ρ, and the consequent uncertainty, ε%, in
the value of the macroscopic charge density, its definition
is simply

%(x) ≡ ρ̄(x) =
1

`

∫ `/2

−`/2
ρ(x+ u) du (45)

where `� a.

In the bulk of a crystal, ` can be chosen to
be an integer multiple of the periodicity, a, where
ρ(x+ a) = ρ(x), ∀x ∈ B. It is then easy to show that

%(xb) = ρ̄(xb) =
1

a

∫ a/2

−a/2
ρ(xb + u) du .

This vanishes if the crystal is charge-neutral, as expected
of %. In amorphous materials, if ρ fluctuates micro-
scopically about zero, it is always possible to find mi-
croscopic displacements, η1 ∼ a and η2 ∼ a, such that∫ `/2+η2
−`/2+η1

ρ(xb + u) du = 0. By expressing the integral

in Eq. 45 as
∫ `/2
−`/2 =

∫ −`/2+η1
−`/2 +

∫ `/2+η2
−`/2+η1

−
∫ `/2−η2
`/2

it is

straightforward to show that ρ̄(xb) = 0 +O(a/εx) ≈ 0.
Therefore, to within the finite precision ε% with which
% can be defined, % vanishes in the bulk of any material
that is stable when it is electromagnetically isolated, and
whose surfaces are locally charge neutral.

B. Dipole moment density

P has the dimensions of a dipole moment per unit vol-
ume, area, and length in three, two, and one dimensions,
respectively. Therefore, to define P within the bulk of a
one dimensional material, it seems natural to start from
the quantity

P(x, ε) ≡ 1

ε

∫ ε/2

−ε/2
ρ(x+ u)u du , (46)

which is the dipole moment per unit length of I(x, ε) ⊂ B
with respect to an origin at x. P(x, ε) is strongly depen-
dent on both x and ε and so it is difficult to attach physi-
cal meaning to it. However, it is clearly a microscopically-
varying quantity and its mesoscale average is

P̄(xb) =
1

`

∫ xb+`/2

xb−`/2

(
1

ε

∫ ε/2

−ε/2
ρ(x+ u)u du

)
dx

=
1

ε

∫ ε/2

−ε/2
u

(
1

`

∫ xb+`/2

xb−`/2
ρ(x+ u) dx

)
du

=
1

ε

∫ ε/2

−ε/2
u ρ̄(xb + u) du

=
ρ̄(xb)

ε

∫ ε/2

−ε/2
u du+O(a/εx) ≈ 0, (47)
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where, by using ρ̄(xb + u) = ρ̄(xb) +O(a/εx), I am as-
suming that ρ̄ fluctuates microscopically but does not
change systematically on length scale ε. Therefore, the
mesoscale average P̄ of P is negligible when a/εx is suf-
ficiently small, regardless of the value of ρ̄.

This result generalises to three dimensions, where it
can be shown that each Cartesian component of the
mesoscale average of the dipole moment per unit volume
of a region of arbitrary shape scales like a/εx. This is
a generalisation to non-crystalline materials of the well
known result that, in a crystal, the average over all
choices of unit cell of the dipole moment per unit cell
is zero (Resta and Vanderbilt, 2007).

These results suggest that P ≡ P̄ is not a useful macro-
scopic quantity with which to characterise the bulk of a
material because it does not distinguish between different
mesoscopically-uniform materials, or even between a ma-
terial and empty space. We can only identify the macro-
scopic polarization P as P if we are willing to accept that
P = 0 in every mesoscopically-uniform material, regard-
less of its microstructure.

IX. INTERLUDE

In the sections that follow I discuss several quantities
that are commonly regarded as manifestations, or conse-
quences, of either the P field itself or of its value chang-
ing. They include surface charge σ and bound charge
%bound (Sec. X), polarization current J(p)(Sec. XI) and

the macroscopic (
#»

k = 0) electric field E (Sec. XIII.D).

Finnis’s work (Finnis, 1998) and Sec. VII make it easy
to write down an expression for σ = σ[ρ], which is a lin-
ear functional of ρ. Its linearity means that, if ρ can be
decomposed as ρ =

∑
i ρi, where each ρi is either non-

negative or nonpositive, this becomes σ[ρ] =
∑
i σ[ρi]. It

follows immediately that, when ρ changes continuously in
response to a slowly varying stimulus, and if the set {ρi}
of charge packets is chosen such that each one changes
continuously as ρ changes, but its integral remains con-
stant, then the polarization current can be expressed as
the sum, σ̇ = J(p)[ρ̇] =

∑
i J

(p)[ρ̇i].

If the widths of the charge packets are microscopic,
their shapes are irrelevant to macroscale observables be-
cause homogenization transforms each packet into a point
charge. Therefore the contribution of each packet ρi to
J(p) can be calculated from the time derivatives of its in-
tegral, qi =

∫
ρi dx, and its center, xi = q−1

i

∫
x ρi dx. If

the packets can be chosen such that the integral of each
one is time-invariant (q̇i = 0), we can use the MTOP to
calculate J(p) from the evolving bulk microstructure.

It follows immediately from the results stated in
Sec. VII.H.3, and proved in Appendix E, that the macro-

scopic potential Φ is zero in an isolated macroscopically-
uniform material whose surfaces are not charged. It fol-
lows from this that a macroscopic E field cannot exist in
such a material. Nevertheless, in Sec. XIII.D I prove this
by expressing Φ in terms of the microstructure ρ using
the results of Sec. VII. In Sec. XIII.D I point out a fatal
flaw in the cavity construction introduced by Lorentz to
relate the macroscopic E field to P, and in Sec. XIV I
refute Bethe’s derivation of his approximate expression
for the mean inner potential.

I conclude that neither P nor the negative of its spatial
derivative %bound are required elements of electromag-
netic theory. I show that the quantization and multival-
uedness of P found within the MTOP are consequences
of requiring that P be a property of the bulk and of defin-
ing the excess charge at a surface as σbound = P · n̂. As
Fig. 11 illustrates, the value of σbound depends on how
the surface is terminated (e.g., on a plane of net positive
charge or on a plane of net negative charge). It follows
that both σbound and P must be multivalued unless the
excess surface charge is defined as σ = σbound + σfree,
where σfree takes full account of the dependence of σ on
surface termination.

If it is accepted that P is an unnecessary element of the
theory, the importance of scrapping it should be obvi-
ous from its history: It has been interpreted in at least
three different ways: as a property of the ether, as a
dipole moment density, and as a property of the phase
of a material’s wavefunction. It can be misleading with
regard to physical mechanisms; for example, expressing
the potential energy per unit volume as U = −P ·E sug-
gests that E couples to the bulk, whereas expressing it
as U = −σE makes clear that it only couples to charges
at the surface, initially, and couples to the bulk indi-
rectly by driving charge through it. It can also lead to
false conclusions, such as that lack of inversion symmetry
implies the existence of a uniform (

#»

k = 0 6⇐⇒ #»

k → 0)
macroscopic E field in the bulk of a crystal.

X. SURFACE CHARGE (σ)

A charged surface or interface is not stable unless the
electric potential from it is compensated by, for example,
an oppositely charged surface or interface. The instabil-
ity of isolated charged surfaces is due to the divergence
of the electric potential (see Sec. XIII). If a pristine iso-
lated crystal surface is charged, and therefore unstable
unless neutralized by a change in its composition with
respect to the bulk, it is classified as polar. An impor-
tant question, about which a great deal has been written
(Bristowe et al., 2014, 2011; Finnis, 1998; Goniakowski
et al., 2008; Goniakowski and Noguera, 2011, 2014, 2016;
Noguera, 2000; Noguera and Goniakowski, 2013; Sten-
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gel, 2011; Stengel and Vanderbilt, 2009; Tasker, 1979) is
how to determine whether a particular surface is polar or
non-polar and to quantify its instability by calculating its
surface charge.

A. Calculating surface charge from ρ

It does not seem difficult to intuit the meaning of the
surface areal charge density σ when one first encounters
the concept. However, as soon as one tries to define it,
in order to calculate it, difficulties become apparent.

The obvious way to calculate σ is simply to integrate the
volumetric charge density ρ( #»r ) from a point above the
surface to a point far beneath it. Assuming that the sur-
face is perpendicular to the x−axis, and that %(x) is the
average of ρ( #»r ) over the yz−plane at x, the obvious def-
inition of the yz−averaged areal density of excess surface
charge is

σs(xb) ≡
∫ xb

xL

%(x) dx (48)

Fig. 11 illustrates why this definition fails. It depicts the
‘surface’ of a one-dimensional crystal whose microscale
charge distribution is a semi-infinite periodic array of al-
ternating positive and negative point charges of magni-
tude one. For this simple case the integral in Eq. 48
becomes the sum σs(xb) = 1− 1 + 1− 1 + · · ·. Its value
is either zero or one, depending on the choice of xb, and
it continues to vary between these values ad infinitum as
xb increases. Therefore σs(xb) is a microscopic function
of xb and, as a result, Eq. 48 fails as a definition of σ.

Finnis presented an elegant solution to this problem in
Finnis, 1998, and a generalization of his result to amor-
phous materials is derived by a different route in Sec. VII
and Appendix E. I quote and explain the more general
result below. I then quote Finnis’s result for crystals,
which is simpler and easier to relate to the example de-
picted in Fig. 11.

B. Macroscale surface charge

The problem of how to express σ in terms of ρ is easy
to resolve once it is realised that σ only has meaning at
the macroscale. Microscopically, surfaces and interfaces
are ill-defined entities because their widths are indeter-
minate: in the vicinity of a surface, both structure and
composition differ from the bulk, in general, but they
gradually become more bulk-like with depth. This grad-
ual relaxation means that there is no clear boundary sep-
arating surface-like material from bulk-like material.

However, as Fig. 11 illustrates, even if a material could

be terminated abruptly at a plane and prevented from
changing its local structure (bond lengths and angles) or
composition, such that surface structure and composi-
tion were identical to the bulk, the concept of a surface
charge density simply does not apply at the microscale:
The microstructure is defined on a simply connected sub-
set of R3. One can define an areal charge density on any
plane (e.g., σ(y, z;x) ≡ ρ(x, y, z) dx), but no special sur-
face plane exists.

However, as explained in Sec. VI, the spatial resolu-
tion εx at the macroscale is unavoidably finite and all
points separated by microscopic distances coincide at the
macroscale. As a result, the surface region of indetermi-
nate width is contracted to zero width by the homoge-
nization transformation. It becomes a two dimensional
manifold.

The mesoscale average ρ̄ of ρ at any microscale point
whose macroscale image is on this manifold differs sig-
nificantly (by more than ε%/2), in general, from its value
elsewhere. To understand why, consider the material de-
picted in Fig. 12. There exist planes (e.g., Plane 4) on
which the planar average of ρ does not vanish. It fol-
lows that the three dimensional mesoscale average ρ̄ at
any point (not just points on the charged planes) only
vanishes as a result of cancellation of positive and neg-
ative contributions whose displacements from the point
have components normal to those planes. If all material
from one side of such a plane is removed to create a sur-
face, this balance is disrupted and ρ̄ becomes finite, in
general, at any point within a distance εx/2 of the plane.
The areal charge density σ at a point on the surface man-
ifold is simply the integral of ρ̄ over the point’s preimage
under the homogenization transformation. Therefore it
is the integral of ρ̄ along on an interval of width εx on an
axis normal to the surface. The macroscopic volumet-
ric charge density % is simply the average of ρ̄ on this
interval.

It is logical, then, to define the surface charge as

σ =

∫ xb

xL

%(x) dx. (49)

This integral converges with respect to both of its lim-
its because % = 0 in the bulk and in the vacuum above
the surface. By substituting the definition of % as the
mesoscale average ρ̄ of ρ (Eq. 45), it is shown in Sec. VII
that

σ ≡
∫ xb

xL

ρ(x) dx− M̄〈1〉ρ (xb) ≡ σs(xb) + σb(xb), (50)

where xb is any point deep below the surface and

M̄〈1〉ρ (xb) ≡ −σb(xb) is defined as follows: A meso-
scopic neighbourhood of xb is partitioned into a set
of contiguous microscopic intervals I(x̄m,∆m) such
that xb is at a boundary between two of these mi-
crointervals, and such that the integral of ρ on each
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microinterval is zero. The second condition is al-
ways possible because ρ fluctuates microscopically about
zero. The dipole moment density of the mth inter-

val is M〈1〉ρ (x̄m,∆m) ≡ ∆−1
m

∫∆m/2

−∆m/2
ρ(x̄m + u)u du and

M̄〈1〉ρ (xb) is defined as the average of this quantity over
all microintervals in the discrete and finite set that par-
titions the mesoscale neighbourhood of xb. It is shown

in Appendix E that the value of M̄〈1〉ρ (xb) is the same
for all sets of microintervals that satisfy the conditions
stated above.

Although both σs(xb) and σb(xb) depend sensitively on
xb, their sum is independent of it. This is easy to see
in the special case of a periodic bulk charge density,
ρ(x+ a) = ρ(x). The points xb + ma, where m ∈ Z,
can be chosen as the microinterval boundary points. All
microintervals are identical, in this case, and Eq. 50 sim-
plifies to Finnis’s result:

σ =

∫ xb

xL

ρ(x) dx− 1

a

∫ a

0

ρ(xb + u)u du

= σs(xb)− P(xb + a/2; a). (51)

Note that the definitions of M〈1〉ρ and P are identical. I
use P when it is useful to make clear that it is a dipole

moment density. I use M〈1〉ρ when I favour consistency
with Sec. VII and with related quantities that will be
introduced in Sec. XIII.

Referring again to Fig. 11, and comparing the choices
xb = x1 and xb = x2, we find that σs(x1) = 0 and
σs(x2) = 1. If the minimum distance between pos-
itive and negative charges is denoted by b, then
σb(x1) = b/a and σb(x2) = −(a− b)/a. Therefore,
σs(x1) + σb(x1) = σs(x2) + σb(x2) = b/a.

It may be illuminating to note that applying the homog-
enization transformation is a lot like taking a thermody-
namic limit; and we can think of macroscopic quantities
as thermodynamic quantities which, in a non-ergodic sys-
tem, can only be defined on macroscopic length scales.
Indeed, Finnis’s reasoning when deriving Eq. 51 differed
slightly from the reasoning outlined above. He reasoned
that one should average over an ensemble of terminat-
ing planes (xb), in order to “reconcile the atomistic pic-
ture, in which [surface] excesses appear to oscillate on
the atomic length scale as a function of the [surface] re-
gion size, with the thermodynamic picture.” In the lan-
guage that I have chosen to use here and in Sec. VI, he
found the mesoscale average of the microscopic function
σs(xb). The same result is found by substituting % = ρ̄
into Eq. 49 because, by changing the order of integration,
the integral of a mesoscale average becomes the mesoscale
average of an integral.

The subscripts of σs and σb are abbreviations of ‘sur-
face’ and ‘bulk’, respectively. σs includes all contribu-

tions from compositional differences between the sur-
face and the bulk, including charged adsorbates, sur-
pluses or deficits of electrons, charged impurities, and
non-stoichiometry associated with reconstructions or co-
ordination defects. On the other hand, σb, depends only
on the charge density in the bulk and is independent of
the surface composition. However, it is simplistic and
wrong to view σs as the contribution from extrinsic sur-
face charges and σb as the contribution from the bulk
charge distribution. For example, it is always possible to
choose xb such that σb(xb) = 0 and σ = σs(xb). There-
fore, as well as containing all extrinsic contributions to σ,
σs can contain some, or all, of the contribution from the
bulk. Choosing σb(xb) = 0 is equivalent to the “dipole-
free unit cell” strategy used by Goniakowski et al. to
deduce surface charge and stability (Goniakowski et al.,
2008).

C. Surface Stability

A pristine crystal surface is specified by the structure
of the bulk crystal, the surface-plane orientation, and
the surface termination. Consider the crystal depicted in
Fig. 12 and the two examples given of surfaces of that
crystal, which I’ll refer to as Surface 1 and Surface 2.
These surfaces are defined by the planes (Plane 1 and
Plane 2, respectively) at which one could imagine cleav-
ing the perfect crystal. Each plane is defined by an ori-
entation, which can be specified by the outward surface
normal n̂, and by a position along an axis parallel to n̂.
The importance of the relative displacements of parallel
surface planes is illustrated by the fact that Surface 2 is
negatively charged, whereas the surface created by cleav-
ing at Plane 3 would be positively charged. In Fig. 12 I
am considering an unphysical frozen surface where I have
not allowed any relaxation from the bulk charge density
Nevertheless, this unphysical surface suffices to allow the
surface polarity to be quantified using Eq. 51.

If we could prepare the frozen surfaces depicted in Fig. 12,
when we allowed them to relax in a vacuum they would
relax and/or reconstruct. The surface might even melt.
However, as long as the bulk crystal did not melt, or the
surface didn’t banish ions or electrons from it (in the case
of Surface 2 we would probably need to apply an electric
field to prevent this), none of the structural change near
the surface would have any impact on the surface charge,
σ, because the integral of the charge density between the
surface and the crystalline bulk, which is the first term
in Eq. 51, would be unchanged.
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FIG. 12 A lattice of point charges can notionally be cleaved along an infinite number of lattice planes. Here, four lattice planes
are shown in cross section as dashed lines. Plane 4 intersects a lattice of positive point charges and is included to illustrate
a point made in Sec. X.B. Cleaving along Planes 1, 2, and 3, produce Surfaces 1, 2, and 3, respectively; Surfaces 1 and 2
are shown on the right. Deducing whether a surface is polar is as simple as constructing a unit cell of the crystal (shown in
green), which has two lattice vectors that are parallel to the surface plane and one face at the surface, and calculating the
dipole moment of this cell. The surface is polar if and only if the projection of the dipole moment onto the surface normal is
non-zero. Surface 1 is non-polar but Surface 2 is polar. Surface 3 would be positively charged, despite Planes 2 and 3 being
parallel and Surface 2 being negatively charged. Therefore, the orientation of the plane determines whether or not it is polar,
but not the value of the surface charge density. One could also construct the dipole-free unit cell (navy boundary) and, if this
cannot be constructed with one of its faces at the surface, the integral of the charge density from its uppermost face to the
surface is the surface charge density, σ.

D. Interface charge

By treating an interface between two materials as a pair
of adjoined surfaces it is straightforward to show that the
interface charge is

σ =

∫ x2

x1

ρ(x) dx+ M̄〈1〉ρ̄ (x1)− M̄〈1〉ρ̄ (x2) (52)

where x1 is an arbitrary point in the bulk of the material
on one side of the interface and x2 > x1 is an arbitrary
point in the bulk of the material on the other side.

As a sanity check, let us imagine a plane perpendicu-
lar to x̂ at position xb in the bulk of a mesocopically-
uniform material. This plane can be viewed as an in-
terface between two perfectly-aligned identical materials.
The charge density at this imaginary interface is

σ =

∫ xb+u

xb−u
ρ(x) dx+ M̄〈1〉ρ̄ (xb − u)− M̄〈1〉ρ̄ (xb + u)

where u can have any value since all points on either side
of xb are in the bulk. For the sake of brevity, I choose
the limit u→ 0+, which leads immediately to σ = 0, as
should be the case. It is not too difficult to prove that
σ = 0 for an arbitrary value of u in a non-periodic sys-
tem.

E. Consistency with the standard model of macroscale
electrostatics

Standard treatments of macroscale electrostatics tend to
distinguish between a free charge density %free =∇ ·D
and a bound charge density %bound = −∇ ·P, where
% = ε0∇ ·E =∇ ·D−∇ ·P = %bound + %free. Substi-
tuting into Eq. 49 gives

σ =

σfree︷ ︸︸ ︷∫ xb

xL

%free(x) dx

σbound︷ ︸︸ ︷
−
∫ xb

xL

∇ ·P dx

=

∫ xb

xL

%free(x) dx + P · n̂ (53)

and consistency with Eq. 51 requires that∫ xb

xL

%free(x)dx + P · n̂

=

∫ xb

xL

ρ(x) dx+P (xb + a/2, a) · n̂. (54)

Both terms on the right hand side depend sensitively on
xb. However, because xb is arbitrary, both terms on the
left hand side must be independent of it if physical mean-
ing can be attributed to them independently of one other.



44

One way to resolve this is by defining %free and P to be
the mesoscale averages of ρ and P , respectively. That is,
%free ≡ ρ̄ = % and P ≡ P̄ = 0 (see Eq. 47), which implies
that %bound = 0 and σbound ≡ P · n̂ = 0. These defini-
tions preserve consistency between the standard model of
electrostatics in dielectrics and the apparently-reasonable
definitions of % and σ presented herein; namely, % is the
mesoscale average of ρ and σ is its integral across a sur-
face. However, achieving consistency in this way entails
discarding several quantities from the standard model of
electrostatics: D, P, and %bound all vanish and %free is
simply %. The macroscopic Maxwell equations are now
identical in form to their microscopic counterparts be-
cause averaging commutes with differentiation; for ex-
ample,

ε0∇ · E(x) = ρ(x)⇒ ε0∇ ·E(x) = %(x). (55)

1. Quantization of P

It is important to consider carefully whether or not the
less drastic option of keeping quantities P, D, %bound,
and %free within the macroscale theory is logical or viable.
In this section I assume that P remains an element of the
theory and I show that consistency with the definitions
of % (Eq. 45) and σ (Eq. 49) requires it to be quantized.

The fact that P would be quantized for a classical crystal
in the same way as it is quantized in the MTOP appears
to have been appreciated from the beginning (Vanderbilt,
2018; Vanderbilt and King-Smith, 1993). I explain it here
for completeness, and also to emphasize it, because it is
easy to misinterpret the term quantum of polarization as
referring to something quantum mechanical.

As before I consider the surface of a pristine perfect crys-
tal whose outward unit normal is n̂ and whose structure
and composition have not been allowed to change after
all the material on one side of the surface plane was re-
moved. I choose the crystal’s primitive lattice vectors
(a1,a2,a3) such that a1 · n̂ > 0, a2 · n̂ = a3 · n̂ = 0, and
n̂ · (a2 × a3) = AΩ > 0. The volume of the bulk crys-
tal’s unit cell is Ω ≡ a1 · (a2 × a3) = |a1|AΩ. The sur-
face, which is a two dimensional lattice, has primitive
lattice vectors (a2,a3) and the area of its primitive unit
cell is AΩ. Given the surface normal n̂, this choice of
primitive unit cell of the bulk crystal allows all surface
terminations to be identified by a single parameter α,
which is the position along n̂ at which the uppermost
primitive cell is sliced to form the surface. For example,
surfaces formed by cleaving at Planes 2 and 3 of Fig. 12
differ only by their values of α. In this simple case the
value of α determines only whether the uppermost plane
is a plane of cations or a plane of anions. In more general
cases the electron density would also be divided; however,
it would be unphysical to remove fractions of electrons

by removing all density above the termination plane, so
I assume that the integral of the density that remains
in the uppermost cell is rounded up to a whole number.
How this density is distributed has no bearing on the
arguments to follow.

The excess bound charge at the surface of the crystal
is σbound = P⊥ ≡ P · n̂. Within the standard model of
electrostatics P is a bulk quantity and so it must be inde-
pendent of surface termination α. Therefore σbound must
be the same for all surfaces whose outward normal is n̂.
However, as discussed in Sec. X.C, and as Fig. 12 illus-
trates, σ = σbound + σfree is not the same for all values
of α. One could choose to include all of the α-dependence
of σ in σfree, which would leave σbound independent of
surface termination. However, this is not the approach
taken within the MTOP (Stengel, 2011; Vanderbilt and
King-Smith, 1993). The MTOP assumes the standard
convention that %free and σfree only contain contribu-
tions from charges that are not intrinsic to the mate-
rial (Ashcroft and Mermin, 1976; Jackson, 1998). As a
consequence of preserving this old convention, P must be
quantized (Vanderbilt, 2018; Vanderbilt and King-Smith,
1993). I now prove this.

There are no extrinsic charges in the idealized surfaces
constructed; therefore σfree = 0 and σ = σbound = P⊥.
Now, because σ is known and single-valued, and because
it can be changed to the value it would have for any other
value of α by adding/removing the same numbers and
types of particles (nuclei and electrons) to/from each unit
cell of the surface lattice, σbound must be multivalued.
Its set of values must be the set of values of σ for every
possible choice of surface termination, α. These values
differ by integer multiples of e/AΩ. Therefore, P⊥ is
quantized such that if ∆P is the difference between two
values of P that are consistent with Eqs. 45 and 49, then

∆P⊥ ≡ ∆P · n̂ =
m1 e

|a2 × a3|
=

m1 e

a1 · (a2 × a3)
a1 · n̂

⇒ ∆P =
m1 e

Ω
a1 + ∆P‖,2 a2 + ∆P‖,3 a3

where ∆P‖ ≡ ∆P‖,2 a2 + ∆P‖,3 a3 = ∆P−∆P⊥ n̂, and
m1 is an integer. By considering surfaces perpendicular
to a3 × a1 and a1 × a2, the same logic would lead me
to the following general expression for the difference be-
tween any two values of polarization that are consistent
with Eqs. 45 and 49.

∆P =
eA

Ω
(56)

where A = m1 a1 +m2 a2 +m3 a3 is an arbitrary lattice
vector and m1,m2,m3 ∈ Z. This is identical to the quan-
tization of P deduced within the MTOP, but this deriva-
tion makes clear that the quantization of P is not a quan-
tum mechanical quantization because I have not invoked
quantum mechanics to deduce it. It is a consequence of
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adopting the apparently arbitrary and unnecessary con-
vention that, in the absence of extrinsic charges, σbound

is the total surface charge density, and of preserving the
macroscale theory’s internal consistency while shoehorn-
ing P into it.

F. Mapping to a set of localized charge packets

In this section I present a result that is pivotal for un-
derstanding the relationship between this work, which is
founded on a systematic approach to structure homoge-
nization, and the MTOP’s definition of polarization cur-
rent, which is founded on quantum mechanical perturba-
tion theory.

Let us express the charge density as the sum,
ρ(x) =

∑
i ρi(x), of a set of localized charge packets, {ρi},

where each ρi is either nonpositive or nonnegative. The
total charge in the ith packet is qi and its center of charge
is xi. That is,

qi ≡
∫ ∞
−∞

ρi(x) dx , xi ≡
1

qi

∫ ∞
−∞

ρi(x)x dx .

I assume that each ρi can be chosen such that it is
negligible outside interval I(xi, εx). For a system of
nuclei and electrons whose charge density is given by
Eq. 3, the nonnegative packets are ρi(x) ≡ Zi e δ(x−Xi)
and the nonpositive packets are ρi(x) ≡ −e ni(x), where
n(x) ≡

∑
i ni(x) is the electron number density parti-

tioned into a set of packets, {ni}.

The localization transformation ρi(x)→ qi δ(x− xi) con-
serves charge and preserves ρi’s center of charge. There-
fore, the transformation of ρ into the discrete distribution
of point charges ρq(x) ≡

∑
i qi δ(x− xi) is an isotropic

spatial redistribution of charge. By ‘isotropic’ I mean
that it does not change the center of charge of either ρ or
%̃ ≡

∑
i∈I ρi, where I is any subset of the set of packet

indices. The equitable movement of charge in both direc-
tions cannot change the macrostructure if charge is only
moved across distances smaller than εx = dx. Therefore,
the macroscale counterpart %q of ρq cannot differ from %.
From this fact, and from Eq. 50, it follows that

σ =

∫ xb

xL

%q(x) dx =
∑

i:xi<xb

qi − M̄〈1〉ρq (xb) (57)

Note that the derivation of Eq. 39 in Sec. VII assumed
that space could be partitioned into microintervals whose
net charges were equal. This is always possible for a
continuous charge density, but it is not possible for the
ρq’s resulting from every possible partitioning of ρ into
packets because the integral of ρq on each microinterval is
a sum of point charges. If the magnitudes of these charges
are irregular it is not possible, in general, to partition

space such that each interval’s average charge density is
precisely the same. It seems likely that a more general
derivation, which does not require each microinterval to
have the same average charge density, is discoverable.

In the bulk of a crystal with periodicity a, the charge
packets can be chosen such that, for any packet ρi, whose
center is xi, there are identical packets with centers at
xi +ma for all m ∈ Z. In this case, the surface charge is

σ =
∑

i:xi<xb

qi −
1

a

∑
i:xi∈(xb,xb+a)

qi xi, (58)

where I am assuming that
∑
i:xi∈(xb,xb+a) qi = 0. The

time derivative of Eq. 58 is the current J. If the con-
duction current vanishes, it is the polarization current
J(p).

XI. CURRENT (J)

As discussed in Sec. IV.H, unless it is prohibited by sym-
metry, a polarization current J(p) flows through the bulk
of a material in response to any stimulus ζ → ζ + ∆ζ,
where ζ might be temperature, an externally-applied
electric, magnetic, or stress field, or anything else
that changes the material’s equilibrium or steady-state-
nonequilibrium microstructure.

A. Polarization current as a rate of change of surface
charge

When all charge that flows through the bulk, by any
mechanism, or in response to any stimulus, accumulates
at surfaces, the current density deduced from Eq. 50 is
simply

J =
.
σ =

∫ xb

xL

∂ρ

∂t

∣∣∣∣
(x,t)

dx− ∂M̄〈1〉ρ
∂t

∣∣∣∣
(xb,t)

(59)

Therefore, the current can be calculated if the time-
dependent charge density ρ(x, t) (or %) is known every-
where. However, the amount of charge that can flow in an
isolated material is limited and surface microstructures
tend to be more difficult to calculate than microstruc-
tures in the bulk of crystalline materials. Therefore, we
would like to be able to calculate J(p) from the evolving
equilibrium bulk microstructure.

If we can partition the electron density of a crystal into
packets, we can use Eq. 58 to express the current density
as

J =
.
σ =

∑
i:xi<xb

q̇i −
1

a

∑
i:xi∈(xb,xb+a)

(q̇ixi + qiẋi) , (60)
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where each pair (xi, qi) is either the position and charge
of a nucleus or the center and −e times the integral
of a packet ni of electron density; and where xb has
been chosen to not coincide with any of the xi’s. Let
us denote (xb, xb + a), which is a primitive unit cell
of the crystal, by Ω; let us denote the sum of all ni
whose centers are in Ω by nΩ(x, t) =

∑
i:xi∈Ω ni(x, t);

and let us denote the charge distribution of the nu-
clei in Ω by ρ+

Ω(x, t). Finally, let us assume that
the packets have been chosen such that the integral
of ρΩ = ρ−Ω + ρ+

Ω , where ρ−Ω(x, t) = −enΩ(x, t) , is zero.
Then, since the charge density in each primitive cell in
the bulk is identical, the electron density in the bulk
must be n(x, t) =

∑
m∈Z nΩ(x+ma, t), where a = |Ω| is

the lattice constant and ma is a lattice vector. We have
then realised the situation described in the discussion of
Fig. 3 in Sec. V: we have partitioned the charge density
of the crystal’s bulk into a set of identical neutral charge
densities that are displaced from one another by lattice
vectors. Then, because the bulk must remain charge neu-
tral, the integral (Me) of nΩ remains constant and the
polarization current is given by

J(p) = −1

a

∑
i:xi∈Ω

(q̇ixi + qiẋi) (61)

= −Mee

a

(
Ẋ+

Ω − Ẋ
−
Ω

)
= − ḋΩ

a
=

.
P(xb + a/2, a) · n̂

where X+
Ω and X−Ω are the centers of charge of ρ+

Ω and ρ−Ω ,
respectively; and I have used the fact that the sum of all
the positive qi’s in Ω and the sum of all the negative qi’s
in Ω are both time independent and equal to Mee and
−Mee, respectively. If each packet ni has an integral
that remains constant, the polarization current can also
be expressed as

J(p) = −1

a

∑
i:xi∈Ω

qiẋi (62)

and when the integral of each ni is one (× spin degener-
acy), this is equivalent to the MTOP definition of J(p).

The generalization of Eq. 61 to amorphous materials is

J(p) = −1

`

∑
i:xi∈I(xb,`)

(q̇ixi + qiẋi) . (63)

Although the result for crystalline systems appears to
be exact and precise, there are variations (∼ a/`) in the
value for amorphous systems with the choices of xb and
` because of differences in the averages of q̇ixi + qiẋi on
different intervals. Furthermore, because the net charge
Q =

∑
i:xi∈I(xb,`)

qi of interval I(xb, `) is not, in gen-

eral, zero, the value of J(p) calculated from this expres-
sion has an origin dependence unless Q is constant. In
practice, it may be easier to find a set of packets ni

whose integrals are constant (⇒ q̇i = 0) and to calculate
J(p) ≡ −(1/`)

∑
i:xi∈I(xb,`)

qiẋi.

If we define the conduction current as J(c) ≡ J− J(p),
it is simply equal to −e times the sum of the rates of
change of the integrals of the packets ni with centers in
the surface region, i.e.,

J(c) =
∑

i:xi<xb

q̇i. (64)

Regardless of the choice of xb, this does not contain any
contribution from bulk-like primitive cells, because the
sum of the integrals of the packets in each bulk-like cell
is constant and equal to Me.

B. H-representability and H(t)-representability of n

I have established that J(p) can be calculated from any
evolving bulk microscopic charge density ρ(x, t) that can
can be expressed as a sum

∑
i ρi of moving packets of

fixed amounts charge, each of which is either non-positive
or non-negative. When such a representation exists, it is
not unique because, for example, one can always add to
any given representation a co-moving pair of packets of
equal and opposite charge, or combine multiple packets
into a single packet.

Clearly the distribution of nuclear charge admits such a
representation, so in this section I focus on electrons.

1. Electrons

I say that a number density n(x) is H-representable if
there exists a projector P̂ onto a Hilbert space of dimen-
sion Ne =

∫
n such that n(x) = 〈x|P̂|x〉. I say that a

number density n(x, t) is H(t)-representable (‘Ht repre-
sentable’) if it is H-representable at all relevant times t
and if its time-dependent projector P̂(t) evolves smoothly
with t.

It is known that the ground state electron density of any
material is either noninteracting v-representable or ar-
bitrarily close to a noninteracting v-representable den-
sity (van Leeuwen, 2003). This means that it can be

represented as a set of packets ni = |ϕi|2 of integral one
(two for spin-degenerate packets), where the ϕi’s are the
lowest-eigenvalue eigenstates of a single electron Hamil-
tonian, ĥ.

I make an adiabatic approximation by assuming that the
ground state density’s time dependence can be expressed
as a parametric dependence on a slowly- and smoothly-
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FIG. 13 Consider the ground state number density n(x; ζ)
of two spin-zero electrons in a static confining potential
vext(x; ζ) = −eφ(x; ζ), where ζ is some physical parameter
(e.g., Eext). Since n(ζ) : R→ R+;x 7→ n(x; ζ) is arbitrar-
ily close to a non-interacting v-representable density (van
Leeuwen, 2003), it can be represented as a linear sub-
space Hζ ≡ span {|ϕ1(ζ)〉 , |ϕ2(ζ)〉} of the Hilbert-Lebesgue
space L2(R) = span {|ϕi(ζ)〉}∞i=1, where {|ϕi(ζ)〉}∞i=1 are the
orthonormal eigenvectors of operator

∑∞
i=1 εi |ϕi(ζ)〉〈ϕi(ζ)|;

ε1, ε2 ∈ R are its lowest eigenvalues; and n(x; ζ) = 〈x|P̂ζ |x〉,
where P̂ζ = |ϕ1(ζ)〉〈φ1(ζ)|+ |φ2(ζ)〉〈φ2(ζ)| is the projector
onto Hζ . |ϕ1(ζ)〉 and |ϕ2(ζ)〉 are represented above, for some
value of ζ, by solid black arrows and |ϕ3(ζ)〉, which is in the
orthogonal complement H⊥

ζ of Hζ , is the black dashed ar-
row. If ζ begins to vary continuously, and if n(ζ)’s response
to this variation is non-singular, Hζ changes continuously by
rotating within L2(R). The directions of |ϕ1(ζ)〉 and |ϕ2(ζ)〉
change continuously (from black to blue) by mixing with vec-
tors from H⊥

ζ . However there may exist a critical value ζc
(dotted red lines) at which ε3 becomes lower than ε2, causing
Hζ to change abruptly to span {|ϕ1(ζ)〉 , ϕ3(ζ)}. At such a
point there is a discontinuous redistribution of electron den-
sity in R. Before the dotted red line is reached the current
is −e (ẋ1 + ẋ2), where ẋi denotes the time derivative of the
center of |ϕi(x; ζ)|2 = |〈x|ϕi(ζ)〉|2. In a crystal the dimension
of Hζ is very large (∼ 1024), but its basis can be transformed
to one for which there are the same number of centers in
each primitive unit cell. Then, if the density’s response is
continuous, the current in the bulk can be calculated from
the velocities of the centers in a single unit cell. This is the
essence of the MTOP method of calculating J(p). When the
density’s response is singular, multiple basis vectors can be
exchanged between Hζ and H⊥

ζ in less time than it takes for
electrons to respond. In that case the MTOP approach fails
because, for example, if |ϕi(ζ)〉 and |ϕj(ζ)〉 are replaced in
Hζ ’s basis by |ϕk(ζ)〉 and |ϕl(ζ)〉, the value of J calculated
by assuming that the density at xi was displaced by xk − xi
to xk and the density at xj was displaced by xl − xj to xl,
would differ, in general, from the value calculated by assum-
ing that the densities at xi and xj were displaced to xl and
xk, respectively.

varying stimulus ζ(t). I express it as

n(x; ζ) =
∑
i≤Ne

|ϕi(x; ζ)|2 = 〈x|P̂ζ |x〉 (65)

where ϕi(x; ζ) ≡ 〈x|ϕi(ζ)〉 and

P̂ζ ≡
∑
i≤Ne

|ϕi(ζ)〉〈ϕi(ζ)| (66)

is a projector onto the Hilbert space Hζ spanned by the
Ne eigenvectors |ϕi(ζ)〉 of the single electron Hamilto-

nian ĥ(ζ) with the lowest eigenvalues. Hζ is an Ne-
dimensional subspace of L2(R), the infinite-dimensional
Lebesgue space of square integrable functions on R. It
changes as ζ changes and the eigenstates of ĥ(ζ) change.

To understand the representability problem, it may be
useful to visualize it as it is depicted in Fig. 13. In
an insulator each vector in the basis {|ϕi(ζ)〉}Nei=1 of Hζ
changes gradually with ζ as vectors from its orthogonal
complement H⊥ζ are mixed into them. Therefore Hζ ro-

tates smoothly within L2(R) as ζ changes. This is be-

cause there is a gap in the eigenspectrum of ĥ(ζ) between
the N th

e and the (Ne + 1)th lowest eigenvalues, which
never closes as ζ changes. In a metal, by contrast, the
N th
e eigenvalue is in a region of the spectrum where there

is a quasicontinuum of eigenvalues. As ζ changes, the or-
dering of the eigenvalues is quasicontinuously changing,
and each time the N th

e eigenvalue and the (Ne + 1)th

eigenvalue cross, the N th
e basis vector |ϕNe(ζ)〉 ∈ Hζ is

replaced with a vector |ϕNe+1(ζ)〉 ∈ H⊥ζ to form Hζ+dζ .

The serene rotation of the basis vectors in a insulator
is illustrated by the rotation of the basis {|ϕ1〉 , |ϕ2〉} in
Fig. 13 before |ϕ2〉 reaches the red dashed line, which in-
dicates where the second and third eigenvalues become
equal in this two-electron example. As soon as the vari-
ation of ζ rotates |ϕ2〉 past the red line, Hζ changes
abruptly from span{|ϕ1〉 , |ϕ2〉} to span{|ϕ1〉 , |ϕ3〉}. The
quasicontinuum of eigenvalues in a metal means that,
instead of Hζ smoothly rotating, there is a rapid click-
clacking of vectors in and out of its basis.

If ζ changes infinitely slowly, the electrons have time to
reach, and settle at, each instantaneous H-representation
before it changes. The system can then be assumed to be
close to equilibrium almost all of the time. However im-
mediately after each exchange of basis vectors between
Hζ and H⊥ζ , it could be far from equilibrium. This is
likely to be the case if states are widely-separated spa-
tially, such as when they are localized on opposite sur-
faces or on oppositely-charged electrodes attached to dif-
ferent parts of the material. At values of ζ at which
the H-representation changes, the response of n(x; ζ) to
changes of ζ is singular and occurs via a nonequilibrium
dynamical process involving many electrons, in general.
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If the exchange of basis vectors between Hζ and H⊥ζ
occurs frequently, as is the case in a metal, the elec-
tron density does not have time to reach each new H-
representation before it changes again. Therefore the re-
sponse of electrons in a metal to applied fields is singular
and governed by nonequilibrium dynamics.

In an insulator Hζ rotates smoothly and its dimension
is & 1024 for materials at the human scale. The set
of vectors that span it can always be transformed uni-
tarily among themselves to localize them or delocalize
them. These transformations do not change Hζ or the

projector P̂ζ . Therefore they do not change the den-

sity n(x; ζ) = 〈x|P̂ζ |x〉 or the current J(p). Therefore,
although it is common to transform the eigenfunctions
of ĥ(ζ) to a more localized set of basis functions by lin-
early combining them, in principle this is not necessary.

XII. SINGLE PARTICLE STATES

As mentioned above, one can change the minimal (Ne-
fold) basis of Hζ by rotating it. As shown in Sec. V,
one can also change from a position (x) representation,
or basis, of each basis vector of Hζ to a wavevector (k)
representation of each state, i.e.,

|ϕi(ζ)〉 =

∫
R

dxϕi(x; ζ) |x〉

where ϕi(x; ζ) ≡ 〈x|ϕi(ζ)〉 and 〈x|x′〉 = δ(x− x′), or

|ϕi(ζ)〉 =

∫
R

dk ϕ̃i(k; ζ) |k〉 ,

where ϕ̃i(k; ζ) ≡ 〈k|ϕi〉, 〈k|k′〉 = δ(k − k′), and
〈x|k〉 ≡ eikx/

√
2π. One can also use a mixed posi-

tion/wavevector representation, as we have already seen
in Sec. V.B.1. This is a common way to exploit the
translational symmetry of a crystal: Roughly speaking,
real space is used to describe the electronic structure in
a single primitive unit cell Ω and reciprocal space is used
to describe variations of the structure between different
primitive cells.

The polarization current can be calculated in any mini-
mal basis {|ϕi(ζ)〉}Nei=1 of Hζ and for any choice of the
basis in which each vector |ϕi(ζ)〉 is represented as a
function. All that is needed is the position operator for
the chosen representation, which is simply x when work-
ing with ϕi(x; ζ) ≡ 〈x|ϕi(ζ)〉 and is i ∂/∂k when working
with ϕ̃i(k; ζ) ≡ 〈k|ϕi(ζ)〉.

A. Bloch and Wannier functions

As discussed in Sec. V.B.1, when describing the bulk of
a material theoretically, or when simulating the bulk of

a material, it is common to use Born-von Kármán peri-
odic boundary conditions (Born and von Kármán, 1912).
This is equivalent to representing the material’s bulk in
a torus T (or Tn, in n-d), which obviates the need to deal
with surfaces. If the material is a crystal, the absence of
any surfaces means that, at thermal or mechanical equi-
librium, the distributions of electrons and nuclei have the
exact |Ω|-periodicity of the crystal.

In solid state physics it is common to use T to study
the electronic subsystem in the presence of a |Ω|-periodic
distribution of static nuclei. In the limit of heavy nuclei,
the energy of interaction between electrons and nuclei is
(n, vext) ≡

∫
T n(x)vext(x) dx, where vext is a |Ω|-periodic

external potential. It is also common to simplify the elec-
tronic structure of the crystal with the assumption that
the electron density, n(x), can be built from the eigen-

functions of an effective one-electron Hamiltonian, ĥ(x),
which inherits |Ω|-periodicity from vext.

The eigenfunctions of a |Ω|-periodic operator are
known as Bloch functions, and they have the form
ϕαk(x) ≡ 〈x|ϕαk〉 = eikxuαk(x), where the Bloch state

|ϕαk〉 is an eigenstate of
∫
T dx ĥ(x) |x〉〈x| and uαk(x)

is known as a periodic Bloch function (PBF) because
it has the crystal’s |Ω|-periodicity (see Sec. V.B.1).
Both ϕαk(x) and uαk(x) are delocalized over the en-
tirety of T, and it follows from the eigenvalue equation,
ĥϕαk = εαkϕαk, that uαk is an eigenfunction of the k-
dependent Hamiltonian ĥk(x) ≡ e−ikxĥ(x)eikx.

In the large-torus limit, ĥk varies continuously with k.
Therefore the eigenstates at different values of k can be
labelled such that uαk and its eigenvalue εαk vary contin-
uously with k. When the eigenvalues are plotted as func-
tions of k, the set of points {(k, εαk)}k forms a surface.
Note that I use a subscript k on the parentheses to denote
that different elements of the set correspond to different
values of k; and the absence of a subscript α denotes
that α is the same for all elements of the set. Therefore
{(k, εαk)}k and {(k, εβk)}k are different surfaces if α 6= β.
Each surface, or set of intersecting surfaces, is usually re-
ferred to as a band because its projection onto the energy
(eigenvalue) axis is a band, or interval, of energies.

Let us assume that the set of all Bloch functions,
{ϕαk}αk, has been chosen to be orthonormal. Then, in
an insulator, the electron density can be expressed as

n(x) =
∑
αk

|ϕαk(x)|2 = 〈x|

(∑
αk

|ϕαk〉〈ϕαk|

)
|x〉 ,

where the sum over αk is a sum over a finite number of
‘occupied’ states, which for our purposes simply means
states that contribute to n, and each state is either va-
cant or occupied by one electron. In Sec. V.B.1 it was
shown how J(p) could be calculated directly from the set
of PBFs using Eq. 14. Now let us try to calculate it using
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Eq. 62, and let us also try to relate it more directly to
the depiction, in Fig. 13, of the mathematical process by
which a polarization current arises.

The Bloch states are an orthonormal basis for the H-
representation of n and, by symmetry, there are the same
number of Bloch state centers in each primitive unit cell
of the crystal. Therefore, we could use Eq. 62 to cal-
culate J(p) from the velocities of their centers in one
particular primitive cell. However, although this would
yield the correct value of J(p), because the Bloch func-
tions are delocalized, this mapping of the density onto
a set of point charges is conceptually inconsistent with
the mapping envisaged in Sec. X.F. There we assumed
a mapping of the charge density, ρ− = −en, onto charge
packets of microscopic widths, rather than delocalized
distributions. Therefore, let us seek a localized basis for
the H(t)-representation of n(x; ζ(t)).

First, let us express the density as n(x; ζ) =
∑
α nα(x; ζ),

where nα(x; ζ) ≡
∑
k |ϕαk(x; ζ)|2 is the density from

all Bloch states that contribute to band α. We
know that each nα is H(t)-representable because
P̂α(ζ) ≡

∑
k |ϕαk(ζ)〉〈ϕαk(ζ)| is the projector onto its H-

representation. Therefore the polarization current can be

calculated as the sum J(p) ≡
∑
α J

(p)
α , where J

(p)
α is the

polarization current from the variation of nα(x; ζ) with
ζ. This becomes more complicated when bands intersect
one another (Souza et al., 2001), but I will assume that
they do not.

Let us focus on the contribution J
(p)
α of band α to J(p).

We can transform the Bloch functions to a more localized
set with the generalized Fourier transform

wαX(x; ζ) ≡ 1√
NΩ

∑
k

e−ikXeiθα(k)ϕαk(x; ζ), (67)

where NΩ is the number of primitive unit cells in T; X
identifies a particular position (x) within the torus; and
θα(k) is any x-independent constant or function of k. The
function wαX , which is localized in real space, is known as
a Wannier function (Blount, 1962; Ferreira and Parada,
1970; Kohn, 1973; Wannier, 1937). It can be shown
that, for any choice of X0, the set {wαX : X ∈ X (X0)},
where X (X0) ≡ {X0 +m|Ω| : 0 ≤ m ≤ NΩ − 1}, is both
orthonormal and satisfies∑

k

|ϕαk(x; ζ)|2 =
∑
X

|wαX(x; ζ)|2 = nα(x; ζ).

Therefore, the set {|wαX(ζ)〉 : X ∈ X (X0)} of NΩ Wan-
nier states, where |wαX(ζ)〉 ≡

∫
T dxwαX(x; ζ) |x〉, is a

minimal orthonormal basis of theH-representation of nα,
and P̂α(ζ) =

∑
X∈X (X0) |wαX(ζ)〉〈wαX(ζ)|.

Because an integer multiple of |Ω| separates any two of
the chosen points X, each primitive unit cell contains one
of them. Furthermore, by substituting ϕαk = eikxuαk

into Eq. 67 and using the periodicity of uαk, it can be
shown that any given Wannier function in the set trans-
forms into any other under a lattice translation m|Ω|,
where m ∈ Z. Therefore, each primitive cell contains the
center of exactly one of them and we have decomposed
nα into a periodic array of identical localized packets of
electron density, |wαX(x)|2. It follows from Eq. 62 that

J
(p)
α = eẊ/|Ω|.

The degree to which the Wannier functions are lo-
calized depends on the choice of the function θα(k),
but the most localized set, which is commonly known
as the set of maximally-localized Wannier functions
(MLWF) (Marzari et al., 2012; Marzari and Vanderbilt,
1997), is obtained when it is a k-independent constant
(see Ferreira and Parada, 1970 and Appendix C).

1. Interpretation of Wannier functions

Wannier functions, whether maximally localized or not,
are not specific to quantum mechanics and there is no
obvious reason to attach any particular physical meaning
to them.

If a density is H-representable, its H-representation
has an infinite number of orthonormal minimal bases.
Among those, there must exist a maximally localized ba-
sis and a maximally delocalized basis. This is a mathe-
matical observation which does not imply that elements
of these extreme sets have any further meanings or any
physical meanings. Therefore claims that MLWFs have
greater physical significances than elements of other min-
imal bases should be substantiated and the precise phys-
ical meanings attributed to them should be clarified.

The Wannier states of band α are eigenstates of any
operator of the form D̂ ≡

∑
X dX |wαX〉〈wαX |, which

means that the Wannier functions are eigenfunctions of
the generally-nonlocal integral operator whose kernel is
〈x′|D̂|x〉. However, because electrons want to delocalize,
rather than localize, Wannier functions are not, in gen-
eral, either the eigenfunctions, or approximately equal to
the eigenfunctions, of an operator that could reasonably
be interpreted as the Hamiltonian of a real or idealized
physical system. Therefore if, in a many-particle system,
there existed single-particle states that could be regarded
as ‘physical’, in the sense that they resembled states that
individual particles would like to occupy in a system with
simplified energetics (e.g., mean field interactions), they
would not be localized, in general, and certainly not by
their mutual repulsion. For example, changing a single-
particle Hamiltonian, ĥ ≡ t̂+ v̂ext, by adding a repulsive
mean-field Coulomb potential from one or more localized
clouds of negative charge to v̂ext < 0, would not make its
eigenfunctions more localized, in general.
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Furthermore, there is no ‘natural’ or right way to parti-
tion the density into the same number of packets as there
are electrons. Therefore v̂ext, which together with Ne de-
termines the character of chemical bonds, and which is
usually the only localizing influence on electrons, does not
localize partitions of the density individually. It localizes
the density as a whole. There is nothing within rigorous
physical or chemical theory to suggest that it bestows a
density with a substructure of localized partitions.

I emphasize this point because it has been claimed that
Wannier functions, and MLWFs in particular, can pro-
vide insight into chemical bonding by elucidating the sub-
structure of the electron density (Marzari et al., 2012;
Marzari and Vanderbilt, 1997). However, this claim has
not been justified theoretically, but by references to the
chemistry literature: It was claimed in Marzari and Van-
derbilt, 1997 and Marzari et al., 2012 that chemists use
localized molecular orbitals, which are the analogs of ML-
WFs for molecules, for this purpose. However, the pa-
pers cited, namely Boys, 1960, Foster and Boys, 1960a,
Foster and Boys, 1960b, and Edmiston and Ruedenberg,
1963, do not justify using localized orbitals to analyse
bonds, and they did not introduce them to represent the
parts of the electron density that are most important to
bonding. They introduced them to deal more efficiently
with those parts of the electron density that are least
important to bonding, or to changes in bonding.

For example, when one is interested in a reaction that
involves one reactive part of an otherwise-inert large
molecule, it is unnecessary and computationally expen-
sive to treat all parts of the molecule as reactive. One
can freeze the electronic structure of the inert part and
calculate its effects on the reactive part using methods
that are much more computationally efficient than treat-
ing the whole molecule as reactive would be.

The same trick can be played when studying multiple
large molecules, which are mostly the same, but have
different functional groups in one relatively-small re-
gion. After calculating the electronic structure of one
of the molecules, it should not be necessary to recalcu-
late it from scratch for another molecule: it is more ef-
ficient to reuse parts of the density that are unaffected
by the differences in functional groups. Localized or-
bitals were introduced to facilitate this partitioning of
the electronic structure (Boys, 1960; Foster and Boys,
1960a,b). For example, in calculations based on den-
sity functional theory, a boundary can be chosen be-
tween the reactive part of the molecule, R, and the
unreactive part, U , and the density can be partitioned
using the centers x̄α of the localized functions wα as
n(x) =

∑
x̄α∈R |wα(x)|2 +

∑
x̄α∈U |wα(x)|2. The more

localized the functions wα are, the more well-defined the
boundary is.

B. Localized orbital-based models of bonding

Some of the concepts that appear in introductory chem-
istry textbooks do not have theoretical justifications,
and were introduced, or originated, when very little was
known about electrons and bonding (Gillespie and Robin-
son, 2007; Lewis, 1916; Pauling, 1960). One example is
the idea that the electron density possesses a substruc-
ture of integer-occupied localized orbitals. Another is
the idea that covalency is a distinct type, or mechanism,
of bonding, rather than just bonding that does not con-
form closely to either the ionic limit or the metallic limit.
Both of these misconceptions have been perpetuated by
the widespread use of approximations that are based on
simplifying the mathematical form of the many-electron
wavefunction (Ψ) to make calculations tractable.

For example, the Hartree-Fock approximation, which is
probably the simplest useful mean-field approximation, is
based on restricting Ψ to be a Slater determinant. When
Ψ has this form, integer-occupied single particle states
appear to have clear physical meanings. When the single
particle states in the determinant are linear combinations
of atom-centered basis functions, such as the orbitals in
the Hartree-Fock wavefunctions of isolated atoms, each
basis function ‘belongs’ to one of the atoms. Therefore,
there appears to be a clear and meaningful qualitative
distinction between a covalent bond and an ionic bond,
but this is an artefact of Ψ’s simplified form.

The primary reason for approximating Ψ as a determi-
nant, or as a sum of few determinants, is not to simplify
bonding conceptually, but to make calculations tractable.
Therefore it seems valid to question whether localized
atomic or molecular orbitals help to simplify bonding
conceptually, or whether they complexify and obfuscate
it. The artificial qualitative distinction between cova-
lent bonding and ionic bonding illustrates that, at least
when building the most basic understanding of bonding
from the most computationally tractable form of wave-
function, they can be misleading.

Although most research scientists understand this, and
also understand that the terms ionic, covalent, and
metallic refer to varying degrees of localization of the
electron density around nuclei, students are still being
taught more traditional and misleading ideas, such as
that a pair of covalently bonded atoms share electrons
between them (Bacskay et al., 1997; Grundmann, 2016;
McQuarrie et al., 2011; Zürcher, 2018). Therefore the
purpose of this subsection is to emphasize that, in some
ways and for some purposes, the essence of bonding is
simpler than it appears from descriptions of it in terms
of localized orbitals.
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C. Summary of chemical bonding in terms of electron
density

The electron density (n) is high where the microscopic
electric potential from the nuclei (φnuc) is high, and it
only has maxima at the positions of the nuclei. If two
nuclei shared electrons between them, there would be a
local maximum of the density between them, but there
never is.

The shape of n is determined by the shape of φnuc; and
φnuc is determined by the charges and positions of the nu-
clei. Localizing density where φnuc is high makes the po-
tential energy of attraction between electrons and nuclei
more negative, but delocalizing density makes both the
electrons’ kinetic energy and their mutual repulsion less
positive. The ground state density is the lowest-energy
compromise between these localizing and delocalizing in-
fluences.

Most of the density is localized around nuclei, and most
of it is at points where its gradient∇n is directed towards
the nearest nucleus.

1. Ionic bonding

The bonding for which a superposition of spherically
symmetric electron densities most closely approximates
the true electron density is referred to as ionic bonding;
and the ionic limit of bonding is the limit in which an
approximation of this form becomes exact.

If the time average of the net charge of each nucleus and
its almost-spherical electron cloud was zero, the attrac-
tion between atoms would be very weak and arise from
electron correlation, rather than electrostatics. Atoms
bind chemically by donating or accepting electron den-
sity to become ions, thereby lowering the potential en-
ergy via their mutual attraction. When atoms are close
enough to bond chemically, and on the time scales rele-
vant to atomic motion (i.e., & 10−15 seconds), there is
no theoretical reason why ions’ average charges are likely
to be integers or close to integers.

2. Covalent and metallic bonding

If more of the density is in regions where ∇n is not di-
rected towards the nearest nucleus, we describe the bond-
ing as either covalent or metallic. Bonding is metallic if
the density in these regions is so delocalized that a sig-
nificant fraction of the electrons are mobile. Otherwise
we refer to it as covalent, for historical reasons. There is
not a clear boundary between ionic and covalent bond-
ing; and, even in the canonically-ionic compound NaCl,

the magnitudes of the ions’ charges are only ∼ 0.8 e (Bao
et al., 2018; Jennison and Kunz, 1976; Kvashnin et al.,
2019; Li et al., 2007).

Large atomic numbers, delocalized electrons, and high
coordination numbers go hand in hand because, when
an atom’s radius is large, the interactions of its nucleus
with electrons on the outskirts of its electron cloud are
weak, and comparable in magnitude to its interactions
with electrons on the outskirts of neighbouring atoms.
Therefore energy is lowered by atoms arranging such that
each one has many neighbours, whose electrons its nu-
cleus interacts with. The energy is lowered further by
the electron density on the outskirts of atoms delocaliz-
ing, so that more electrons have interactions of compa-
rable strengths with multiple nuclei. This delocalization
worsens the approximation of the density as a superpo-
sition of spherical densities.

The metallic limit is the limit in which the electron den-
sity becomes a superposition of spherically-symmetric
densities and a uniform density.

D. The natural single particle substructure of the density

The electron density does possess a ‘natural’ substruc-
ture of single-particle states (ϕα) and their ‘occupancies’
(µα) (Coleman, 1963; Löwdin, 1955; McWeeny, 1960),
which satisfy

n( #»r ) =
∑
α

µα|ϕα( #»r )|2, 〈ϕα|ϕβ〉 = δαβ ,∑
α

µα = Ne, µα ≤ 1, ∀α,

and we will assume that they are indexed in or-
der of decreasing occupation number, such that
α ≤ β ⇐⇒ µα ≥ µβ . These natural orbitals are the nor-
malized eigenstates of the 1-particle reduced density ma-
trix. Their properties, some of which are discussed in Ap-
pendix D.2, suggest that they are the only single-particle
states to which physical meaning should be attached in
a many-particle system.

The following exact expression for the energy,
E ≡ 〈Ψ|Ĥ|Ψ〉, of a normalized Ne-particle pure
state, |Ψ〉, which is derived in Appendix D.2, helps to
illustrate their physical meaning.

E =
∑
α

µα

εα +

∑
β 6=α

∆εαβ

+
1

Ne
W (Ne−1)
α

 . (68)

In this expression εα is equal to 〈ϕα|ĥα|ϕα〉, where

ĥα ≡ ĥ+ v̂MF
α , ĥ ≡ t̂+ v̂ext, t̂ is the single-particle ki-

netic energy operator, v̂ext is the interaction of an elec-
tron with the nuclei, and v̂MF

α is a fraction 1/Ne (one
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electron’s share) of the mean-field interaction between
an electron and the Ne − 1 electrons occupying the dual
state, |Θα〉 ≡ 〈ϕα|Ψ〉, of natural orbital |ϕα〉. ∆εαβ is
a mediated coupling between an electron in orbital |ϕα〉
and an electron in orbital |ϕβ〉. W

(Ne−1)
α is the energy

of interaction between Ne − 1 electrons occupying state
|Θα〉, which, by definition, is the state that the remaining
electrons would be in when one of them occupied orbital
|ϕα〉.

The natural orbitals are not eigenstates of the Hamilto-
nians ĥα or ĥ, or of any Hamiltonian. This is to be ex-
pected of ‘physical’ single-particle states because Hamil-
tonian eigenstates are stationary states and the states
that individual electrons occupy cannot be stationary if
they interact with other electrons while occupying them.
Interactions perturb the electron occupying state |ϕα〉
and, sooner or later, displace it from that state to an-
other one. Therefore each occupation number, µα, is less
than one and can be interpreted as either the fraction of
time for which the αth natural orbital is occupied, or the
probability that it is occupied at any given time.

The form of Eq. 68 suggests that it can be interpreted
within a quasi-independent-electron picture as follows:
When orbital |ϕα〉 is occupied, the energy of the elec-
tron occupying it is the sum of the orbital energy, εα,
and the energies of interaction with electrons occupying
other natural orbitals. Some of this interaction energy
has been written explicitly as

∑
β 6=α ∆εαβ and the rest is

contained in the terms
{
WNe−1
γ

}
γ 6=α. The total energy

is an occupation-weighted sum, over all product states
|ϕα〉 ⊗ |Θα〉, of the energy of the electron in orbital |ϕα〉
and the mutual repulsion of the remaining electrons.

In terms of the natural orbitals, the total kinetic energy
〈Ψ|T̂ |Ψ〉 is given exactly by

∑
α µα 〈ϕα| t̂ |ϕα〉. If |Ψ〉

was expanded in terms of any other set of single-particle
states, {|ψα〉}, the kinetic energy would have the more
complicated form

∑
α

∑
β c̃αβ 〈ψα| t̂ |ψβ〉. Therefore the

natural orbitals are the only orbitals for which the kinetic
energy of the interacting many-electron system can be ex-
pressed as a weighted sum of single-orbital contributions.
Furthermore, if the magnitude of the electron-electron re-
pulsion could be reduced gradually to zero, the natural
orbitals of the ground state would become eigenstates of
ĥ in the noninteracting limit.

The ground state occupation numbers become equal to
one when the interactions between electrons are turned
off, or when they are replaced with mean-field inter-
actions, as in the drastic Hartree-Fock approximation.
In real systems the number of them that differ signifi-
cantly from zero is larger, and possibly very much larger,
than the total number of electrons (Cioslowski and Stras-
burger, 2021; Giesbertz and van Leeuwen, 2013). How-
ever, the rate at which they decay with increasing α is

currently an open question because natural orbitals and
their occupation numbers have only been calculated reli-
ably for simple molecular systems and molecular systems
may not be representative of condensed phases.

For example, in a small molecule the eigenstates of ĥ
must be localized on the molecule, whereas in crystals
they are delocalized Bloch states. Furthermore, since Ne
is very large in a crystal, ĥα is almost equal to ĥ. This
is because v̂MF

α is the mean-field potential from an elec-
tron density with integral one, and this electron density,
which is 1/Ne times the density of state |Θα〉, is delo-
calized unless state |ϕα〉 ⊗ |Θα〉 has a very high energy.
Therefore, the ground state natural orbitals in a crystal
are delocalized in the noninteracting limit and it seems
very unlikely that switching interactions on would local-
ize them.

If the natural orbitals are all delocalized, each orbital
overlaps significantly with a large number of others. Fur-
thermore, the set of orbitals with which orbital |ϕα〉 over-
laps is likely to include many whose energies are very
close to εα. This suggests that, in condensed phases, the
natural orbitals are delocalized and that electrons move
between different natural orbitals relatively freely and
frequently. If the occupation numbers are much smaller
than one, many of these transitions might be to vacant
states, but if they are all close to one, most transitions
would involve electrons swapping states with other elec-
trons.

XIII. MACROSCOPIC POTENTIAL (Φ) AND FIELD (E)

It is well known that the electric potential is a relative
quantity and that, when its value at a point is quoted,
this value is always the difference between the potential
at the point and a reference potential. In theoretical work
the reference point is often taken to be a notional point
in the vacuum at infinity, in experimental work it may be
a particular electrode, and in engineering it is common
to reference potentials to the ‘ground’ or ‘earth’. The
difference in meaning between the terms mean inner po-
tential and macroscopic potential is of little relevance to
this work. The MIP is the average of φ over all points in
a material; therefore it is a scalar constant. The macro-
scopic potential is a scalar field, defined at all points in
a material, but defined only to a finite precision εΦ. To
within this precision its value at each point in the bulk is
equal to the MIP. I mostly refer to Φ as the macroscopic
potential in this section and as the MIP when discussing
Bethe’s approximate expression for it in Sec. XIV.

It is very important to be able to calculate changes in
macroscopic potential. From a conceptual and theoreti-
cal viewpoint, our understanding of the relationship be-
tween macroscale and microscale electrostatics cannot be
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considered complete if we do not know how, in princi-
ple, to calculate the potential at the macroscale from
the charge density or potential at the microscale. From
a practical perspective, the MIP, which is believed to
be positive, is a key quantity in several areas of exper-
imental and computational science. For example, com-
puter simulations can be used to calculate microscopic
charge densities and, up to an unknown constant, mi-
croscopic potentials. To improve the designs of devices,
such as batteries, fuel cells, chemical sensors, and solar
cells, computational scientists simulate their constituent
materials independently and, from those simulations, try
to calculate the change in the average potential that an
electron or ion would experience if it moved from one
device component to another (Blumenthal et al., 2017;
Hörmann et al., 2019). The MIP is also used in electron
microscopy to analyse and interpret electron diffraction
images (Yesibolati et al., 2020). In both of these contexts,
the distinction between the MIP and the time average of
the potential felt by the charge carrier is rarely made, but
it is the latter that is of interest and the MIP is used as
an approximation to it.

In this section I show how to calculate the change ∆Φ
in the macroscale electric potential Φ, between the vac-
uum above a material’s surface and its bulk, from the
microscopic charge density ρ. The results are easy to
generalize to the change in potential across an interface
between two materials by treating it as a pair of adjoined
surfaces. They also allow the value of Φ in an isolated
material to be calculated relative to a distant point in
the vacuum surrounding it.

Some of my results, such as the macroscale poten-
tial within a thin film whose surfaces are equally- and
oppositely-charged, are well known and serve as a sanity
check on my theory and reasoning. However, the main
result, which I justified on symmetry grounds in Sec. IV,
contradicts most of the literature on this subject over
the past century. This result is that Φ = 0 in the bulk
B of an isolated material unless it has charged surfaces
or unless its bulk contains charged macroscopic hetero-
geneities.

A. Change in potential across a surface (∆Φ)

To calculate ∆Φ, I will consider the microscopic potential
at an arbitrary position #»r b ∈ B deep below the surface
at x = xL. I will calculate the potential within a finite
chunk of material and then take the large size limit. It
is important, when doing this, to order the limits ap-
propriately. To illustrate the possible pitfalls, consider
the well-known example of the macroscopic potential Φ

on the plane x = xb ≈ (xL + xR)/2 from equally- and
oppositely-charged surfaces at xL and xR. If I calculate
Φ for an isolated material that is finite in all directions
and take the limit |xL − xR| → ∞ before I take the limit
of large size in the lateral (yz) directions, I find that
Φ vanishes. However, if I take the limit of large cross-
sectional area first, I find that Φ is linear in x and that
E is constant. The appropriate order to choose for the
limits depends on the aspect ratio of the material and on
the position within the material at which the potential is
being calculated.

I want to calculate the average potential in a bulk-like
region of the material that is much closer to one sur-
face than any other. The plane x = xL is parallel to this
surface and in the vacuum just beyond it. Because all
other surfaces are further away, it is appropriate to as-
sume that |x− xL| is much smaller than the material’s
lateral dimensions. I will first calculate the microscopic
potential due to the charge within a cylindrical region of
the material, of radius R, whose axis is normal to the sur-
face. I will use the cylindrical coordinates #»r = (x, s, φ)
or #»r = (x, #»s ), where #»s ∈ R2 is a vector in the plane
parallel to the surface, s = | #»s |, and φ is the azimuth.

The potential at #»r b ≡ (xb, sb, φb) = (xb,
#»s b) due to the

charge density within a cylinder bounded by the surfaces
| #»s − #»s b| = R, x = xL, and x = xb is

ΦL(xb,
#»s b;R)

=κ

∫ xb

xL

∫∫
| #»s− #»s b|<R

ρ(x, #»s )√
(x− xb)2 + | #»s − #»s b|2

d2s

 dx

where κ ≡ (4πε0)
−1

. I will first cast this expression into a
more convenient form. Then I will calculate its mesoscale
average over a range of positions (xb,

#»s b) in the limit of
large R. Finally, I will add the mesoscale average of
the potential, Φr, from charge deeper below the surface
than #»r b. The right-hand boundary of the region whose
charge density contributes to Φr is the plane x = xr,
where xb < xr < xR; I use a lower case subscript for Φr to
distinguish the plane x = xr from the right hand surface
plane x = xR. I will be considering the cases xr = xR
and |xr − xb| � |xR − xr| separately.

The average volumetric charge density on a disc of radius
R, which is parallel to the surface and centered at (x, #»s ),
is

ρ̄(x, #»s ;R) ≡ 1

πR2

∫∫
| #»u |<R

ρ(x, #»s + #»u ) d2u

Defining ∆ρ( #»u ;x, #»s ,R) ≡ ρ(x, #»s+ #»u )−ρ̄(x, #»s ;R) allows
ΦL to be split into two terms:



54

ΦL(xb,
#»s b;R) =

Φ
[ρ̄]
L (xb,

#»s b;R)︷ ︸︸ ︷
1

2ε0

∫ xb

xL

ρ̄(x, #»s b;R)

(∫ R

0

u√
(x− xb)2 + u2

du

)
dx+

Φ
[∆ρ]
L (xb,

#»s b;R)︷ ︸︸ ︷
κ

∫ xb

xL

∫∫
| #»u |<R

∆ρ( #»u ;x, #»s b, R)√
(x− xb)2 + | #»u |2

d2udx

(69)

and similarly for Φr. It is easy to see that the surface ex-
cess of ∆ρ( #»u ;x, #»s b, R) vanishes when averaged over the
plane parallel to the surface. It is shown in Appendix F

that the planar averages of Φ
[∆ρ]
L and Φ

[∆ρ]
r also vanish

in the large R limit, i.e., that

lim
ξb/R→0

{
1

πR2

∫∫
| #»u |<R

Φ
[∆ρ]
L (xb,

#»s b + #»u ;R) d2u

}
= 0,

lim
ξb/R→0

{
1

πR2

∫∫
| #»u |<R

Φ[∆ρ]
r (xb,

#»s b + #»u ;R) d2u

}
= 0,

where ξb ≡ |xL − xb| is the depth of #»r b below the
surface. Therefore, the only contributors to the bulk

average of the microscopic potential are Φ
[ρ̄]
L and Φ

[ρ̄]
r .

B. Mesoscale average of Φ
[ρ̄]
L

Integrating over u in the expression for Φ
[ρ̄]
L , choosing

R > ξb, and using a Taylor expansion gives

Φ
[ρ̄]
L (xb,

#»s b;R) =
1

2ε0

∫ xb

xL

ρ̄(x, #»s b;R)
(√

(x− xb)2 +R2 + (x− xb)
)

dx

=
1

2ε0

∫ xb

xL

ρ̄(x, #»s b;R)(x− xb) dx+
R

2ε0

∫ xb

xL

ρ̄(x, #»s b;R)

[
1 +

1

2

(
x− xb
R

)2

+O

((
x− xb
R

)4
)]

dx

(70)

I assume that there exists a well-defined macroscopic av-
erage of the volumetric charge density on every plane
parallel to the surface. By this I mean that, although
ρ̄(x, #»s b;R) may exhibit microscopic fluctuations as R in-
creases, it converges to a well-defined value rather than
systematically growing or shrinking. Furthermore, as #»s b
is varied at fixed R, ρ̄(x, #»s b;R) fluctuates microscopi-
cally about the value to which it converges in the large
R limit. If I also assume that the bulk of the material is
charge-neutral, only the first term of the series expansion
in Eq. 70 can survive the large R limit. In anticipation
of this limit, and with the understanding that ‘=’ means

‘≈’ until the limit is taken, I write

ΦL(xb,
#»s b;R) =

1

2ε0

[
(R− xb)

∫ xb

xL

ρ̄(x, #»s b ;R) dx

+

∫ xb

xL

x ρ̄(x, #»s b ;R) dx

]
(71)

Φ
[ρ̄]
L (xb,

#»s b;R) depends sensitively on xb and so do both
of its constituent terms on the right hand side. There-
fore, I will average over xb. Before doing so, let us con-
sider the average over #»s b, which we should perform to
calculate the three dimensional macroscopic bulk aver-
age. Because we will be taking the limit of large R, we
can assume that at every value of #»s b the planar averages
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of ρ̄(x, #»s b;R) and ΦL(xb,
#»s b;R) are converged, to our

desired precisions, on an area much smaller than πR2.
Because they are now insensitive to #»s b, I will drop it
from their list of arguments. The mesoscale average over
xb of

∫ xb
xL
ρ̄(x ;R) dx is the average areal surface charge

density, σL(R).

The mesoscale average over xb of
∫ xb
xL
x ρ̄(x ;R) dx is

XL
σ σL(R), where

XL
σ ≡

〈∫ xb
xL

x ρ̄(x;R) dx
〉
εx〈∫ xb

xL
ρ̄(x;R) dx

〉
εx

,

is the center of the microscale distribution of excess sur-
face charge. The microscale charge density is bulk-like
at mesoscopic depths and so XL

σ is within εx/2 of xL,
which means that XL

σ ∈ xL ≡ I(xL, εx). When working
at the macroscale, xL and xb are treated as having pre-
cise values. Therefore, taking the mesoscale average of
both sides of Eq. 71 gives

ΦL(R) =
1

2ε0
σL(R) (R− |xb − xL|) (72)

C. Mesoscale average of Φr

By the same approach that led to Eq. 71, we can find
the potential at (xb, sb) from charge within the cylin-
der bounded by the surfaces | #»s − #»s b| = R, x = xb, and
x = xr, where xr > xb is any position to the right of xb
such that |xr − xb| � R. This potential is

Φr(xb, xr;R) =
1

2ε0

[
(R+ xb)

∫ xr

xb

ρ̄(x;R) dx

−
∫ xr

xb

x ρ̄(x;R) dx

]
(73)

Except in the case of thin material films, if |xL − xb| � R
then |xR − xb| 6� R, which invalidates the derivation of
Eq. 73 for xr = xR. Therefore, I will separately treat two
cases. First, I will consider the case of a thin film, for
which |xL − xR| � R. I will set xr = xR, and calculate
the mesoscale average of the potential in the center of
the film from the charge density of the entire film. In the
second case, I will assume that the surface at xR is far
away and that its macroscopic surface charge density σR
is zero. In this case I will add to ΦL the contribution
to the mesoscale average of the potential from charge
density at positions x > xb which are still within the bulk
of the material.

1. Case I: Thin film, |xL − xR| � R

Defining σR(R) as the average areal charge density of
the surface at xR, and XR

σ ∈ xR as the center of the
microscale distribution of excess charge at the right-hand
surface, allows me to express the mesoscale average of
Eq. 73, when xr = xR, as

ΦR(R) =
1

2ε0
σR(R) (R− |xR − xb|) (74)

The total potential at xb is the sum of ΦL and ΦR in the
large R limit. That is,

Φ(xb) = lim
R→∞

{
R

ε0

(
σL(R) + σR(R)

2

)
− 1

2ε0
[σL(R) |xb − xL|+ σR(R)|xb − xR|]

}
(75)

The term proportional to R becomes infinite in this limit
unless σL + σR = 0. Therefore, I assume that the sur-
faces have equal and opposite average areal charge den-
sities and I define σ ≡ σL = −σR. Then Eq. 75 becomes

Φ(xb) =
σ

ε0

[
1

2
(xL + xR)− xb

]
(76)

From Eq. 76, we can immediately calculate the change in
the macroscopic potential between the charged surfaces
at xL and xR as

∆Φ ≡ Φ(xL)−Φ(xR) =
σ

ε0
(xR − xL) (77)

For very large finite values of R we can write
this as ∆Φ = Q/(ε0A), where Q ≡ Aσ (xR − xL) and
A ≡ πR2. This is the familiar formula for the magnitude
of the potential difference between parallel plates carry-
ing equal and opposite charges. Therefore an important
sanity check on the theory has been passed.

2. Case II: Macroscopic sample, |xL − xR| 6� R

When the surface at xR is not charged and is sufficiently
far away that it does not contribute to the potential at xb,
the total microscopic potential at xb from all charge at
greater depths (x > xb) can be assumed to emanate from
bulk regions where the charge density is macroscopically
uniform and neutral.

If the bulk of the material is charge neutral, there is no
contribution to the potential in the vicinity of xb from
points xr > xb sufficiently far from it. However, the
potential at xb will depend on the precise choice of xr
because the integrated charge between xb and xr de-
pends sensitively on its value. Therefore, as before, I will
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take the mesoscale average over xr of the microscopic
potential, Φr(xb, xr;R), at xb. Eqs. A1 and A3, which
are derived in Appendix VII, can be used in Eq. 73 to
write the following expression for the mesoscale average
of Φr(xb, xr;R) over xr.

Φr(xb;R) =
1

2ε0

[
(R+ xb)

(∫ xr

xb

ρ̄(x;R) dx− M̄〈1〉ρ̄ (xr)

)

−
(∫ xr

xb

x ρ̄(x;R) dx− xrM̄〈1〉ρ̄ (xr)− M̄〈2〉ρ̄ (xr)

)]
This is independent of the choice of xr, and so xr may
be chosen such that

∫ xr
xb
ρ̄(x;R) dx = 0. The reason for

making this choice is that it implies the following rela-
tionships.

M̄〈1〉ρ̄ (xr) = M̄〈1〉ρ̄ (xb)

M̄〈2〉ρ̄ (xr) = M̄〈2〉ρ̄ (xb)∫ xr

xb

x ρ̄(x;R) dx = (xr − xb)M̄〈1〉ρ̄ (xb)

Using these formulae, Eq. 78 simplifies to

Φr(xb;R) =
1

2ε0

(
M̄〈2〉ρ̄ (xb)−RM̄〈1〉ρ̄ (xb)

)
(78)

and so the total microscopic potential at xb is

Φ(xb;R) = ΦL(xb;R) + Φr(xb;R)

=
1

2ε0

[
(R− xb)

∫ xb

xL

ρ̄(xb;R) dx

+

∫ xb

xL

x ρ̄(xb;R) dx+ M̄〈2〉ρ̄ (xb)−RM̄〈1〉ρ̄ (xb)

]
(79)

It is straightforward to show that the average of M̄〈1〉ρ̄ (xb)
over xb is zero for any macroscopically-uniform charge
density (see Eq. 47 of Sec. VIII). Making use of Eq. 72
we can write down the mesoscale average of Φ(xb;R),
which is

Φ(R) =
1

2ε0

[
σL(R) (R− |xb − xL|) +M〈2〉

ρ̄ (R)
]

=
σL(R)

2ε0
(R− |xb − xL|) (80)

where M〈2〉
ρ̄ (R) is the mesoscale average over xb of

M̄〈2〉ρ̄ (xb), which is shown in Appendix E.3 to be zero.
The remaining term diverges in the limit R→∞, which
demonstrates that charged surfaces are not stable.

Now let us assume that σL = 0. Eq. 80 becomes Φ = 0,
which implies that the macroscopic potential, which is
the mesoscale average of the microscopic potential, is zero
in the bulk of any material that is mesoscopically charge-
neutral in the bulk and which does not have charged sur-
faces or contain any charged macroscale heterogeneities.

There are two very important points to note about this
result.

The first is that it contradicts the prevailing view that the
MIP is finite and positive (Bethe, 1928; Yesibolati et al.,
2020). It also contradicts a view commonly expressed
or implied in textbooks on electromagnetism (Jackson,
1998) and solid state physics (Ashcroft and Mermin,
1976; Kittel, 2004), namely, that it is possible for the
symmetry of a crystalline microstructure to endow a ma-
terial with a macroscale electric field.

The second important point is that, because Φ[ρ] is
a linear functional of ρ, this result is the only re-
sult that could emerge from an internally-consistent
theory of structure homogenization. Mathematically,
the spatial average % of ρ is simply the weighted
sum (integral) of the infinite set of charge densi-
ties {ρu : ρu(x+ u) ≡ ρ(x),∀u ∈ R and ∀x ∈ R}. It fol-
lows from linearity that Φ = 〈Φ[ρ]〉εx = Φ[〈ρ〉εx ] = Φ[%].
Therefore, if % = 0 everywhere, as is the case for an
isolated uniform material whose surfaces are uncharged,
then Φ = 0 everywhere.

D. Lorentz’s fallacy: the macroscopic local field

As discussed in Sec. IV.E, unless there exist sources of
macroscopic fields that are external to the material’s bulk
(e.g., an applied field Eext or a net charge at one or
more of its surfaces) the isotropy and homogeneity of
its macrostructure %, which vanishes everywhere in the
bulk, preclude the existence of a non-vanishing E field.
Isotropy is incompatible with the existence of a vector
field. As discussed in Sec. IV.F and Sec. XIII, if the
macroscopic charge density is zero in the bulk of an iso-
lated material whose surfaces are uncharged, there is no
source of macroscopic potential Φ. If Φ = 0 throughout
the bulk, E = 0 throughout the bulk.

Nevertheless, most textbooks posit the existence of a
non-vanishing E emanating from the bulks of crystals
that lack inversion symmetry at the microscale. Further-
more, it is commonly believed that the net field acting at
each point x in a material’s bulk is E + P/3ε0 + E(x),
where E is a microscopic field and P/3ε0 is another

macroscopic (
#»

k = 0) contribution. The purpose of this
section is to critically examine the reasoning used to
infer the existence of the contribution P/3ε0. Almost
all derivations of this term are based on a construc-
tion and line of reasoning first presented by Hendrik A.
Lorentz in a series of lectures given at Columbia Univer-
sity in 1906, which were subsequently published in book
form (Lorentz, 1916) (p137). His construction, which is
illustrated in Fig. 15, is sometimes known as the Lorentz
cavity. This construction has been used in many text-
books (Born and Huang, 1954; Griffiths, 1999; Jackson,
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1998; Kirkwood, 1936, 1940; van Vleck, 1937), but as I
will now explain, both Lorentz’s original argument and
all of its descendents that I am aware of are fatally flawed.

FIG. 14 The Lorentz cavity (Lorentz, 1916). See Sec. XIII.D.

Lorentz set out to calculate the average force or elec-
tric field acting on a microscopic particle A in the bulk
of a dielectric in which there exists a macroscopic elec-
tric field E. The particle could be a molecule, an atom,
or an electron. He expressed the electric field at A
as EA = Efar

A + Enear
A , where Efar

A is the field emanating
from all material beyond a mesoscopic spherical region
of radius R centered at A and Enear

A is the field ema-
nating from all charges within the region, except A it-
self. As the boldface notation suggests, Efar

A is calcu-
lated by treating the material as a continuum; there-
fore it is a macroscopic quantity. This is reasonable be-
cause the length scale on which fluctuations of the mi-
croscopic charge density occur is much smaller than the
distance (> R ∼ l) to A. On the other hand Enear

A can
be expressed as Enear

A = Enear
A + ∆Enear

A , where Enear
A and

∆Enear
A are macroscopic and microscopic contributions,

respectively. It is a microscopic quantity.

In some presentations of this approach, and as illustrated
in Fig. 15, these two separate contributions are imagined
in different and separated material systems. To calculate
Efar

A a continuous material with a cavity in its bulk is
imagined, with A at the center of the cavity. To calculate
Enear

A a microscopically-varying spherical charge distribu-
tion is imagined, with A at its center. This is the charge
that was evacuated to form the cavity and it is frozen in
the arrangement it had prior to being evacuated.

From here, different authors have derived the term P/3ε0
in different ways, but it tends to be thought of as arising
either from the charge on the cavity’s surfaces or from the
dipole moment of the material evacuated from it. It is in-

teresting that the version of the argument that appears in
the first edition of Jackson’s book (Jackson, 1962) differs
substantially from the one appearing in its 1975 second
edition (Jackson, 1975) and that the latter is very similar
to the one in Ashcroft and Mermin’s 1976 book Ashcroft
and Mermin, 1976. However, it is not necessary to go
in detail into these differences because we have already
introduced the fatal flaw in Lorentz’s reasoning and, to
my knowledge, all variants of his derivation suffer from
it.

Just as the charges at the surfaces of the materials de-
picted in Figs. 11 and 12 depend sensitively, in magnitude
and sign, on how the surfaces are terminated, so too does
the charge on the surface of the cavity and the dipole mo-
ment of the evacuated material. They both depend sen-
sitively and microscopically on the cavity radius R and
vanish when averaged over a continuous mesoscopic range
of radii. Therefore the true value of the macroscopic field
at A is the sum of only two contributions: the applied
field and the field from charge at the material’s surfaces.

E. LO-TO splitting

I have argued that inversion asymmetry of a crystal’s
microstructure does not endow it with a macroscopic E
field. This implies that a macroscopic field is not created
when the sublattices of an inversion symmetric crystal
are relatively displaced. An oscillating rigid relative dis-
placement of a crystal’s sublattices can be regarded as a
#»

k = 0 phonon, so another way of saying that E vanishes
is to say that a

#»

k = 0 phonon does not have an intrinsic
electric field.

However, it is well known that the frequency of a
#»

k → 0
longitudinal optical (LO) phonon is increased by the elec-
tric field that is intrinsic to it, and which opposes its
motion (Ashcroft and Mermin, 1976; Born and Huang,
1954; Coiana et al., 2024; Jones and March, 1973; Ly-
ddane et al., 1941). Were it not for this field, the fre-
quencies of some crystals’ LO and TO phonons would
be equal, by symmetry, in the long wavelength limit
(

#»

k → 0). The breaking of this degeneracy by the LO
phonon’s intrinsic field is commonly referred to as LO-TO
splitting (Ashcroft and Mermin, 1976; Born and Huang,
1954; Jones and March, 1973).

Therefore I am claiming that, in the
#»

k → 0 limit, an
LO phonon of wavevector

#»

k creates an electric field of
wavevector

#»

k , but that a
#»

k = 0 phonon does not create
an electric field in a crystal whose surfaces are earthed.

A
#»

k = 0 phonon does create a uniform (i.e.,
#»

k = 0) elec-
tric field if the surfaces are not earthed, because the po-
larization current that flows during the rigid relative mo-
tion of sublattices changes the areal charge densities on
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parallel opposing surfaces at equal and opposite rates. If
this charge accumulates, a field emanates from it.

1. Why finite-wavevector LO phonons create electric fields

FIG. 15 See text of Sec. XIII.E.1. The net charge within the
pink-shaded interval of width a is +q. In the unperturbed
crystal, the net charge in every interval of width a is zero.

Suppose that the crystal’s microstructure (ρ) is modu-
lated along x̂ by an LO phonon, of finite wavelength λ,
propagating along x̂. At each instant, this modulation
creates regions of excess positive charge and regions of
excess negative charge, which alternate along x̂ with a
wavelength of λ. This excess charge density wave, in
turn, creates an electric field of the same wavelength, λ,
which opposes the LO mode’s motion.

To help understand why excesses of charge are created, it
is instructive to consider the perfect crystal, without any
perturbation, and to calculate the excess charge, σ(x̃), on
plane P(x̃), which is perpendicular to x̂ at x̃ ∈ B. To do
so, we can treat the plane as a pair of adjoined surfaces,
use Eq. 51 to calculate the excess charge on each one, and
add them to give σ(x̃). Because x̃ is in the bulk, and the
bulk of an unperturbed crystal is uniform, we can choose
xL = xb = x̃. We find that the excess charge at x̃ is

σ(x̃) = σ+(x̃) + σ−(x̃) =
1

a

∫ 0

−a
ρ(x̃+ u)u du

− 1

a

∫ a

0

ρ(x̃+ u)u du = 0, (81)

where σ+ and σ− are the areal charge densities on the
‘surfaces’ at x̃ whose outward normals are x̂ and −x̂,
respectively, and their cancellation follows from the pe-
riodicity of the crystal.

Now let us consider what happens when an LO phonon
breaks periodicity by modulating the structure along the
x axis. When this happens, σ+(x̃) and σ−(x̃) are no
longer exactly equal in magnitude, in general, which
means that σ(x̃) does not vanish. Calculating its value is
more complicated than in the periodic case because the

crystal is no longer uniform. Therefore it is no longer
valid to regard the point x̃ as both defining the position
of our imaginary surfaces and as points in the ‘bulk’ be-
neath them. However, as an illustration, let us calculate
the net charge in the interval I(x̃+ u, a) averaged over
all u between −a/2 and a/2.

For the purpose of this illustration, let us suppose that
each unit cell contains a single anion-cation pair and
that the distance between the pair in interval [x̃− a, x̃] is
smaller by δx than the distance between the pair in inter-
val [x̃, x̃+ a], such that the difference between the dipole
moments of these unit cells is ∆d = qδx, where q is the
cation’s charge. Then, the average over u ∈ (−a/2, a/2)
of the net charge in interval I(x̃+ u, a) is qδx/a = ∆d/a.

Now suppose that we have calculated the same quan-
tity for every pair of adjacent unit cells in an interval
I(x̃, `), where a� `� λ, and then repeated this cal-
culation for a continuous range of values of x̃. Let us
denote 1/` times the sum of all net charges in interval
I(x, `) by 〈ρ〉∗ (x) and 1/` times the sum of the cells’
dipole moments by 〈P〉∗ (x). Then, it can be shown
that 〈ρ〉∗ (x) = −∇ · 〈P〉∗ (x). The similarity of this ex-
pression to the relation ρ = −∇ ·P is not coincidental:
Maxwell used a similar line of reasoning to deduce it, al-
beit with displacements of charges replaced by displace-
ments of the ether.

This example illustrates that σ(x̃) does not vanish in the
presence of an LO perturbation because the symmetry
reason for it vanishing no longer exists. Furthermore,
because a more realistic charge density ρ would be a
smooth function of position, σ(x̃) would be a smooth
function of x̃, with the same periodicity λ as the LO per-
turbation that created it. Therefore, there would be an
excess charge density wave of periodicity λ, from which
would emanate an electric field of periodicity λ.

2. Zero-wavevector LO phonons

If ELO(
#»

k , u) denotes the electric field created by displac-
ing a crystal by u along the eigenvector of an LO phonon
of wavevector

#»

k , my claim about the difference between
the point

#»

k = 0 in reciprocal space and the
#»

k → 0 limit
can be stated as follows:

0 6= lim
#»
k→0
ELO(

#»

k , u) 6= ELO(0, u) = 0.

In other words, the limit
#»

k → 0 is a singular limit of
ELO(

#»

k , u).

The fact that ELO(
#»

k , u) is discontinuous at
#»

k = 0 is
well known when expressed in a different way: Squared
phonon frequencies are eigenvalues of a crystal’s dynam-
ical matrix. Therefore, if ELO(

#»

k , u) vanishes suddenly at
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#»

k = 0, causing LO phonon frequencies at
#»

k = 0 to be
smaller than their values in the

#»

k → 0 limit, the dynam-
ical matrix must be discontinuous at

#»

k = 0. It is very
well known that it is discontinuous, and non-analytic cor-
rections are commonly applied to the

#»

k = 0 dynamical
matrix to calculate the

#»

k → 0 dynamical matrix (Ba-
roni et al., 2001; Born and Huang, 1954; Cochran, 1960;
Cochran and Cowley, 1962; Giannozzi et al., 1991; Gonze
and Lee, 1997; Jones and March, 1973; Pick et al., 1970).

The
#»

k → 0 dynamical matrix is not one matrix, in gen-
eral, because both it, and the LO phonon frequency, de-
pend on the direction in reciprocal space from which the
point

#»

k = 0 is approached.

To understand why the
#»

k → 0 limit is singular, it is eas-
ier to think about the LO phonon’s wavelength in the
λ→∞ limit than its wavevector in the

#»

k → 0 limit:
Imagine a microscopic or mesoscopic neighbourhood of
a point in the bulk of an arbitrarily large perfect crystal,
and then imagine that the crystal is perturbed by dis-
placing it from equilibrium along the eigenvector of an
LO phonon of wavelength λ. Now imagine increasing λ.

As λ becomes much larger than the size of the neigh-
bourhood, and continues to increase, the microstructure
within the neighbourhood looks more and more like it
would look if the crystal’s sublattices had been displaced
rigidly relative to one another. Therefore it looks more
and more like a crystal that has been perturbed by dis-
placing it along the eigenvector of a

#»

k = 0 phonon. Nev-
ertheless, no matter how large λ becomes, if one moves a
distance λ/2 in the direction of

#»

k , the relative displace-

ments of the atoms in the direction of
#»

k are reversed.

In other words, microscopically, increasing λ brings the
structure closer to the

#»

k = 0 structure, but macroscopi-
cally it does not; and it is the macroscopic structure that
determines whether or not there is a macroscopic E field.

XIV. A POTENTIAL PARADOX

In this section I highlight some subtleties in the meaning
and definition of the microscopic potential φ and its re-
lationships with its macroscopic counterpart Φ and the
microscopic charge density ρ. As mentioned at the begin-
ning of Sec. XIII, the value of the MIP is believed to be
positive (Blumenthal et al., 2017; Cendagorta and Ichiye,
2015; Hörmann et al., 2019; Kathmann, 2021; Kathmann
et al., 2011; Leung, 2010; Madsen et al., 2021; Pratt,
1992; Sanchez and Ochando, 1985; Sokhan and Tildesley,
1997a; Wilson et al., 1987, 1988, 1989; Yesibolati et al.,
2020). This contradicts my finding that it is zero. There-
fore, to illustrate the subtleties, I use the example of Hans
Bethe’s 1928 derivation of an approximate expression for
the MIP, which is sometimes known as the Bethe poten-

tial (ΦBethe), from several different perspectives. I begin,
in Sec. XIV.A, by outlining his derivation and line of rea-
soning.

My focus is on the ‘paradox’ referred to in the section title
and I do not address the question(s) of most relevance to
those using the Bethe potential, or one of its descendants,
as a parameter in the analysis and/or interpretation of
their calculations (e.g., theoretical electrochemistry) or
experiments (e.g., electron holography). In most of these
applications ΦBethe is used as an approximation to the
average potential experienced by an electron as it passes
through the material. This quantity is likely to depend
heavily on the electron’s energy as it enters the material
and the time that it spends inside the material. Further-
more, one should not calculate it from the probability
density n( #»r ) of an electron being at #»r , but on the con-
ditional probability density nc(

#»r 1| #»r 2) of there being an
electron at #»r 1 given that the probe electron is at #»r 2.

As an illustration of the importance of basing calcula-
tions on nc rather than n, consider the example of a
neutral atom meeting a stray electron in a vacuum. One
might deduce from the atom’s electron density n( #»r ) that
they would not be attracted to one another; but by con-
sidering how the distribution of the atom’s electrons are
changed by their interaction with the stray electron, one
can quickly deduce that they do attract one another and
that all singly-charged anions are stable in vacuum.

A. Bethe’s fallacy: the mean inner potential

Bethe assumed that the charge densities of materials are
not too dissimilar from a superposition of atomic charge
densities. For a crystal with one spherically-symmetric
atom in its primitive unit cell Ω, the expression he derived
is

ΦBethe =
2πe

3ε0|Ω|

∫ ∞
0

n(r)r4 dr > 0, (82)

where |Ω| is the volume of Ω; and n(r) is the number of
electrons per unit volume in each atom’s electron cloud at
a distance r from its nucleus. Bethe deduced from Eq. 82
that Φ is positive, which contradicts my finding that it
is zero. I will now rederive Eq. 82 via a more explicitly-
careful mathematical route than Bethe chose to present,
but using his starting point and physical reasoning. His
starting point was the expression

φr(r) ≡
1

ε0r

∫ r

0

ρ(u)u2 du+
1

ε0

∫ ∞
r

ρ(u)udu , (83)

for the electric potential φr at a distance r from the cen-
ter of an isolated spherically-symmetric charge distribu-
tion ρ(r). Eq. 83 can be derived from Gauss’s law by



60

assuming that the electric field inherits spherical symme-
try from ρ and by expressing the potential at a distance r
from the nucleus, φr(r), as the integral of the spherically-
symmetric field from an infinitely-distant point to one
whose distance from the nucleus is r, along an axis pass-
ing through the nucleus.

Bethe reasoned that the average potential in the crystal is
the potential emanating from one atom, integrated over
all points in space, and divided by the volume per atom,
i.e., the R→∞ limit of

Φ̄(R) =
4π

|Ω|

∫ R

0

φr(r)r
2 dr . (84)

His reason for integrating φr over all space, but dividing
by the volume of only one unit cell, was that the potential
in each cell has contributions from atoms in all other
cells and, either by symmetry, or when averaged over all
other cells, the sum of the contributions of the atom in
a given cell to the averages of the electrostatic potential
in all other cells must equal the sum of the contributions
of atoms in all other cells to the average electrostatic
potential in the given cell.

Bethe expressed each atom’s charge density (charge
per unit volume at a distance r from its center) as
ρ(r) = ρ+(r) + ρ−(r), where ρ+ is the density of nuclear
charge and ρ−(r) = −e n(r) is the density of electron
charge. He expressed ρ+ as a delta distribution, i.e.,

ρ(r) = Z e δ(r)− e n(r), (85)

but I will keep it more general for now. Substituting
Eq. 83 into Eq. 84 and simplifying leads to

Φ̄(R) = − 2π

3ε0|Ω|

∫ R

0

ρ(r)r4 dr

+
4
3πR

3

|Ω|

[
3

2

κQ(R)

R
+

1

ε0

∫ ∞
R

ρ(r)r dr

]
(86)

where Q(R) ≡ 4π
∫ R

0
ρ(r)r2 dr is the net charge in a

sphere of radius R. When R is chosen large enough that
the total charge outside this sphere is negligible, only the
first term on the right hand side remains, i.e.,

Φ̄(R) = − 2π

3ε0|Ω|

∫ R

0

ρ(r)r4 dr

Since ρ(r) < 0 when r exceeds the spatial extent of ρ+,
Φ̄(R) is positive and we recover Eq. 82 in the limit of
large R if ρ+ is localized at a point.

If, instead, we assume that ρ+ has a finite width
and denote the total nuclear charge by Q+, we
can use the atom’s overall charge neutrality, i.e.,
Q+ ≡ 4π

∫∞
0
u2ρ+(u) du = −4π

∫∞
0
u2ρ−(u) du, to ex-

press ΦBethe as

ΦBethe =
Q+

6ε0|Ω|
(
s2
− − s2

+

)
(87)

where s2
+ and s2

− are the mean squared distances of pos-
itive and negative charges, respectively, from the atom’s
center, i.e.,

s2
± ≡ ±

4π

Q+

∫ ∞
0

ρ±(u)u4 du

From Eq. 87 it seems clear that the MIP being positive
is a consequence of the electrons being more delocalized
than the nuclei (s2

− > s2
+). For example, if we assume

that ρ+ and ρ− are constant within concentric spheres
of radii r+ and r−, respectively, and zero outside them,
then Bethe’s derivation would lead to

ΦBethe =
Q+

10ε0|Ω|
(
r2
− − r2

+

)
> 0.

It seems reasonable to interpret this expression as follows:
Gauss’ Law implies that φr(r) vanishes if r > r− because
the net charge within a sphere of radius r− centered at
the atom’s center is zero. The potential is positive at the
atom’s center and it decreases monotonically to its value
of zero at r = r−. Therefore the potential is positive in
a sphere of radius r− and zero everywhere else. It seems
obvious, then, that Φ must be positive.

I will now show, by illustration, why this obviously-right
result must be wrong. Then I will explain the flaw in
Bethe’s reasoning and show that a more careful treatment
of the problem leads to the conclusion that Φ is zero.
I illustrate the flaw from several different perspectives
to highlight some of the many pitfalls that exist when
working with the electric potential. Readers who have
already spotted the flaw, or who don’t like whodunnits,
might want to skip the illustrations and proceed directly
to Sec. XIV.B.

1. Existence of a flaw - Illustration 1

Bethe chose to build his material from a spherically-
symmetric charge density, with a localized distribution
of positive charge at its center and relatively delocalized
distribution of negative charge surrounding it. However,
just as there is no ‘right’ way to partition the charge den-
sity of a material for the purpose of defining its average
dipole moment density (see Sec. III..1), there is no right
way to partition it for the purpose of calculating its av-
erage potential. It is no less justified to build a crystal
from a superposition of charge densities of the form

ρ( #»r ) = −e n(r) +
Q+

NA

∑
i:| #»Ri|=A

δ( #»r − #»

Ri) (88)

where, as before, the origin is chosen to coincide with a
nucleus; r = | #»r |; each

#»

Ri is a lattice vector and there-
fore a relative displacement of two nuclei (for simplicity
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FIG. 16 If a crystal is built from a superposition of atoms
(Crystal 1), Bethe’s derivation leads to the result ΦBethe

1 > 0.
Crystal 2, shown schematically above, is built from a charge-
neutral building block comprised of an electron cloud sur-
rounded by fractions of nuclei (bottom). Bethe’s derivation
leads to the result ΦBethe

2 < 0 for Crystal 2. Both crystals
are identical in the bulk (yellow region), but differ at their
surfaces; however the surfaces of both crystals are charge-
neutral (σ = 0). Crystal 2 can be transformed into Crystal
1 by cancelling each of the outermost +Ze/4 charges, where
Z is the atomic number, with a charge of −Ze/4 at the same
position and adding a charge of +Ze/4 to the centers of the
outermost electron clouds. If we assume this to be equivalent
to adding a dipole moment density (dipole moment per unit
length, in this 2-d example) of − (Ze/4) n̂ to each surface,
where n̂ is the surface’s outward unit normal vector, it is easy
to calculate the effect of such a layer on the MIP for the 3-
d analogue of the crystal shown. It would shift the average
potential below the surface relative to its value in the vac-
uum above the surface by exactly ΦBethe

1 −ΦBethe
2 , thereby

making the values of the MIP calculated for Crystal 1 by two
different routes equal. However, at the macroscale, adding
this dipole moment density should have no effect on the value
of Φ because a microscopic distance is indistinguishable from
a distance of zero at the macroscale (see Sec. VI). Therefore
an isolated dipole moment shrinks to a point of no net charge
under the homogenization transformation and the addition of
a plane of such dipoles to a surface does not change either the
net charge σ at the surface or the macroscopic charge density
% at any point inside or outside the material.

I assume that T → 0); and the sum is over all
#»

Ri’s of a
given finite magnitude A, of which there are a total of
NA =

∑
i:| #»Ri|=A 1.

An example of a building block of this form is shown
schematically for a 2-d crystal in Fig. 16. It has negative
charge at its center, positive charge further away, and
it is charge neutral overall, meaning that the net flux
of the electric field through any surface that encloses it
is zero, as it is for an atom. The flux from an atom is
zero at all points on a surface enclosing it, whereas the
flux from the charge density of Eq. 88 is finite almost
everywhere on a surface enclosing it, but with regions
of the surface where it is positive and regions where it
is negative. Nevertheless, Gauss’s law implies that the
net potential outside the surface from charge within it is
zero, as it is for an atom.

Using the same physical reasoning with which Bethe de-
duced that ΦBethe > 0 for a material built from atoms,
it can be shown that ΦBethe < 0 in a material built from
this charge distribution, because s+ = A > s−. Further-
more, the magnitude of ΦBethe depends on the value of
A. For example, consider a simple cubic crystal with lat-
tice spacing a and let us build it from Eq. 88 with the
choice A = a (⇒ NA = 6). I will refer to the crystal built
in this way as Crystal 2, I will refer to the crystal built
by Bethe from atoms as Crystal 1, and I will denote their
MIPs, as derived using Bethe’s approach, by ΦBethe

2 and
ΦBethe

1 , respectively. Then if, following Bethe, we as-
sume the nuclei to be localized at a point, we find that
ΦBethe

2 = ΦBethe
1 −Q+a

2/6ε0|Ω|.

Crystal 1 and Crystal 2 are identical in the bulk; they
differ only near surfaces. However, because all surfaces
of each crystal are charge-neutral (σ = 0), and because
% = 0 in the bulk in each case, the macroscale theory
would not be internally consistent if Φ > 0 in one case
and Φ < 0 in the other. If the value of Φ is defined it
must be the same in each case because the macrostruc-
tures of the two crystals are identical: electrostatically,
each one is indistinguishable from empty space.

Crystal 1 and Crystal 2 could be made identical by
adding a pair of charges of opposite signs, of magni-
tudes Q+/6, and separated by a distance a, to each sur-
face unit cell of one of the crystals. For example, to
make Crystal 2 into Crystal 1 we would have to add
a charge of Q+/6 to the center of each of the electron
clouds closest to its surface and a charge of −Q+/6 at
a displacement a n̂ from the first charge, where n̂ is the
surface’s outward unit normal. Let us temporarily as-
sume that, from the perspective of a point whose depth
below the surface is much greater than a, this is equiva-
lent to adding an approximately-uniform areal density
σP = −

(
Q+a/6a

2
)
n̂ = −

(
Q+a

2/6|Ω|
)
n̂ of dipole mo-

ments to the surface. Then the result would be an upward
shift of the potential in the crystal relative to the vacuum
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near the surface of ∆φ = σP/ε0 = Q+a
2/6ε0|Ω|. This

cancels the difference between ΦBethe
2 and ΦBethe

1 . There-
fore, although the values of ΦBethe derived by Bethe’s
method differ, it appears possible to correct the differ-
ence between them by changing the surface structure of
either crystal to make the two crystals identical.

Unfortunately, although we have corrected the difference
between the two values of ΦBethe, this does not solve
our problem. We still do not have any reason to pre-
fer one building block over another; therefore we do not
have any reason to prefer one of the resulting crystal sur-
face structures over the other. We have two derivations,
which appear equally valid, and from which we deduce
two different values of the MIP. This appears to imply
that there is a flaw in the construction that Bethe used
for his derivation.

Bethe did not involve surfaces in his derivation because,
when σ = 0, he regarded the MIP as a property of the
bulk. However, the fact that ΦBethe

1 and ΦBethe
2 differ

suggests that the MIP is a surface property, which can be
changed by adding or removing equal amounts of positive
and negative charge at each surface. This is problematic
if we wish to identify ΦBethe as the macroscopic potential
Φ because, as mentioned above, the addition of a layer
of microscopic dipoles to a surface should not change Φ
in an internally-consistent linear macroscale theory. This
is because, at the macroscale, a microscopic distance is

equivalent to (
L∼) a distance of zero (see Sec. VI and

Sec. VII), and because a layer of microscopic dipoles,
qan̂, is equivalent to two layers with equal and opposite
charges per unit area that are separated by a distance

a. Since a
L∼ 0 these two layers are equivalent, at the

macroscale, to a single charge-neutral layer, which would
not change Φ inside the crystal. Therefore if Bethe’s
derivation is right, and if % is a linear spatial average of ρ,
the MIP cannot be identified as the macroscopic potential
because that would be tantamount to saying that the
same macroscale distribution of charge can give rise to
different values of Φ. This would imply that, even when
% and the macroscale boundary conditions are known,
the value of Φ cannot be calculated; its value depends,
in some way, on certain microscopic details of ρ that are
lost by the ρ 7→ % homogenization transformation.

If we can assume that φ is a linear functional
φ[ρ] of ρ, and that % is a linear spatial aver-
age 〈ρ〉 of ρ, then the linearity of both opera-
tions implies that φ[%] = φ[〈ρ〉] = 〈φ[ρ]〉. Therefore, if
there exist two microscopic charge densities, ρ and
ρ+ ∆ρ , with the same macroscopic charge den-
sity % (⇒ 〈∆ρ〉 = 0) and different macroscopic poten-
tials, Φ and Φ + ∆Φ, then Φ does not equal φ[%]
and is a nonlinear functional Φ[ρ] of ρ. Linearity
would imply that ∆Φ ≡ Φ[ρ+ ∆ρ]−Φ[ρ] = Φ[∆ρ] 6= 0;
and it would also imply that the mesoscale spa-

tial average 〈∆Φ〉 = 〈Φ[∆ρ]〉 = Φ[〈∆ρ〉] is zero because
〈∆ρ〉 = 0; therefore ∆Φ would be a harmonic function
(∇2 ∆Φ = 0) that fluctuates microscopically about zero.
It would follow that ∆Φ and Φ are microscopic quanti-
ties, not a macroscopic ones. On the other hand, nonlin-
earity of Φ[ρ] implies that a material’s macroscopic po-
tential can depend on its history; for example, if the ma-
terial’s microstructure ρ = ρ1 + ∆ρ1 = ρ2 + ∆ρ2 is built
by superimposing the charge densities ρ1 and ∆ρ1, its
macroscopic potential would differ, in general, from its
value if it was built by superimposing the two different
charge densities, ρ2 and ∆ρ2. There are many problems
that arise if we are tempted to assume that Φ depends
on microscopic details of ρ that are washed away by the
homogenization transformation; I have only mentioned a
few of them.

Returning to the example of Crystal 1 and Crystal 2: if
we rigidly shift the MIP of Crystal 2 by ∆φ > 0 by coat-
ing its surfaces with a layer of dipoles, the same layer
would shift the average potential in the vacuum just out-
side the crystal by −∆φ. Outside Crystal 1, φ appears to
be zero because the field from each atom is zero. Outside
Crystal 2, the average of φ appears to be zero because
the average electric field emanating from each building
block is zero. Adding a dipole layer to Crystal 2 to turn
it into Crystal 1 appears to shift the mean vacuum poten-
tial (MVP) in a layer surrounding the crystal up, while
shifting ΦBethe down by the same amount. In the limit of
large distance from the crystal the potential vanishes, be-
cause the crystal is charge neutral overall, but it does not
begin to decrease in magnitude significantly until the dis-
tance to the closest surface is comparable to one or more
of the surface’s linear dimensions; therefore the MVP is
shifted by −∆φ in a macroscopic layer of vacuum sur-
rounding the crystal. So if Bethe’s derivation was cor-
rect, and if a macroscopic layer of microscopic dipoles
could shift the average potential in a macroscopic region,
the MVP would be zero in a macroscopic layer of vacuum
surrounding the crystal both before and after it had been
shifted by a finite amount −∆φ! Clearly, this is absurd.

Now consider Fig. 17, which uses the concept of a dipole
layer to illustrate one argument for why the MIP is pos-
itive. The crystal in question is identical to Crystal 1,
so this construction appears to validate Bethe’s result.
However, there is no justification for dividing the mate-
rial’s microstructure into the blue and pink layers. If,
for example, we combined each adjacent pair of pink
and blue layers into a single charge-neutral layer, we
would find that the MIP vanishes. Therefore, as with the
construction Bethe used in his derivation, two equally-
justified ways to partition and spatially-average the mi-
crostructure leads to two different values of the MIP.

The superposition principle, on which Bethe’s derivation
and much of electromagnetic theory are based, allows us
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to do the following: let us partition the space Ω occupied
by an electron cloud into M partitions of volume |Ω|/M
and let us divide the nucleus’s charge into M ‘pieces’,
such that for each partition there is a piece of nucleus
with the same magnitude of charge. Now, after taking
the large-M limit, let us displace the pieces to the par-
titions so that each one becomes charge neutral. The
atom’s spherical symmetry initially ensures that, after
displacing all of the pieces, it is again spherically sym-
metric. After this redistribution of charge, the MIP must
be zero because the nucleus and every partition have be-
come charge neutral. If we view the displacement of nu-
clear charge as the superposition of the negative of an
atom’s charge density on each atom, this makes sense.
We have simply superimposed a crystal’s charge density
and its negative, so of course the MIP of the superposi-
tion vanishes. However, we could also view the displace-
ment of each piece of nucleus as the placement of a neg-
ative charge at the nucleus and a positive charge in the
partition. Placing a dipole at a point in space changes the
potential everywhere but, by symmetry, it cannot change
the spatial average of the potential. Therefore placing all
of these dipoles inside the crystal should not change the
MIP. It appears that the superposition principle does not
apply.

2. Existence of a flaw - Illustration 2

Another way to see that there must be problem with
Bethe’s result is to treat electrons as point particles in-
stead of expressing ρ− as a smooth and delocalized den-
sity. Using a line of reasoning similar to Bethe’s we could
say that the total potential in each unit cell from all elec-
trons and nuclei outside the cell is approximately equal
to the sum of the total potentials emanating from the
particles inside the cell. Then we could calculate the to-
tal potential from each point particle at all points within
a distance R of it, add together the total potentials from
all particles within each unit cell of the crystal, and take
the limit of large R to get the total potential emanat-
ing from each unit cell. This total would vanish because
the potential emanating from a point charge Ze is the
negative of Z times the total potential emanating from
a point charge −e. Cancellation is obvious when Z = 1
(hydrogen), but Bethe’s construction does not exclude
this case, either explicitly or implicitly. Therefore his
derivation leads to the conclusion that the magnitude
of the spatial average of the potential from a proton is
greater than the magnitude of the spatial average of the
potential from an electron.

This suggests that the problem in Bethe’s derivation
might be related to his use of a continuous charge den-
sity for electrons and a (discrete) delta distribution of
charge for nuclei. Usually this form of ρ is regarded

FIG. 17 One can think of each of the coloured layers parallel
to the surface as planes of charge, with the layers coloured
pink carrying charge densities of σ > 0 and those coloured
blue carrying charge densities of −σ. Alternatively, one can
think of each blue layer and the red layer next to it as a
plane of dipoles. The plane of dipoles closest to the surface is
pointing into the surface, causing an upward step in φ, which
in this example denotes the planar average of the microscopic
potential, relative to its value of φvac in the vacuum close
to the surface (dotted green line). The next layer causes a
downward step of φ, and so on. The average potential is
clearly positive if φvac is regarded as the zero of potential.
It would be negative if the layer closest to the vacuum was
positive instead of negative, as in Fig. 16, and if the value
of φvac was again set equal to zero, despite its value differing
from its value above the surface of the crystal pictured above.

as a time average of the true charge distribution: elec-
trons are whizzing around the more massive nuclei so
fast that their charge, when observed on a timescale of
about 10−16 − 10−15 seconds, appears to be smeared into
a continuous charge density. This timescale is too short
for nuclei to move significantly, but long enough for each
electron to trace out a very long trajectory. Nevertheless,
because the integral of

φ ( #»u ) ≡

φn( #»u )︷ ︸︸ ︷∑
i∈nuclei

κZe∣∣∣ #»u − #»

Ri

∣∣∣
φe(

#»u )︷ ︸︸ ︷
−

∑
j∈electrons

κe

| #»u − #»r j |

over all space vanishes, which implies that its average
over all space, 〈φ( #»u )〉 #»u , vanishes, one might expect
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the spatial average 〈〈φ( #»u )〉〉 #»u of its expectation value
〈φ( #»u )〉 ≡ 〈Ψ|φ( #»u )|Ψ〉 / 〈Ψ|Ψ〉 with respect to the mate-
rial’s wavefunction Ψ to also vanish. However, it is easy
to reduce this expectation value and its average over all
#»u to the forms

〈φ( #»u )〉 =
〈Ψ|φ( #»u )|Ψ〉
〈Ψ|Ψ〉

= φn( #»u )− κ e
∫

n( #»r )

| #»u − #»r |
d3r ,

〈〈φ( #»u )〉〉 #»u = 〈φn〉 #»u +

〈
−κ e

∫
n( #»r )

| #»u − #»r |
d3r

〉
#»u

, (89)

where n( #»r ) is the probability density that there is an
electron at #»r . At first glance, Eq. 89 might appear
to validate Bethe’s approach, because it appears to be
the spatial average of the potential from a charge dis-
tribution whose form becomes equivalent to the one he
used (Eq. 85) when there is spherical symmetry. It would
be very strange if it were equivalent: it would mean
that 〈〈φ( #»u )〉〉 #»u is finite but that the expectation value
〈〈φ( #»u )〉 #»u 〉 vanishes. Therefore, it would mean that its
value is changed simply by changing the order of integra-
tion such that the integral with respect to #»u is performed
first. We need to understand this better - both physically
and mathematically.

B. The flaw

The flaw in Bethe’s derivation is that he calculated the
electrons’ contribution to the potential from a volumetric
density of negative charge, ρ−( #»r ) = −e n( #»r ), which is
defined at all points in space. Then, because the electron
density is spread over a greater volume than the nuclear
density on femtosecond time scales, the spatial average
of the potential does not vanish.

To understand why it does not vanish, let us again con-
sider the potential φr(r; η) at a distance r from the
center of a spherically-symmetric nonpositive or non-
negative charge density ρ(u; η), where the width of ρ
is proportional to the value of η, which is a parame-
ter. Let us denote the integral of ρ within a sphere of
radius r by Q(r; η) and its integral over all space by
Q∞ ≡ limr→∞Q(r; η) = limη→0Q(r; η). Using Eq. 83
we can express the magnitude of the potential at a dis-
tance r from the center of ρ as

|φr(r; η)| =
∣∣∣∣κQ(r; η)

r
+

1

ε0

∫ ∞
r

ρ(u; η)udu

∣∣∣∣
<

∣∣∣∣κQ(r; η)

r
+

1

ε0

∫ ∞
r

ρ(u; η)u
(u
r

)
du

∣∣∣∣
∴ |φr(r; η)| < κ|Q∞|

r
.

At very large distances (r � η) the potential is approxi-
mately equal to κQ∞/r, and it gets closer to this value

as r increases. At short distances (r ∼ η) the magnitude
of the potential is significantly smaller than κ|Q∞|/r and
the ratio φr(r; η)/ (κQ∞/r) gets smaller as r decreases.

Now let us consider the average of φr over all points
within a fixed distance R of the center of ρ as the value
of η changes. When η/R is very small, the magnitude of
φr at almost all points is approximately κ|Q∞|/r and it
is only significantly smaller than that value in a volume
fraction ∼ (η/R)

3
of the sphere. In the limit η/R→ 0,

the average potential is the same as it would be if ρ was
the delta distribution of a point charge. However, as η
increases, the magnitude of the average potential in the
sphere of radius R decreases because the fraction of the
volume occupied by points at which |φr| is significantly
less than κ|Q∞|/r increases. Therefore, the average po-
tential in the sphere reduces in magnitude as η increases.

This is why the potential from the electrons does not can-
cel the potential from the nuclei in Bethe’s derivation:
the value of η is finite for the electrons, but vanishingly
small for nuclei, which makes the magnitude of the aver-
age potential from the nuclei greater than that from the
electron cloud.

I will now explain, from three different perspectives, what
is wrong with Bethe’s derivation and with his use of the
charge density in Eq. 85.

1. Perspective 1

Bethe’s use of a continuous electron charge density
ρ−( #»r ) = −e n( #»r ) suggests that he interpreted it as the
time average of the electrons’ instantaneous delta distri-
bution of charge. However n( #»r ) is not a time average of
the electrons’ positions, it is a probability density that
an electron (any one of them) is at position #»r at any
precisely-specified time. The average, over a time inter-
val I(t,∆t), of the delta distribution of a set of moving
particles is not a volumetric charge density, but a set of
linear charge densities defined only along the segments of
the trajectories followed during I(t,∆t). Therefore the
time average of the electrons’ delta distribution is a set
of linear charge densities defined on a set of curves and
there is no charge at points that do not lie along these
curves.

This means that the set of points at which the time-
average of the electrons’ charge distribution is nonzero
is a set whose measure in R3 is zero, regardless of the
magnitude of ∆t; therefore electrons are not more de-
localized than nuclei because both occupy zero volume.
Using the fact that Ze/r is cancelled by Z ×−e/r, it is
easy to show that the potential from the true time aver-
age of the electrons’ charge distribution exactly cancels
the potential from the nuclei.
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2. Perspective 2

Although Eq. 89 appears to be the spatial average of
the potential from a set of point nuclei and a continuous
density of negative charge ρ−( #»r ) = −e n( #»r ), it is not.
The quantity

〈φe( #»u )〉 = −κe
∫

n( #»r )

| #»u − #»r |
d3r (90)

is not the potential at #»u from ρ−( #»r ) = −e n( #»r ) because
Coulomb’s law does not hold for the charge from a con-
tinuous charge density within a region of infinitesimal
volume. To see that it does not hold, consider a spheri-
cal Gaussian surface of radius ∆r centered at the point
#»r . The charge within the sphere is ρ( #»r )× 4

3π(∆r)3, but
the electric field, E , on its surface is not directed radi-
ally outward from #»r because it has a contribution from
the nucleus. This would not present a problem for point
charges because one could choose ∆r to be arbitrarily
small without changing the amount of charge enclosed by
it; and, as ∆r got smaller, the direction of the field pass-
ing through the surface would become arbitrarily close
to radially outward.

However this reasoning does not apply to a continu-
ous charge density because the magnitude of the charge
enclosed by the surface scales like (∆r)

3
in the small

∆r limit. A correct application of Gauss’s law for a
spherically-symmetric charge density leads to Eq. 83,
which does not give the same result as Eq. 90. Equa-
tion 90 is the correct expression for the expectation value
of the potential at #»u from the electrons, but it is not the
correct expression for the potential from charge density
ρ−; when there is spherical symmetry, the latter is Eq. 83.

Equation 89 can be expressed in the slightly more general
form

〈〈φ( #»u )〉〉 #»u = κ

〈∫
ρ( #»r )

| #»u − #»r |
d3r

〉
#»u

where ρ = ρ+ + ρ− and ρ+ is the distribution of the nu-
clei. Assuming that ρ has spherical symmetry, and choos-
ing its center as the origin, the integral of 〈φ( #»u )〉 over all
points within a distance R of its center is∫
| #»u |<R

〈φ( #»u )〉d3 #»u = κ

∫
| #»u |<R

d3u

∫
R3

d3r

(
ρ( #»r )

| #»u − #»r |

)
= κ

∫
R3

d3r ρ( #»r )

∫
| #»u |<R

1

| #»u − #»r |
d3u .

In the limit of large R the right hand side becomes arbi-
trarily close to

κ

(∫
R3

ρ( #»r ) d3r

)(∫ R

0

4πu2 × 1

u
du

)
,

which vanishes because
∫
R3 ρ( #»r ) d3r vanishes. Therefore

the total potential from the atom, divided by the volume
of a primitive unit cell, which is the quantity calculated
by Bethe, is zero. Furthermore, to deduce that it is zero
I have not assumed anything about the degrees to which
the nuclear density and the electron density n( #»r ) are
localized.

3. Perspective 3

The relations E = −∇φ and ρ/ε0 = −∇2φ are preserved
by the homogenization transformation because ∇, ∇2,
and the spatial average are all linear operations, which
commute when they are applied in a mutually-consistent
manner. For example, if 〈 〉x and 〈 〉y denote aver-
ages along the x-axis and y-axis, respectively, then
〈ρ〉x /ε0 = −

〈
∇2φ

〉
x

= −∇2 〈φ〉x. However, it cannot

generally be true that 〈ρ〉x /ε0 = −∇2 〈φ〉y. Calculating
the average potential, along an axis normal to a surface,
from the average of the charge density on planes parallel
to the surface does not, in general, lead to a meaningful
result.

This is why it is not physically reasonable to calculate
the MIP from the average of the green curve in Fig. 17
and it is why the value of the MIP deduced by averaging
the charge distribution in layers parallel to the surface
depends on the choice of the layers’ positions and thick-
nesses. For example, if, instead of the division into the
pink (P) and blue (B) layers depicted in Fig. 17, each
layer was chosen to be a layer of atoms, the green curve
would be flat because each layer would be charge neutral.
A layer of atoms comprises two pink layers and two blue
layers in the order BPPB, so I will call it a BPPB-layer.
One could choose the first layer at the surface to be a
negatively charged B-layer and all others to be charge-
neutral PPBB-layers. In that case the green curve would
be a straight line with a negative slope; therefore, not
only would the MIP appear to be negative, there would
be a macroscopic electric field in the material emanating
from the plane of negative charge. If the first layer is
a BPP-layer and subsequent layers alternate between B-
and BPP-layers, the MIP appears to be negative, with
the potential as a function of depth resembling a skewed
version of the negative of the green curve in Fig. 17.

The electron charge density used by Bethe in his deriva-
tion can be regarded as the result of performing the fol-
lowing sequence of temporal and spatial averages: first,
the time average of the electron charge distribution is cal-
culated to give a set of curves carrying linear charge den-
sities; next, this set of linear charge densities are turned
into a volumetric charge density by averaging in the ra-
dial direction over a small width dr; finally, the resulting
distribution is given spherical symmetry by setting the
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charge density at distance r equal to its spatial average
on the spherical surface of radius r. The resulting charge
density is then used to calculate the potential as a func-
tion of position along the radial direction, i.e., along an
axis that, at its point of intersection with the surface on
which the final spatial average is taken, is perpendicular
to this surface. There is no reason to expect this pro-
cedure to produce results that are any more meaningful
than those derived by partitioning the surface in Fig. 17
into artificial layers using an arbitrary, unjustified, and
mutually-inconsistent sequence of partial spatiotemporal
averages.

I avoided the problems with Bethe’s derivation in
Sec. XIII by not making any assumptions about the mi-
croscopic charge density, except that it is mathematically
smooth; and by only averaging along the x-axis; and by
using the same mesoscopic interval width for all spatial
averages. Because I used a general form of ρ, the deriva-
tions of Sec. XIII apply to charge distributions that are
arbitrarily close to delta distributions; and Coulomb’s
law can be applied to a smooth charge distribution in
this limit.

XV. SUMMARY

Structure homogenization

This work lays some foundations of a theory of the re-
lationship between a microstructure and its macrostruc-
ture. The microstructure is assumed to consist of one
or more differentiable fields (e.g., ν : Rn → R) which
fluctuate on the microscale a. The microstructure’s
macrostructure is the observable manifestations of these
fields on the macroscale, L≫ a.

Structure homogenization theory, in its most basic form,
is founded on two premises: The first is that the Fourier
transform ν̃ ≡ F [ν] of each field ν contributing to the
microstructure satisfies∫

|k|<kL
|ν̃(k)|2 dk �

∫
|k|∈(kL,ka)

|ν̃(k)|2 dk

�
∫
|k|>ka

|ν̃(k)|2 dk , (91)

where ka ≡ 2π/a and kL ≡ 2π/L; the microscale a and
the macroscale L are defined by ε ∼ a ⇐⇒ ε < a and
ε ∼ L ⇐⇒ ε > L; a is a property of the microstructure
and L is determined by both the microstructure and the
scale on which the microstructure is observed. The sec-
ond premise is that when ν is observed or measured with
a probe of macroscopic dimensions (e.g., the pupil of an
eye), what is observed is the weighted spatial average of
ν on a mesoscopic domain.

Roughly-speaking, Eq. 91 means that the microstruc-
ture fluctuates on the microscale a and the macroscale
L, but there exists an intermediate mesoscale l, where
a� l� L, on which its fluctuations are negligible.
Therefore, on any mesoscopic domain, the average of
the microscopic fluctuations of ν almost vanish and non-
linear contributions to its macroscopic variations are neg-
ligible.

It turns out that the homogenization transformation cre-
ates observable artefacts, which are consequences of the
fact that perfect homogenization, meaning a total elimi-
nation of microscopic fluctuations, is only possible in the
limit in which the macrostructure is an average of the
microstructure over all points in its domain. This is the
limit in which V , the counterpart of ν at the macroscale,
is flat and featureless. For example, the Earth’s surface
macrostructure is close to this limit in Voyager 1’s famous
‘pale blue dot ’ photograph.

Away from this limit, homogenization is imperfect, and
the macroscopic field V can only be defined to a preci-
sion, εV , that is finite. The finite precision of V means
that if the only way to distinguish between two points
x1,x2 ∈ R3 is to observe the difference V(x1)− V(x2) in
its value, there is an unavoidable limit, εx, to the pre-
cisions with which positions and displacements can be
measured or observed. An approximate relationship be-
tween εV , εx, and the uncertainty εp in the gradient of
V is εxεp ∝ εV .

The uncertainty in positions and displacements implies
a one to many relationship between points x at the
macroscale and points x at the microscale. Effectively,
microstructure homogenization is a compression of space
which causes all microscopic distances to vanish. This
spatial compression causes surfaces and interfaces, which
are ill-defined at the microscale because their widths are
indeterminate, to become well-defined and locally pla-
nar (zero width) at the macroscale: If the domain of
ν is R3, they become two dimensional manifolds which
carry excess fields, in general. For example, homogeniz-
ing a material’s microscopic volumetric charge density ρ
not only defines a macroscopic analogue % of ρ within
the material, it also turns the material’s boundary into a
two dimensional manifold (the surface), which carries an
areal charge density, σ.

I have derived expressions that relate boundary excess
fields to the microscopic fields whose homogenization cre-
ated them. For example, I have derived an expression
σ[ρ] relating the areal charge density at a surface to the
microscopic volumetric charge density, ρ. This expression
generalizes Finnis’s expression (Finnis, 1998) for the sur-
face charge density of a crystal to amorphous microstruc-
tures.
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Electrical macrostructure

I used the basic elements of the theory of structure ho-
mogenization to deduce how the microscopic fields ρ,
E , and φ, that appear in Maxwell’s vacuum theory of
electricity manifest as macroscopic fields, and to de-
duce the relationships between those macroscopic fields.
The set {ρ, E , φ} does not only define a set {%,E,Φ}
of macroscopic-counterpart fields. It also defines macro-
scopic excess fields on lower-dimensional manifolds, such
as surfaces, interfaces, edges, line defects, and point de-
fects. These manifolds and fields are created by the spa-
tial compression that is intrinsic to structure homoge-
nization.

The linearity of the spatial averaging operation that
turns microstructure into macrostructure means that the
relationships between ρ, φ, and E are preserved by the ho-
mogenization transformation. Therefore % = −∇2Φ and
E = −∇Φ.

It is a well-known and obvious stability requirement that
% = 0 in the bulk of every material. It follows that, in the
bulk of a macroscopically-uniform material whose sur-
faces are charge-neutral, either Φ is constant and E = 0
or Φ is a linear function of position and E is constant.

Both the P and D fields that appear in macroscopic elec-
tromagnetic theory have been interpreted, and their ex-
istences justified, in multiple mutually-inconsistent ways
since Maxwell introduced them in the 19th century. I
have pointed out that none of these interpretations or
justifications are valid and that P and D appear within
physical theory for historical reasons only: P is not ob-
servable, is not a necessary element of electromagnetic
theory, cannot be defined uniquely, and its existence is
prohibited by macroscale symmetry. Furthermore, it
continues to cause a great deal of confusion, without
adding to the utility of electromagnetic theory. Scrap-
ping it removes the distinction between E and the electric
displacement D, so D should also be scrapped.

The only volumetric fields that are required at the
macroscale are Φ and its derivatives E and %; but the
linearity of their interrelationships facilitates the decom-
position of each one into components with distinct ori-
gins and effects. For example, when studying dielectric
response it might be useful to write E = Eext + ∆E and
% = %0 + ∆%, where Eext is an externally-applied elec-
tric field, ∆% is the change that it induces in the charge
density, and ∆E is the field emanating from ∆%.

When studying the long wavelength electric fields that
emanate from modulations of the structure by optical lat-
tice vibrations, it makes more sense to express these mod-
ulations directly as changes in charge density (∆ρ and/or
∆%) than as a diverging polarization field. The electric
field can be calculated directly from the former, whereas

the latter must be translated into a charge density to
deduce its field. Furthermore, expressing these modula-
tions as a charge density makes the qualitative difference
between the long wavelength limit (

#»

k → 0) and a rigid

relative displacement of sublattices (
#»

k = 0) clearer: a
longitudinal optical phonon of wavelength λL ∼ L cre-
ates an electric field of wavelength λL; but if the mate-
rial’s surfaces are earthed, a rigid relative displacement of
sublattices does not create any macroscopic field. There-
fore if a material is at equilibrium, % = 0 implies that
there cannot be any macroscopic electric field emanat-
ing from its bulk. The electric potential also vanishes
unless it has a source. Therefore, if all surfaces of an
electromagnetically-isolated (Eext = 0) material are neu-
tral, E and Φ both vanish in its bulk. This has important
implications for materials physics.

The absence of a macroscopic field can also be understood
as a demand of symmetry: symmetry is scale-dependent
and the bulks of all compositionally- and structurally-
uniform materials are isotropic at the macroscale, regard-
less of their microstructures. A vector field that has a
linear relationship with % cannot exist if % is uniform be-
cause all directions are equivalent. Therefore if E does
not vanish in the bulk of a homogeneous material, it is
either externally applied or it emanates from an accumu-
lation of charge at surfaces, interfaces, or other macro-
scopic heterogeneities.

On the macroscale, a material’s response to an external
field Eext is the changing of the areal densities of charge
at all points on surfaces and interfaces whose tangent
planes are not parallel to Eext. When Eext is perpendic-
ular to two opposing surfaces, and parallel to all others,
the net change in the macroscopic field in the material at
equilibrium is Eext −∆σ/ε0 where ∆σ > 0 is the mag-
nitude of the changes in the surface charges induced by
Eext.

When a crystal possesses a spontaneous polarization
field, by which I mean only that its microstructure lacks
inversion symmetry, any surface perpendicular to an axis
of anisotropy would carry an areal surface charge density
σ unless neutralized by extrinsic charges. A charged sur-
face is unstable unless stabilized by another source of
potential, such as an oppositely charged surface.

The definition of surface charge density σ as the integral
of % across the surface is equivalent to Finnis’s definition,
which I have generalized to non-crystalline microstruc-
tures. By relating currents to changes of surface charge,
Finnis’s result can be used to calculate the normal com-
ponent of the current density J at any interface if the
time dependence of ρ at the interface is known.

The current density in an insulator can also be calcu-
lated using the main practical result of the Modern The-
ory of Polarization (MTOP), which is a definition of the
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polarization current density J(p) in terms of the time-
dependent microstructure of a material’s bulk. I have
shown that this result follows from Finnis’s result and
that quantum mechanics is not required to derive it. My
derivations make clear that the original MTOP defini-
tion of polarization current (King-Smith and Vanderbilt,
1993; Resta, 1993; Vanderbilt and King-Smith, 1993) is
exact: The fact that it is expressed in terms of single
particle states does not constitute an approximation.

Mathematical representations of classical microstructures

I have shown that many aspects of the mathematical
structure of the quantum mechanical theory of electricity
in materials are compatible with, or required features of,
an internally-consistent statistical theory of a determin-
istic dynamical system of charged particles.

If a classical material comprised a large number of parti-
cles whose charges and masses were comparable in mag-
nitude to those of electrons and nuclei, the particles’ po-
sitions would change rapidly and the particles would re-
spond sensitively to the act of observing them. Therefore
it would be impossible to observe the particles’ instanta-
neous positions, or even short segments of their trajecto-
ries. Therefore, as in quantum mechanics, the observable
microstructure would not be the particles’ positions, but
their joint position probability distribution, p.

If a subset of the classical particles comprised N identical
particles, it would be impossible to track those particles
individually due to their high speeds of motion. There-
fore they would be indistinguishable and, if they were
massive and mutually-repulsive, the symmetry of their
joint position probability distribution, p, and the impos-
sibility of two of them having precisely the same position,
would make p non-differentiable (see Appendix B). How-
ever the information possessed by p could be expressed as
a differentiable anti-symmetric function Ψ ∈ L2(R3N ,C),
for which p = Ψ∗Ψ.

Any set of ‘single particle functions’, {ϕi}, which is a
complete orthonormal basis of L2(R3,C), can be ex-
pressed as the union of an infinite number of different,
but not all mutually disjoint, sets that each contains ex-
actly N of the single particle functions. From each of
those subsets, a different N -particle Slater determinant
can be formed, and the set of all those Slater determi-
nants is a complete orthonormal basis of the subspace of

L2(R3N ,C) containing only its anti-symmetric elements.
Therefore, the statistical microstate of a set of mutually-
repulsive and indistinguishable classical particles can be
expressed exactly as a weighted sum of an infinite number
of Slater determinants, or approximated by a weighted
sum of a finite number of Slater determinants.
If it is approximated by a single Slater deter-
minant, the particle density is approximated as
n( #»r ) ≈

∑N
i=1 |ϕi(

#»r )|2, and the Pauli exclusion principle
applies. The exclusion principle is how anti-symmetry
(i.e., the requirement that no two particles can occupy
the same position) manifests mathematically when a sta-
tistical microstate is approximated by a single determi-
nant: if two of the single particle functions contributing
to the determinant are the same, the determinant van-
ishes. When a statistical microstate is approximated by
a sum of Slater determinants, the exclusion principle ap-
plies to each determinant individually.

If the material’s statistical microstructure changes
as some stimulus ζ varies, it may be possible
to express the particles’ number density exactly as
n( #»r ; ζ) =

∑N
i=1 ni(

#»r ; ζ), where ni(
#»r ; ζ) ≡ |ϕ( #»r ; ζ)|2,

and the set {ϕi(ζ) ∈ L2(R3,C)}Ni=1 is orthonormal and
with elements that vary continuously as ζ changes. When
n( #»r ; ζ) admits such a representation, the polarization
current that flows as ζ changes continuously is ex-
actly J(p) = qζ̇

∑N
i=1 d #»r i(ζ)/dζ , where q is the particles’

charge, and #»r i ≡
∫
R3 d3r #»r ni(

#»r ; ζ). If there exists one
such set of N single-particle states, there exists an infi-
nite number of such sets, which are related to one an-
other by rotations within the N -dimensional subspace of
L2(R3,C) that they span.

When the bulk of a crystal is represented in a torus,
delocalized sets whose elements have the crystal’s pe-
riodicity are known as Bloch functions, while localized
non-periodic sets are known as Wannier functions. The
most localized set is known as the set of maximally local-
ized Wannier functions (MLWFs) (Ferreira and Parada,
1970; Marzari et al., 2012; Marzari and Vanderbilt, 1997;
Souza et al., 2001).

MLWFs do not have an obvious physical interpretation,
but there exist several reasons to attach physical mean-
ing to so-called natural states and natural orbitals. Many
of these were summarized by Coleman (Coleman, 1963),
while others are illustrated by results derived in Ap-
pendix D.
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Appendices

Appendix A: Areal charge densities and other integrals of
macroscopic fields across interfaces

Here I quote expressions for the excesses of micro-
scopic scalar fields at macroscale surfaces and interfaces.
Derivations of these expressions can be found in Sec. VII
and a derivation of a special case of one of them can be
found in Finnis, 1998.

I use the microscopic charge density ρ as my exam-
ple, but the expressions are applicable to any scalar
field ν, including scalar components of vector or ten-
sor fields. They are valid when there exists a mesoscale
l on which the statistical characteristics of the micro-
scopic (∼ a) fluctuations in ν do not vary appreciably
and the macroscale counterpart V of ν varies at most
linearly. When that is the case it is possible to calcu-
late a mesoscale average ν̄ of ν at each point, such that
∆ν ≡ ν − ν̄ fluctuates microscopically about zero, and
such that ν̄ equals V to within the finite precision εV to
which V is defined.

Since ρ fluctuates microscopically about zero in a ma-
terial’s bulk, ρ̄ = 0 is among the values of its mesoscale
average at each point. Therefore, I define ∆ρ ≡ ρ and
I will express the quoted formulae in terms of ρ, rather
than ∆ρ. Before quoting them, it is necessary to explain
the construction used to define the quantities appearing
within them.

Consider a material with two surfaces which, on the
mesoscale, are locally planar where they intersect the
Cartesian x axis. Let xL and xR be points on the x
axis in the vacuum immediately outside the material at
the surfaces with outward unit normals −x̂ and +x̂, re-
spectively. Let xb ∈ (xL, xR) be a point on the x axis
that is arbitrary apart from the requirement that it is far
enough away from both surfaces that it can be regarded
as being in the bulk of the material. In each of the ex-
pressions quoted below, xb should be regarded as a point
in the bulk below whichever surface (at xL or xR) the
expression pertains to.

Now consider a mesoscopic neighbourhood I(xb + u, `)
of xb, where u ∼ a and ` ∼ l. Let us assume that
it is partitioned into contiguous microscopic (∼ a) in-
tervals I(x̄m,∆m), such that xb is at the bound-
ary point shared by two of them, and such that
the average of ρ on each interval vanishes. Let

M〈n〉ρ (x̄m,∆m) ≡ ∆−1
m

∫∆m/2

−∆m/2
ρ(x̄m + u)un du be the

nth moment of the mth interval divided by its width

∆m ∼ a, and let M̄〈n〉ρ (xb) denote the average of

M〈n〉ρ (x̄m,∆m) over all intervals in the set that parti-
tions I(xb + u, `).
Then, if % denotes the macroscopic counterpart of ρ,
and xL and xR denote macroscale points in the vacuum
beyond the surfaces normal to −x̂ and x̂, respectively,
the areal densities of charge at these surfaces can be ex-
pressed as

σL =

∫ xb

xL

%(x)dx

=

∫ xb

xL

ρ(x) dx− M̄〈1〉ρ (xb), (A1)

σR =

∫ xR

xb

%(x)dx

= −
∫ xR

xb

ρ(x) dx+ M̄〈1〉ρ (xb), (A2)

and the integrals of x%(x) across the surfaces can be ex-
pressed as∫ xb

xL

x%(x)dx =

∫ xb

xL

xρ(x) dx− xbM̄〈1〉ρ (xb)

− M̄〈2〉ρ (xb) (A3)∫ xR

xb

x%(x)dx =

∫ xr

xb

xρ(x) dx+ xbM̄〈1〉ρ (xb)

+ M̄〈2〉ρ (xb) (A4)

The expression for the charge σ at an interface between
two materials can be deduced from these expressions by
assuming that xbL and xbL are macroscale and microscale
points, respectively, in the bulk of one of the materials,
and that xbR > xbL and xbR > xbL are points in the bulk
of the other.

σ =

∫ xbR

xbL

%(x)dx

=

∫ xbR

xbL

ρ(x) dx+ M̄〈1〉ρ (xbL)− M̄〈1〉ρ (xbR) (A5)

It follows from this expression that the excess of charge at
any plane in the bulk of a macroscopically-uniform ma-
terial vanishes. The plane can be treated as an interface
and, since the plane itself is in the bulk, the values of xbL
and xbR can both be chosen to be the point at which the
x axis intersects the plane. Then the right hand side of
Eq. A5 vanishes.



70

Appendix B: Pauli exclusion principle

Consider an observer’s probability density function
p( #»r 1,

#»r 2) for the positions, #»r 1 and #»r 2, of two iden-
tical classical particles, or two electrons with the same
spin. Because the observer cannot distinguish one parti-
cle from the other, p must be symmetric with respect to
exchange of their positions, i.e., p( #»r 1,

#»r 2) = p( #»r 2,
#»r 1).

Let us denote the position half way between
them by #»r and their relative displacement by #»u ,
so that p( #»r 1,

#»r 2) = p( #»r + #»u/2, #»r − #»u/2). Let
pr : R3 → R+; #»r 7→ pr(

#»r ) be the probability den-
sity function for their midpoint #»r , and and let us
define the conditional probability density function
pu|r : R3 × R3 → R+; ( #»u , #»r ) 7→ pu|r(

#»u | #»r ), where

pu|r(
#»u | #»r ) ≡ p( #»r + #»u/2, #»r − #»u/2)

pr(
#»r )

.

pu|r is the probability density function for their relative
displacement being #»u when it is known that the point
half way between them is #»r .

Now let us assume that the particles interact with one
another, and that this interaction strengthens as the
distance between them, u ≡ | #»u |, reduces, such that in
the limit u→ 0 their mutual interaction overwhelms any
other interactions they may have with their surroundings.
Then, because space is isotropic, pu|r(

#»u | #»r ) must become
independent of the direction û ≡ #»u/u in the u→ 0 limit.
Therefore, in the limit U → 0, we can express the prob-
ability that u < U as

Pr(u < U | #»r ) =

∫ U

0

4πu2pu|r(uû| #»r ) du ,

where û is arbitrary and irrelevant.

If the pair of particles were isolated in vacuum, and if
they did not interact with one another, then Pr(u < U | #»r )
would be proportional to 4

3πU
3. In other words, the

probability of both particles being within a spherical
neighbourhood of #»r would be proportional to the volume
of that neighbourhood. It follows that if the particles re-
pel one another, Pr(u < U | #»r ) must decay more rapidly
than U3 in the limit U → 0. Let us assume that it decays
as U3+m, where m ≥ 0. This implies that

pu|r(Uû| #»r ) =
1

4πU2

d

dU
Pr(u < U | #»r ) ∼ Um,

as U → 0. Therefore, as the distance u between the par-
ticles becomes very small, we have pu|r(

#»u | #»r ) ∼ | #»u |m,
which implies that p( #»r + #»u/2, #»r − #»u/2) ∼ | #»u |m. Since
both û and the position #»r of the particles’ midpoint
become irrelevant when the particles’ mutual interacton
overwhelms all other interactions, let us use the short-
hand notation p(u) ≡ p( #»r + uû/2, #»r − uû/2). Then we

can express the limiting behaviour, and the constraint
that exchange symmetry is preserved, as

p(u) = p(−u) ∼ um

⇒ p(1)(u) = −p(1)(−u) ≡ dp

du
∼

{
0, if m = 0,

um−1, if m > 0.

If m = 0, p(u) is constant. Therefore it does not vanish
as u→ 0+ or u→ 0−, but it does respect exchange sym-
metry in a neighbourhood of the point u = 0. However,
since a function cannot be analytic if it is constant on
a finite-measure subset of its domain, it is either non-
analytic or a uniform distribution.

If m is not an integer, then p(u) is non-differentiable
near u = 0. Furthermore, if 0 < m < 1, the magnitude of
p(1)(u) diverges as u→ 0. A divergence of

∣∣p(1)
∣∣ should

be expected if there is a power law repulsion between
the particles that increases in magnitude with decreasing
separation, and if the rate of this increase does not change
as their separation becomes very small.

The value of m cannot be an odd positive integer: If it
were, p would take negative values.

If m is a positive even integer, or if p(u) ∼ |u|m and
m > 1, then p(u) is differentiable, respects exchange sym-
metry, and only vanishes at u = 0. However, its deriva-
tive decreases smoothly in magnitude as u→ 0±, which
means that the repulsion between the particles must re-
duce in magnitude as they approach one another. In
other words, when u is sufficiently small, the probabil-
ity of both particles being within a sphere of radius u
is greater than the probability of both particles being
within a spherical shell of radius U � u, whose volume
is the same, i.e., 4πU2 × thickness = 4

3πu
3.

Therefore, if the particles are mutually repulsive, and
if their repulsion does not weaken and vanish as they
approach one another, p( #»r 1,

#»r 2) cannot be differentiable
at ( #»r 1,

#»r 2) = ( #»r , #»r ) if it respects exchange symmetry.

To overcome this nondifferentiability problem, the infor-
mation contained in p can be expressed as a smooth anti-
symmetric function Ψ =

√
peiθ, which changes sign wher-

ever #»r 1 = #»r 2.

The Pauli exclusion principle follows from expressing
Ψ( #»r 1,

#»r 2) in a basis of mutually-orthogonal functions
of a single particle position. For example,

Ψ( #»r 1,
#»r 2) =

∑
αβ

Cαβφα( #»r 1)φβ( #»r 2).

Since Ψ changes sign wherever #»r 1 = #»r 2, it must be an-
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tisymmetric with respect to exchange of #»r 1 and #»r 2, i.e.,

Ψ( #»r 1,
#»r 2) =

∑
αβ

Cαβφα( #»r 1)φβ( #»r 2) = −Ψ( #»r 2,
#»r 1)

= −
∑
αβ

Cαβφα( #»r 2)φβ( #»r 1)

= −
∑
αβ

Cβαφβ( #»r 2)φα( #»r 1) (B1)

From the orthogonality of the set of orbitals {φα} we get

Cαβ =

∫ ∫
Ψ( #»r 1,

#»r 2)φ∗α( #»r 1)φ∗β( #»r 2) d3r1 d3r2 = −Cβα,

which implies that Cαα = 0, ∀α. Under the usually-
misleading and usually-mistaken interpretation of
φα( #»r 1)φβ( #»r 2)− φβ( #»r 1)φα( #»r 2) as a state of the system
in which one particle occupies orbital φα and the other
particle occupies orbital φβ , Cαα = 0 means that no two
particles can occupy the same orbital at the same time.

The traditional idea of a covalent bond illustrates how
misleading it can be to interpret single-position basis
functions as states occupied by single electrons in a many
electron system. When all basis functions are centered
on nuclei, one cannot describe density between two nu-
clei without using basis functions centered on both nuclei,
and this used to be misinterpreted as the nuclei ‘sharing’
the electrons that ‘occupy’ these basis functions.

Nowadays the term ‘covalent’ is usually used to mean
only that bonding does not conform closely to either
the metallic limit or the ionic limit. However, the idea
that covalency is a qualitatively distinct type of chemical
bonding endures to some degree (Bacskay et al., 1997;
Cohen, 1992, 1993; Grundmann, 2016; McQuarrie et al.,
2011; Mukhopadhyay et al., 2016; Ouellette and Rawn,
2015; Zürcher, 2018).

•

Appendix C: Wannier functions of minimal width

Wannier function of minimal width is simply a different
term for maximally localized Wannier function (Marzari
and Vanderbilt, 1997). The title of this section acknowl-
edges the work of Ferreira and Parada (Ferreira and
Parada, 1970), on which it is based. My presentation
differs from theirs in several ways, the most deliberate of
which is my avoidance of quantum mechanical perturba-
tion theory. This is to demonstrate that there is noth-
ing specific to quantum mechanics in the theory of Wan-
nier functions and their relationships with Bloch func-
tions. All of this section would apply to the eigenfunc-
tions bkα(x) = bα(k, x) ≡ 〈x|bα, k〉 of any periodic oper-

ator ĥ(x) ≡ 〈x|ĥ|x〉 = ĥ(x+m|Ω|), ∀m ∈ Z, where the
circumference SB of T is an integer multiple of |Ω|, and

ĥ : L2(T)→ L2(T) is bounded and self-adjoint. For ex-
ample, a one particle position probability density func-
tion p(x) from any classically-modelled process in a crys-
tal whose bulk is represented in T could be expressed as a
smooth function ψ(x) =

√
p(x)eiθ(x) and expanded in ei-

ther a Bloch basis or a Wannier basis. Either basis could
be used to build a basis of many-particle states to rep-
resent a function Ψ whose square modulus is a classical
many-particle position probability density function.

Consider the Wannier transformation of Bloch function

bα(k, x) = eikxuα(k, x),

wα(x) =

∫
Ω∗
fα(k)bα(k, x) dk , (C1)

where, as in Sec. V.B.1, the integral
∫

Ω∗
dk really

means the sum (2π/SB)
∑
k∈Ω∗ over the discrete and

finite set Ω∗ ≡ {k ∈ 2πZ/SB : 0 ≤ k < 2π/|Ω|}, and fα
is a function that is periodic in reciprocal space
and normalized on Ω∗, i.e.,

∫
Ω∗
f∗α(k)fα(k) dk = 1 and

fα(k +G) = fα(k), ∀G ∈ 2πZ/|Ω|. As discussed in
Sec. V.B.1, we are free to define each Bloch function
bα(k, x) = eikxuα(k, x) and its |Ω|-periodic part, uα, such
that bα is |Ω∗|-periodic in reciprocal space. Therefore,
let us make this choice and let us also normalize each
Bloch function such that

∫
T |bα(k, x)|2 dx = 1, which im-

plies that
∫
T |wα(x)|2 dx = 1.

We are interested in finding the most localized Wannier
functions that can be constructed from the eigenfunc-
tions of a Hermitian operator ĥ(x) that varies smoothly
with x. Therefore, let us assume that all required partial
derivatives of each Bloch function bα(k, x) with respect to
both k and x exist, where, as in Sec. V.B.1, its derivative
with respect to k is defined as

∂kbα(k, x) ≡ lim
SB→∞

(
SB

2π

)[
bα

(
k +

2π

SB
, x

)
− bα (k, x)

]
Let us also assume that fα(k) is a smooth function of k;
if it were discontinuous, the Wannier function would not
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decay exponentially. Smoothness of bα and fα in recip-
rocal space requires that each of them respects the sym-
metry of the crystal’s reciprocal lattice and the topology
of the torus T in which the crystal is represented.

We will be assuming that we are in the limit SB →∞,
which means that the set of points in Ω∗ is quasicontin-
uous. It also means that we can assume that the width
of wα is much smaller than SB. Therefore, when we cal-
culate the spread

Wα(X) =

∫
T
|wα(x)|2(x−X)2 dx ,

of wα about an arbitrary point X ∈ T, or any integral
whose integrand is localized in T,

∫
T should always be

taken to mean
∫ x0+SB

x0
where x0 is chosen such that the

integrand is negligible at x0 = x0 + SB.

Now let us define a generating function Gα(s,X), from
which Wα(X) can be calculated, as follows

Gα(s,X) ≡
∫
T
|wα(x)|2e−is(x−X) dx (C2)

⇒Wα(X) = − lim
s→0

∂2
sGα(s,X)

= lim
s→0

∫
T
|wα(x)|2 (x−X)

2
e−is(x−X) dx (C3)

Gα(s,X) is a Fourier transform of |wα(x)|2 after it has
been displaced by −X; therefore, if X was the center of
wα, Gα(s,X) would be the Fourier transform of wα after
its center had been moved to the origin. Inserting Eq. C1
into Eq. C2 gives

Gα(s,X) =

∫
Ω∗

dk′
∫

Ω∗
dk

∫
T

dx f̄α(k′)b̄α(k′, x)

× fα(k + s)bα(k + s, x)e−is(x−X), (C4)

where the relationship bα(k, x) = eikxuα(k, x) between
Bloch state bα(k, x) and the |Ω|-periodic function
uα(k, x) has been used; and the |Ω∗|-periodicities of bα
and fα have been used to shift the domain of one of the
integrations over Ω∗ to the set Ω∗+s, which contains the
elements of Ω∗ after they have been translated by s.

If we now multiply boths sides of the eigenvalue equa-
tion ĥ(x)bα(k, x) = εα(k)bα(k, x) by e−ikx, we find that
uα(k, x) is an eigenfunction of the k-dependent Hamil-

tonian e−ikxĥ(x)eikx, which is Hermitian if ĥ(x) is Her-
mitian. Hermiticity means that, for each value of k, the
set {uα(k, x)}∞α=1 of all eigenfunctions of e−ikxĥ(x)eikx

is complete and can be chosen to be orthonormal. Let us
make this choice, which allows us to express uα(k+ s, x)
as

uα(k + s, x) =
∑
β

Cαβ(k, s)uβ(k, x)

⇒ bα(k + s, x) = eisx
∑
β

Cαβ(k, s)bβ(k, x) (C5)

where

Cαβ(k, s) ≡ 〈uβ , k|uα, k + s〉

≡
∫
T
ūβ(k, x)uα(k + s, x) dx (C6)

When s is small, we can express ūα(k + s, x) as

ūα(k + s, x) = ūα(k, x) + s∂kūα(k, x) +O
(
s2
)

(C7)

and if we multiply Eq. C7 by Eq. C5, integrate over T, use
the orthonormality of the u functions (Cαβ(k, 0) = δαβ),
and rearrange, we get

Cαα(k, s) = 1− s
∑
β 6=α

Cαβ(k, s) 〈∂kuα, k|uβ , k〉+O
(
s2
)
.

If we now use this equation to calculate
∂sCαα(k, 0) = lims→0 (2s)

−1
[Cαα(k, s)− Cαα(k,−s)],

and use lims→0 Cαβ(k, s) = lims→0 Cαβ(k,−s), which
follows from the continuity of uα in reciprocal space,
we find that ∂sCαα(k, 0) = 0. If we take the second
partial derivative of Eq. C6 with respect to s, set β = α,
perform an integration by parts, and then take the s→ 0
limit, we find that

tα(k) ≡ ∂2
sCαα(k, 0) ≡ − lim

s→0
∂2
sCαα(k, s)

= 〈∂kuα, k|∂kuα, k〉 . (C8)

Inserting Eq. C5 into Eq. C4 gives

Gα(s,X) =
∑
β

∫
Ω∗

dk′
∫

Ω∗
dk f̄α(k′)fα(k + s)

× Cαβ(k, s)eisX
∫
T
b̄α(k′, x)bβ(k, x) dx ,

and the orthogonality of the set of Bloch functions means
that only the β = α term in the sum is nonzero, and
only the k′ = k term in the integral over k′ is nonzero.
Therefore,

Gα(s,X) =

∫
Ω∗
f̄α(k)fα(k + s)Cαα(k, s)eisX dk . (C9)

Using Cαα(k, 0) = 1, ∂sCαα(k,0) = 0, and equa-
tions C9, C8, and C3, it follows that

Wα(X) =

∫
Ω∗
f̄α(k)

[
−∂2

k − 2iX∂k + tα(k) +X2
]
fα(k) dk ,

and if we define gα(k) ≡ e−ikXfα(k), we can express this
as

Wα(X) =

∫
Ω∗
ḡα(k)

[
−∂2

k + tα(k)
]
gα(k) dk . (C10)

This is stationary with respect to norm-preserving
variations of gα when gα is any eigenfunction of
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ˆhα(k) ≡ 〈k|ˆhα|k〉 ≡ −∂2
k + tα(k), and the stationary val-

ues of Wα(X) are the eigenvalues of ˆhα(k). Note that
the relationship in reciprocal space between uα and tα(k)
mirrors the relationship in real space between the Bloch
function bα and what would be referred to within quan-
tum mechanics as its kinetic energy. tα(k) plays the role
of a positive potential in the definition of ˆhα(k).

If we now set gα(k) ≡ |Ω∗|−
1
2 eiθα(k), fα has the required

normalization and Eq. C10 becomes

Wα(X) =
1

|Ω∗|

∫
Ω∗

[
|∂kθα|2 + tα(k)

]
dk , (C11)

which has its minimum value when θα is a constant, and

this minimum value is

Wmin
α (X) =

1

|Ω∗|

∫
Ω∗
〈∂kuα, k|∂kuα, k〉dk . (C12)

Finally, let us return to equations C2 and C9 to find the
center 〈x〉α of the Wannier function whose spread about
point X is minimal:

〈x〉α = X + i lim
s→0

∂sGα(k, s)

= X + i

∫
Ω∗
f̄α(k) [∂k + iX] fα(k) dk

=

∫
Ω∗
f̄α(k) (i∂kfα(k)) dk = X (C13)

I emphasize that this section does not have any quantum
mechanical content. I have presented a mathematical
derivation, which is as applicable within classical statis-
tical mechanics as it is within quantum mechanics.

•

Appendix D: Natural expressions for energy at the
microscale

The information contained in the position probabil-
ity density function (pdf), p(x1, · · · , xN ), of a classi-
cal or quantum mechanical system of N identical par-
ticles is also contained in any function of the form
Ψ(x1, · · · , xN ) ≡

√
p(x1, · · · , xN )eiθ, where θ is arbi-

trary. Not only is it possible to represent the pdf’s in-
formation as an element of a Hilbert-Lebesgue space,
L2(RN ), it appears mandatory to do so when the sta-
tistical state function is required to be differentiable, as
discussed in Appendix B.

1. Natural states

A natural p-state Xα(x1, · · · , xp) of an isolated sys-
tem of N = p+ q identical particles in a pure state
Ψ(x1, · · · , xN ) ∈ L2

(
RN
)

is an eigenstate of its pth-order
reduced density matrix (or simply p-matrix). That is,

∫
Γp(x1 · · ·xp;x′1 · · ·x′p)Xα(x′1, · · · , x′p) dx′1 · · · dx′p

= λαXα(x1, · · · , xp),

where λα is a nonnegative real number and

Γp(x1 · · ·xp;x′1 · · ·x′p) ≡
∫

Ψ(x1 · · ·xp, xp+1 · · ·xN )

× Ψ̄(x′1 · · ·x′p, xp+1 · · ·xN ) dxp+1 · · · dxN .

Natural states have many nice properties; for example,
if {X̃α} and {Ỹβ} are not sets of natural states, but are
any other complete orthonormal bases of the p-particle
and q-particle Hilbert spaces, respectively, then Ψ can be
expressed exactly as the double infinite sum

Ψ(x1 · · ·xN )

=
∑
α,β

C̃αβX̃α(x1 · · ·xp)Ỹβ(xp+1 · · ·xN ), (D1)

for some set of constants C̃αβ ∈ C. However, if {Xα} and
{Yβ} are the sets of natural p- and q-states this expres-
sion simplifies to the single infinite sum

Ψ(x1 · · ·xN )

=
∑
α

CαXα(x1 · · ·xp)Yα(xp+1 · · ·xN ), (D2)

where Cα ∈ C and Xα and Yα are eigenstates of the
p-matrix and the q-matrix, respectively, with the same
eigenvalue, λα ≡ |Cα|2. Furthermore,

CαYα(xp+1 · · ·xN ) = (〈xp+1 · · ·xN | ⊗ 〈Xα|) |Ψ〉

≡
∫
X̄α(x1 · · ·xp)Ψ(x1 · · ·xN ) dx1 · · · dxp ,
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which means that Yα is simply Ψ after it has been pro-
jected onto the Hilbert subspace that is orthogonal to Xα.
It also means that both Xα and Yα inherit antisymmetry
with respect to interchange of coordinates from Ψ.

I refer the reader to Coleman’s 1963 article (Coleman,
1963) for a clear explanation of many of the nice prop-
erties of natural states. These properties suggest that
natural p-states are the only p-particle states to which
physical meaning should be attached in a system com-
prised of more than p particles. I state only two of these
properties here.

Property 1: It can be shown (see Coleman’s Theorem
3.1) that if Φ is restricted to the mathematical form

Φ(x1 · · ·xN ) =
∑

α≤u, β≤v

C̃αβX̃α(x1 · · ·xp)Ỹβ(xp+1 · · ·xN ),

where u ≤ v <∞, and if ‖Ψ− Φ‖2 is minimized with re-
spect to the set of coefficients {C̃αβ} and the sets of func-

tions, {X̃α}α≤u and {Ỹβ}β≤v, the minimum is obtained
by the following truncation of the sum in Eq. D2:

Φ(x1 · · ·xN ) =
∑
α≤u

CαXα(x1 · · ·xp)Yα(xp+1 · · ·xN ),

where the coefficients are indexed such that
α < β ⇒ |Cα| ≥ |Cβ |.

Property 2: It can also be shown (see Coleman’s Theorem
3.3) that if p is odd and 2p < N , then∫

X̄α(x1 · · ·xp)Yα(x1 · · ·xN ) dx1 · · · dxp = 0. (D3)

In what follows I will often use j as shorthand for xj and
dµ(1···M) as shorthand for dx1 · · · dxM . Therefore,

|1 · · ·N〉 = |1 · · · p〉 ⊗ |p+ 1 · · ·N〉
≡ |x1 · · ·xp〉 ⊗ |xp+1 · · ·xN 〉 = |x1 · · ·xN 〉 .

If |f〉 is a p-state, |F 〉 is a q-state, and q > p, then 〈f |F 〉
denotes the (q − p)-state,

〈f |F 〉 ≡
∫
f̄(1 · · · p)F (1 · · · p · · · q) |p+ 1 · · · q〉dµ(1···q) .

2. Natural orbitals

In this section I focus on the natural orbitals (natural
1-states) of an isolated system with wavefunction Ψ and
Hamiltonian Ĥ. I derive an exact expression for the ex-
pectation value of Ĥ, which might be useful, but is in-
tended primarily as an illustration to strengthen the case

for the natural orbitals being the most ‘physical’ single
particle states.
Let us begin with the exact expression

Ψ(1 · · ·N) =
∑
α

cαϕα(1)Θα(2 · · ·N), (D4)

where {ϕα} and {Θα} are the sets of natural orbitals and
natural (N − 1)-states, respectively. The functions in
each set are mutually orthogonal and normalized to one,
i.e., 〈ϕα|ϕβ〉 = δαβ and 〈Θα|Θβ〉 = δαβ . Ψ is also chosen
to be normalized to one, which implies that

∑
α λα = 1,

where λα ≡ |cα|2.

The N -particle Hamiltonian Ĥ = Ĥ1 + Ŵ is the sum of
a 1-particle term, Ĥ1, and a 2-particle term, Ŵ . The 1-
particle term is such that 〈1 · · ·N |Ĥ1|1 · · ·N〉 =

∑
i ĥ(i),

where ĥ could be any 1-particle operator. However,
assuming that we are dealing with a quantum me-
chanical system, and specifically a system of iden-
tical fermions, it has the form ĥ(i) = t̂(i) + v̂ext(i),
where t̂ is the single-particle kinetic energy opera-
tor and v̂ext is the external potential operator for
space/spin coordinate i. The 2-particle term is such that
〈1 · · ·N |Ŵ |1 · · ·N〉 =

∑
i,j>i ŵ(i, j), where ŵ(i, j) is the

interaction between particles with coordinates i and j.
I will use Ŵ more generally to denote the 2-particle in-
teraction operator of a system with M particles, where
M can be deduced from its context: it is the number of
particles of the state on which Ŵ acts.

The expectation value of the one-particle energy can be
expressed as

〈Ψ|Ĥ1|Ψ〉 ≡
∑
α,β

c̄αcβ

∫
ϕ̄α(x1)Θ̄α(x2 · · ·xN )

×

(∑
i

ĥ(xi)

)
ϕβ(x1)Θβ(x2 · · ·xN ) dµ(1···N) ,

and if we use the orthonormality, 〈Θα|Θβ〉 = δαβ , of the
natural (N − 1)-states and the antisymmetry of Ψ, we
can simplify it to the form

〈Ψ|Ĥ1|Ψ〉 =
∑
α

µα
(
tα + vext

α

)
(D5)

where µα ≡ Nλα ≡ N |cα|2, tα ≡ 〈ϕα| t̂ |ϕα〉, and

vext
α ≡ 〈ϕα|v̂ext|ϕα〉 =

∫
vext(x)nα(x) dx ,

where nα(x) ≡ |ϕα(x)|2 denotes the density of the αth

natural orbital.

The expectation value of the two-particle energy is
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〈Ψ|Ŵ |Ψ〉 ≡
∑
α,β

c̄αcβ

∫
ϕ̄α(1)Θ̄α(2 · · ·N)

∑
i,j>i

ŵ(i, j)

ϕβ(1)Θβ(2 · · ·N) dµ(1···N)

=
∑
α,β

c̄αcβ

∫
ϕ̄α(1)Θ̄α(2 · · ·N)

 ∑
i>1,j>i

ŵ(i, j) +
∑
j>1

ŵ(1, j)

ϕβ(1)Θβ(2 · · ·N) dµ(1···N)

The first sum of interaction terms in the parentheses on
the second line does not involve coordinate 1; therefore
we can use 〈ϕα|ϕβ〉 = δαβ to express this as

〈Ψ|Ŵ |Ψ〉

=
∑
α

λαW
(N−1)
α +

∑
α,β

c̄αcβ 〈Θα|Ûαβ |Θβ〉 (D6)

=
∑
α

λαW
(N−1)
α +

∑
α,β

c̄αcβ 〈ϕα|V̂αβ |ϕβ〉 , (D7)

where W
(N−1)
α ≡ 〈Θα|Ŵ |Θα〉 and I have introduced the

(N − 1)-particle operator,

Ûαβ ≡
∑
j>1

∫
ϕ̄α(1)ŵ(1, j)ϕβ(1) |2 · · ·N〉〈2 · · ·N |dµ(1···N) ,

and the 1-particle operator,

V̂αβ ≡
∑
j>1

∫
Θ̄α(2 · · ·N)ŵ(1, j)Θβ(2 · · ·N) |1〉〈1|dµ(1···N) .

Combining Eqs. D5 and D7, we find that

E ≡ 〈Ψ|Ĥ|Ψ〉

=
∑
α

µα

tα + vext
α +

1

N

∑
β

c̄αcβ 〈ϕα|V̂αβ |ϕβ〉


+
∑

λαW
(N−1)
α (D8)

Now let us express the second sum in Eq. D7 as∑
α,β =

∑
α=β +

∑
α,β 6=α. Using the symmetry of |Θα|2

with respect to exchange of coordinates, the sum of α = β
terms reduces to a sum of mean-field interactions between
the density, nα, of orbital ϕα and the density n

(N−1)
α of

state Θα. Therefore we get

〈Ψ|Ŵ |Ψ〉 =
∑
α

λα

[
W (N−1)
α +N 〈ϕα|v̂MF

α |ϕα〉
]

+
∑
α,β 6=α

µα∆εαβ , (D9)

where I have introduced a mean field potential from den-

sity n
(N−1)
α ,

v̂MF
α ≡

∫
vMF
α (1) |1〉〈1|dµ(1) ,

vMF
α (1) ≡ 1

N

∫
ŵ(1, 2)n(N−1)

α (2) dµ(2) ,

and where

∆εαβ ≡
1

N

(
cβ
cα

)
〈ϕα|Ûαβ |ϕβ〉 =

1

N

(
cβ
cα

)
〈Θα|V̂αβ |Θβ〉 .

Combining Eqs. D7 and D9 gives

E =
∑
α

µα

[
tα + vext

α + vMF
α +

∑
β 6=α

∆εαβ +
1

N
W (N−1)
α

]
.

=
∑
α

µα

εα +
∑
β 6=α

∆εαβ

+
∑
α

λαW
(N−1)
α , (D10)

where εα ≡ 〈ϕα|t̂+ v̂ext + v̂MF
α |ϕα〉.

It can be shown (see Coleman (Coleman, 1963)) that
λα ≤ 1/N ⇒ µα ≤ 1, with equality if and only if Ψ
has the form Ψ(x1 · · ·xN ) = Â {ϕα(x1)Θα(x2 · · ·xN )}.
Therefore, µα = 1 in the Hartree-Fock approximation
and the Hartree-Fock energy is simply

EHF =
∑
α

(
µαεα + λαW

(N−1)
α

)
, (D11)

where W
(N−1)
α is a sum of mean-field and exchange inter-

actions between orbitals in the set {ϕβ}β 6=α. By express-

ing each W
(N−1)
β , where β 6= α, in terms of orbitals, and

rearranging, we could cast EHF into a more recognizable
and conventional form.

The form of Eq. D10 suggests the following interpreta-
tion: a system of N electrons can be regarded as being in
a superposition of states, with each state being a prod-
uct of a one electron state and its dual N − 1 state. The
independent-electron energy, εα, of state |ϕα〉 is the sum
of its kinetic energy and its interaction with an effec-
tive potential, which is the sum of the external potential
from the nuclei and a mean field interaction with its dual
state. The mean field interaction is 1/N times the inter-

action with charge density −en(N−1)
α . Each state |ϕα〉 is

coupled to every other state |ϕβ〉 with which it overlaps
and state |ϕα〉’s share of the coupling energy is ∆εαβ .
This is a dressed coupling, meaning that it is mediated
by the electrons in the dual states |Θα〉 and |Θβ〉. In
addition to the sum of independent-electron energies and
the sum of the coupling energies between natural orbitals,
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E includes a weighted sum of the dual states’ electron-
electron repulsion.

In the thermodynamic limit (N →∞) the energy of di-
rect coupling between |ϕα〉 and all other natural orbitals
vanishes unless ϕα is delocalized and the number of states
with which it overlaps scales with N . If all states were
localized the energy in the thermodynamic limit would
be

E =
∑
α

(
µαεα + λαW

(N−1)
α

)
,

which is a sum of one electron energies and (N − 1) elec-
tron energies.

a. Appendix to Appendix D.2

Note that W
(N−1)
β , where β 6= α, depends indirectly on

|ϕα〉, and this dependence could be made explicit, but I
will not do this. However, I will draw out the dependence
of ∆εαβ on orbitals other than |ϕα〉 and |ϕβ〉. These

dependences enter ∆εαβ via V̂αβ , because |Θα〉 and |Θβ〉
both contain finite overlaps with at least N − 1 natural
1-states.

The overlap of |Θα〉 with |ϕα〉 vanishes by Eq. D3; how-
ever 〈ϕα|Θβ〉 does not vanish, in general, if β 6= α. There-
fore, let us express |Θβ〉 as the sum of a state with finite
overlap with |ϕα〉 and a state |Θβ⊥α〉 whose projection
onto |ϕα〉 vanishes. To facilitate this decomposition, let
us define the annihilation operator âα and the creation
operator â†α by their actions on an M -particle state χM
and an (M − 1)-particle state χM−1, respectively.

(âαχM ) (1 · · ·M − 1) ≡M 1
2

∫
χM (1 · · ·M)ϕ̄α(M) dxM(

â†αχM−1

)
(1 · · ·M) ≡M− 1

2 Â {χM−1(1 · · ·M − 1)ϕα(M)}

where Â is the antisymmetrization operator. With a
bit of algebra it can be shown that âαâ

†
α + â†αâα = Î,

where Î is the identity. Note that this notation is
a bit sloppy and, as a result, this expression for the
identity is misleading. We should really express it as
âM+1,αâ

†
M+1,α + â†M,αâM,α = ÎM , where âM,α acts on

M -particle states to produce (M − 1)-particle states,

â†M,α acts on (M − 1)-particle states to produce M -

particle states, and ÎM is the identity in the M -particle
Hilbert space. With this in mind, let us proceed with the
simpler sloppy notation. We can write

Θβ(2 · · ·N) = â†αâαΘβ(2 · · ·N) + âαâ
†
αΘβ(2 · · ·N)

= â†αΘβ−α(2 · · ·N − 1) + Θβ⊥α(2 · · ·N)

where 〈ϕα|Θβ−α〉 and 〈ϕα|Θβ⊥α〉 both vanish. Then,

N

(
cα
cβ

)
∆εαβ ≡

〈
Θα

∣∣Ûαβ∣∣â†αΘβ−α
〉

+ 〈Θα|Ûαβ |Θβ⊥α〉

=

∫
ϕ̄α(1)θ̄αβ(2)ŵ(1, 2)ϕα(2)ϕβ(1) dµ(1, 2)

+

∫
ϕ̄α(1)Θ̄α(2 · · ·N)ŵ(1, 2)

×Θβ⊥α(2 · · ·N)ϕβ(1) dµ(1 · · ·N) (D12)

where |θαβ〉 ≡ 〈Θβ−α|Θα〉 is a 1-particle state that is or-
thogonal to |ϕα〉 and, to reach the second equation from
the first, I have used the orthogonality of Θα to ϕα, as
follows: in the expression for â†αΘβ−α, I expanded the an-
tisymmetrized product of Θβ−α and ϕα as a sum; then I
used the fact that each integral for which the argument
of ϕα is not 2 vanishes.

3. Non-overlapping bodies

In this section I present one way to understand the forces
and torques exerted by two bodies on one another when
they do not overlap spatially and when each body is
charge neutral overall. Each body could be an atom, a
molecule, a nanoparticle, or any other object composed
of more than one charged particle. I will refer to the
bodies as C-particles, where ‘C’ abbreviates composite. I
will identify them individually as CP1 and CP2 and I will
refer to the isolated system comprised only of of CP1 and
CP2 as CP1+CP2. For simplicity I assume that each C-
particle is composed of only two species of more elemen-
tary particle: electrons, and nuclei of atomic number Z.
The set of all space/spin coordinates #»r i of the p particles

in CP1 will be denoted by
#»

R = { #»r 1,
#»r 2, · · · #»r p} and the

set of all positions #»s j of the q particles in CP2 will be de-

noted by
#»

S = { #»s 1,
#»s 2, · · · #»r q}. As before, I will assume

that CP1+CP2 is in a pure state whose wavefunction is
Ψ(

#»

R,
#»

S ); and because there is no overlap between CP1
and CP2, it does not change the energy, or the expecta-
tion value of any observable, if Ψ is chosen to not have
the correct (anti-)symmetry with respect to interchange
of coordinates between CP1 and CP2. Therefore Ψ can
be expressed as (see above or Coleman, 1963)

Ψ(
#»

R,
#»

S ) =
∑
α

CαXα(
#»

R)Yα(
#»

S ) (D13)

where each Xα is an eigenfunction of the integral operator
with kernel

D1(
#»

R;
#»

R′) ≡
∫
R3p

Ψ(
#»

R,
#»

S )Ψ∗(
#»

R′,
#»

S ) d3qS

and each Yα is an eigenfunction of the integral operators
with kernel

D2(
#»

S ;
#»

S ′) ≡
∫
R3q

Ψ(
#»

R,
#»

S )Ψ∗(
#»

R,
#»

S ′) d3pR .
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That is,∫
R3q

D1(
#»

R;
#»

R′)Xα(
#»

R′) d3pR′ = λαXα(
#»

R),∫
R3p

D2(
#»

S ;
#»

S ′)Yα(
#»

S ′) d3qS′ = λαYα(
#»

S ),

where λα = |Cα|2. The functions

Xα(
#»

R) = Xα( #»r 1 · · · #»r p) and Yα(
#»

S ) = Xα( #»s 1 · · · #»s q)
are mutually-orthogonal, normalised to one, and
have the appropriate symmetry with respect to
interchange of any two identical particles on the
same C-particle. For example if #»r i and #»r j
are the coordinates of electrons on CP1, then

Xα( #»r 1 · · · #»r i · · · #»r j · · · #»r p) = −Xα( #»r 1 · · · #»r j · · · #»r i · · · #»r p).

The full Hamiltonian ĥ of CP1+CP2 can be expressed as
ĥ = ĥ1 + ĥ2 + v̂12, where ĥ1 and ĥ2 are the Hamiltonians
of CP1 and CP2, respectively, and v̂12 is the interaction
between them, which I express as

v̂12 =
∑
i∈CP1
j∈CP2

v12(| #»r i − #»s j |)

Energy

The energy of the combined system (CP1+CP2) is

E = 〈Ψ|ĥ|Ψ〉 =
∑
αβ

C∗αCβ

∫
R3p

∫
R3q

X ∗α(
#»

R)Y∗α(
#»

S )
(
ĥ1 + ĥ2 + v̂12

)
Xβ(

#»

R)Yβ(
#»

S ) d3qS d3pR

=
∑
α

λα (Eα1 + Eα2 ) +
∑
αβ

C∗αCβ

∫
R3p

∫
R3q

X ∗α(
#»

R)Y∗α(
#»

S ) v̂12 Xβ(
#»

R)Yβ(
#»

S ) d3qS d3pR =
∑
α

λα (Eα1 + Eα2 ) + 〈Ψ|v̂12|Ψ〉

where Eα1 ≡ 〈Xα|ĥ1|Xα〉 and Eα2 ≡ 〈Yα|ĥ2|Yα〉. The
interaction energy between the C-particles is

E12 = 〈Ψ|v̂12|Ψ〉

=

∫
R3p

∫
R3q

|Ψ( #»r 1 · · · #»r p,
#»s 1 · · · #»s q)|2

×

∑
ij

v12(| #»s j − #»r i|)

 d3r1 · · · d3rp d3s1 · · · d3sq

The sum over i and j can be split into separate sums for
each different ordered pair of particle types, i.e.,

E12 = Eee12 + Enn12 + Een12 + Ene12

where each different ordered pair is indicated by one of
‘ee’, ‘en’, ‘ne’, and ‘nn’, where ‘e’ refers to electrons,
‘n’ refers to nuclei, and the ordering of the subscripts
indicates which C-particle each particle belongs to. For
example, Eee12 is the energy of interaction between the
electrons on CP1 and the electrons on CP2, Ene12 is the
energy of interaction between the nuclei on CP1 and the
electrons on CP2, etc..

Definitions of probability density functions

Using the symmetry of |Ψ|2 with respect to interchange
of two identical particles on the same C-particle, it is easy

to show that

E12 =

∫
R3

∫
R3

[
ρee(

#»r , #»s )− Zρne( #»r , #»s )− Zρen( #»r , #»s )

+ Z2ρnn( #»r , #»s )
]
φ(| #»s − #»r |) d3r d3s (D14)

where φ(u) ≡ κe2/u and the probability density func-
tions ρee(

#»r , #»s ), ρne(
#»r , #»s ), ρen( #»r , #»s ), and ρen( #»r , #»s ) are

the probability densities there exist a particle of type in-
dicated by the first subscript on CP1 at #»r and a particle
of type indicated by the second subscript on CP2 at #»s .
For example, if #»r i are the coordinats of an electron on
CP1 and #»s j are the coordinates of a nucleus on CP2,
then

ρen( #»r , #»s ) ≡ peqn
∫
R3p

∫
R3q

|Ψ( #»r 1 · · · #»s q)|2

× δ( #»r − #»r i)δ(
#»s − #»s j) d3r1 · · · d3sq

where pe = Zp/(Z + 1) is the number of electrons on
CP1, qn = q/(Z+1) is the number of nuclei on CP2, and
i ∈ {1, 2, · · · , p} and j ∈ {1, 2, · · · , q}. The probability
density of finding any one of the electrons belonging to

CP1 at #»r is denoted by ρ
(1)
e ( #»r ), the probability density

of finding any one of the nuclei belonging to CP2 at #»s is
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denoted by ρ
(2)
n ( #»s ), etc., i.e.,

ρ(1)
e ( #»r ) ≡ 1

qe

∫
R3

ρee(
#»r , #»s ) d3s =

1

qn

∫
R3

ρen( #»r , #»s ) d3s ,

ρ(1)
n ( #»r ) ≡ 1

qe

∫
R3

ρne(
#»r , #»s ) d3s =

1

qn

∫
R3

ρnn( #»r , #»s ) d3s ,

ρ(2)
e ( #»s ) ≡ 1

pe

∫
R3

ρee(
#»r , #»s ) d3r =

1

qn

∫
R3

ρne(
#»r , #»s ) d3r ,

ρ(2)
n ( #»s ) ≡ 1

pe

∫
R3

ρne(
#»r , #»s ) d3r =

1

pn

∫
R3

ρnn( #»r , #»s ) d3r ,

The conditional probability density functions ρ
(1)
e|n, ρ

(1)
n|e,

ρ
(1)
e|e, ρ

(1)
n|n, ρ

(2)
e|n, ρ

(2)
n|e, ρ

(2)
e|e, and ρ

(2)
n|n are defined as follows.

ρee(
#»r , #»s ) = ρ

(1)
e|e(

#»r | #»s )ρ(2)
e ( #»s ) = ρ

(2)
e|e(

#»s | #»r )ρ(1)
e ( #»r ),

ρnn( #»r , #»s ) = ρ
(1)
n|n( #»r | #»s )ρ(2)

n ( #»s ) = ρ
(2)
n|n( #»s | #»r )ρ(1)

n ( #»r ),

ρen( #»r , #»s ) = ρ
(1)
e|n( #»r | #»s )ρ(2)

n ( #»s ) = ρ
(2)
n|e(

#»s | #»r )ρ(1)
e ( #»r ),

ρne(
#»r , #»s ) = ρ

(1)
n|e(

#»r | #»s )ρ(2)
e ( #»s ) = ρ

(2)
e|n( #»s | #»r )ρ(1)

n ( #»r ).

Finally, the densities at #»r of electrons and nuclei
for the combined system CP1+CP2 are ρe(

#»r ) =

ρ
(1)
e ( #»r ) + ρ

(2)
e ( #»r ) and ρn( #»r ) = ρ

(1)
n ( #»r ) + ρ

(2)
n ( #»r ), re-

spectively, and the charge densities of CP1, CP2, and

CP1+CP2 are, respectively, −eρ(1) ≡ −e
(
ρ(1)
e − Zρ(1)

n

)
,

−eρ(2) ≡ −e
(
ρ(2)
e − Zρ(2)

n

)
, and −eρ ≡ −e (ρe − Zρn).

Simplifying the interaction energy

Using the definitions in the previous section, Eq. D14 can
be rewritten as

E12 =
1

2

∫
R3

ρ(1)
e ( #»r )

(∫
R3

[
ρ

(2)
e|e(

#»s | #»r )− Zρ(2)
n|e(

#»s | #»r )
]
φ(| #»r − #»s |) d3s

)
d3r

+
1

2

∫
R3

ρ(2)
e ( #»s )

(∫
R3

[
ρ

(1)
e|e(

#»r | #»s )− Zρ(1)
n|e(

#»r | #»s )
]
φ(| #»r − #»s |) d3r

)
d3s

+
Z

2

∫
R3

ρ(1)
n ( #»r )

(∫
R3

[
Zρ

(2)
n|n( #»s | #»r )− ρ(2)

e|n( #»s | #»r )
]
φ(| #»r − #»s |) d3s

)
d3r

+
Z

2

∫
R3

ρ(2)
n ( #»s )

(∫
R3

[
Zρ

(1)
n|n( #»r | #»s )− ρ(1)

e|n( #»r | #»s )
]
φ(| #»r − #»s |) d3r

)
d3s

Defining

δρ
(1)
e|e(

#»r | #»s ) ≡ ρ(1)
e|e(

#»r | #»s )− ρ(1)
e ( #»r ),

δρ
(2)
e|e(

#»s | #»r ) ≡ ρ(2)
e|e(

#»s | #»r )− ρ(2)
e ( #»s )

δρ
(1)
e|n( #»r | #»s ) ≡ ρ(1)

e|n( #»r | #»s )− ρ(1)
e ( #»r ),

δρ
(2)
e|n( #»s | #»r ) ≡ ρ(2)

e|n( #»s | #»r )− ρ(2)
e ( #»s ),

and also

δρ
(1)
n|e(

#»r | #»s ) ≡ ρ(1)
n|e(

#»r | #»s )− ρ(1)
n ( #»r ),

δρ
(2)
n|e(

#»s | #»r ) ≡ ρ(2)
n|e(

#»s | #»r )− ρ(2)
n ( #»s )

δρ
(1)
n|n( #»r | #»s ) ≡ ρ(1)

n|n( #»r | #»s )− ρ(1)
n ( #»r ),

δρ
(2)
n|n( #»s | #»r ) ≡ ρ(2)

n|n( #»s | #»r )− ρ(2)
n ( #»s ),

allows E12 to be expressed as follows.
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E12 =
1

2

∫
R3

ρ(1)
e ( #»r )

(∫
R3

[
ρ(2)( #»s ) + δρ

(2)
e|e(

#»s | #»r )− Zδρ(2)
n|e(

#»s | #»r )
]
φ(| #»r − #»s |) d3s

)
d3r

+
1

2

∫
R3

ρ(2)
e ( #»s )

(∫
R3

[
ρ(1)( #»r ) + δρ

(1)
e|e(

#»r | #»s )− Zδρ(1)
n|e(

#»r | #»s )
]
φ(| #»r − #»s |) d3r

)
d3s

− Z

2

∫
R3

ρ(1)
n ( #»r )

(∫
R3

[
ρ(2)( #»s ) + δρ

(2)
e|n( #»s | #»r )− Zδρ(2)

n|n( #»s | #»r )
]
φ(| #»r − #»s |) d3s

)
d3r

− Z

2

∫
R3

ρ(2)
n ( #»s )

(∫
R3

[
ρ(1)( #»r ) + Zδρ

(1)
e|n( #»r | #»s )− δρ(1)

n|n( #»r | #»s )
]
φ(| #»r − #»s |) d3r

)
d3s

Now I define v̄(1) and v̄(2) to be the mean-field poten-
tials felt by electrons from the charges on CP1 and CP2,
respectively, i.e.,

v̄(1)( #»s ) ≡
∫
R3

[
ρ(1)
e ( #»r )− Zρ(1)

n ( #»r )
]
φ(| #»r − #»s |) d3r ,

v̄(2)( #»r ) ≡
∫
R3

[
ρ(2)
e ( #»s )− Zρ(2)

n ( #»s )
]
φ(| #»r − #»s |) d3s ,

and I define the following correlation potentials:

δv̄(1)
e ( #»s ) ≡

∫
R3

[
δρ

(1)
e|e(

#»r | #»s )− Zδρ(1)
n|e(

#»r | #»s )
]
φ(| #»r − #»s |) d3r ,

δv̄(2)
e ( #»r ) ≡

∫
R3

[
δρ

(2)
e|e(

#»s | #»r )− Zδρ(2)
n|e(

#»s | #»r )
]
φ(| #»r − #»s |) d3s

δv̄(1)
n ( #»s ) ≡

∫
R3

[
δρ

(1)
e|n( #»r | #»s )− Zδρ(1)

n|n( #»r | #»s )
]
φ(| #»r − #»s |) d3r ,

δv̄(2)
n ( #»r ) ≡

∫
R3

[
δρ

(2)
e|n( #»s | #»r )− Zδρ(2)

n|n( #»s | #»r )
]
φ(| #»r − #»s |) d3s

where, for example,
〈
δv̄

(2)
e , ρ

(1)
e

〉
≡
∫
R3 δv̄

(2)
e ( #»r )ρ

(1)
e ( #»r ) d3r

is a self-energy which corrects the mean field electron-

electron interaction energy
〈
v̄

(2)
e , ρ

(1)
e

〉
by adding in the

mutual responses of electrons on CP1 and CP2 to one
another. No assumptions have been made about the
mechanism of this synchronous motion, and relativistic
retardation effects can be accounted for fully within

δv̄
(2)
e ( #»r ). Using these definitions, the interaction energy

can now be written as

E12 =
1

2

∫
R3

ρ(1)( #»r )v̄(2)( #»r ) d3r +
1

2

∫
R3

ρ(2)( #»s )v̄(1)( #»s ) d3s

+
1

2

∫
R3

ρ(1)
e ( #»r )δv̄(2)

e ( #»r ) d3r − Z

2

∫
R3

ρ(1)
n ( #»r )δv̄(2)

n ( #»r ) d3r +
1

2

∫
R3

ρ(2)
e ( #»s )δv̄(1)

e ( #»s ) d3s− Z

2

∫
R3

ρ(2)
n ( #»s )δv̄(1)

n ( #»s ) d3s

=

EMF
12 [ρ(1), ρ(2)]︷ ︸︸ ︷∫

R3

∫
R3

ρ(1)( #»r )ρ(1)( #»s )φ(| #»r − #»s |) d3r d3s+
1

2

[〈
ρ(1)
e , δv̄(2)

e

〉
− Z

〈
ρ(1)
n , δv̄(2)

n

〉
+
〈
ρ(2)
e , δv̄(1)

e

〉
− Z

〈
ρ(2)
n , δv̄(1)

n

〉]
∴ E12 = EMF

12 [ρ(1), ρ(2)] +
1

2

[〈
ρ(1), δv̄(2)

n

〉
+
〈
ρ(1)
e , δv̄(2)

e − δv̄(2)
n

〉
+
〈
ρ(2), δv̄(1)

n

〉
+
〈
ρ(2)
e , δv̄(1)

e − δv̄(1)
n

〉]

Separation of time scales

We have found the following expression for the total en-
ergy of CP1+CP2, which is exact in the limit of zero

overlap between CP1 and CP2 if CP1+CP2 is in a pure
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state Ψ.

E[Ψ] =
∑
α

λα (Eα1 + Eα2 ) + EMF
12 [ρ(1), ρ(2)]

+
1

2

[〈
ρ(1)
e , δv̄(2)

e

〉
+
〈
ρ(2)
e , δv̄(1)

e

〉]
− Z

2

[〈
ρ(1)
n , δv̄(2)

n

〉
+
〈
ρ(2)
n , δv̄(1)

n

〉]
(D15)

Let us assume that an isolated C-particle is approxi-
mately spherical but thermally disordered. When two C-
particles approach one another the interaction between
them can break their near-spherical symmetry. If they
are observed on a time scale that is short relative to the
time scale on which they rotate about an axis passing
through their centers, and that is short relative to the
time scale on which the internal structure of a C-particle
can rearrange, it is reasonable to assume that they are
observed in a pure state. This is because there are no
relevant symmetries on such a time scale.

Let us now consider the different types of correlation de-
scribed by the δv̄ terms on the right hand side of Eq. D15.

The terms −Z
〈
ρ

(1)
n , δv̄

(2)
n

〉
and −Z

〈
ρ(2), δv̄

(1)
n

〉
account

for the energy associated with synchronicity between the
motion of nuclei on one C-particle and the motion of

nuclei and electrons on the other. If we assume that
nuclei move much more slowly that electrons and that
electrons are free to move so that, on the time scale of
nuclear motion, they perfectly screen any fields from nu-
clei on the other C-particle, then δv̄n(1) = δv̄n(2) = 0
and only the synchronous motion of electrons on differ-
ent C-particles is relevant. Our assumption that electrons
move freely also implies that EMF

12 [ρ(1), ρ(2)] = 0, since
both C-particles are globally charge-neutral and since on
nuclear time scales electrons move rapidly to ensure lo-
cal charge-neutrality. Therefore, it is expected that a
very good approximation to the energy of CP1+CP2 is
provided by

E ≈
∑
α

λα (Eα1 + Eα2 ) +
1

2

〈
ρ(1)
e , δv̄(2)

e

〉
+

1

2

〈
ρ(2)
e , δv̄(1)

e

〉
,

or

E[{λα,Xα,Yα}] ≈
∑
α

λα (E1[Xα] + E2[Yα])

+
1

2

〈
ρ(1)
e [{λα,Xα}], δv̄(2)

e [{λα,Xα,Yα}]
〉

+
1

2

〈
ρ(2)
e [{λα,Yα}], δv̄(1)

e [{λα,Xα,Yα}]
〉

(D16)

•

Appendix E: Excess field invariance proofs

Equations 39, 42, 43 and 44, which are expressions for
the macroscale interfacial excesses of ∆ν(x) and x∆ν(x),
are the most important results of Sec. VII and among
the most important results of the homogenization theory
presented in this work.

On first examination these expressions appear to depend
on xb and on how the mesoscale neighbourhood of xb
is partitioned into microscopic intervals. Since any such
dependence would make them ill-defined quantities, it is
crucial to the importance and generality of these expres-
sions that all choices of xb and Π(xb, `), which satisfy the
conditions stated in Sec. VII.F, give the same values for

S〈∆ν〉0 and S〈∆ν〉1 . This section is devoted to proving that
this is indeed the case.

1. Derivatives of M̄〈1〉
∆ν and M̄〈2〉

∆ν with respect to xb

The derivatives of M̄〈n〉∆ν (xb) with respect to xb. will be
used to demonstrate that the surface excesses calculated

in Sec. VII.H.1 and VII.H.2 are independent of xb. This
will demonstrate that xb is a parameter that determines
the values of each term on the right hand sides of Eqs. 39

and 42, but not their sums - S [∆V]
0 (xb) and S [∆V]

1 (xb),
respectively. I will assume that a/εx is sufficiently small

that the kernel average
〈
M〈n〉∆ν ;µ

〉∗
εx

can be replaced with

a simple average, i.e.,

M̄〈n〉∆ν (xb) =
1

`

∑
m

M〈n〉∆ν (x̄m,∆m)∆m (E1)

where M〈n〉∆ν (x̄m,∆m) ≡ ∆−1
m

∫ x+
m

x−m
(x− x̄m)

n
∆ν(x) dx.

For convenience I have denoted the left-hand and right-
hand boundaries of Im by x+

m ≡ x̄m + 1
2∆m ∈ Π(xb, `)

and x−m ≡ x̄m − 1
2∆m ∈ Π(xb, `), respectively.

The simple average, 〈∆ν〉` (xb), fluctuates microscop-
ically and continuously within the range I(0, εV)
as xb changes. However, the definition of 〈 · 〉∗`
stipulates that xb ∈ Π(xb, `) and that the average
of ∆ν is the same on every microinterval, which
means that, in general, xb ± `/2 6= x±M and that

0 ≤
∣∣∣〈∆ν〉εx (xb)− M̄〈0〉∆ν

∣∣∣ < εV . I will preserve the con-
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straint M̄〈0〉∆ν = 0 as xb changes, which means that every
element of Π(xb, `), including xM and x−M , changes with
xb. Therefore, ` = xM − x−M also changes. I will assume
that ν(xb) 6= ν̄(xb), leaving the special case ν(xb) = ν̄(xb)
to the interested reader. Using primes to denote total
derivatives with respect to xb, I can write

d

dxb
M̄〈n〉∆ν (xb) =

1

`

∑
m

d

dxb

[
∆mM〈n〉∆ν (x̄m,∆m)

]
− `′

`
M̄〈n〉∆ν (xb) (E2)

where

d

dxb

[
∆mM〈n〉∆ν (x̄m,∆m)

]
=

(
∆m

2

)n [
x+′
m∆ν(x+

m) + (−1)
n+1

x−′m∆ν(x−m)
]

− n∆mx̄
′
mM

(n−1)
∆ν (x̄m,∆m) (E3)

I will derive expressions for the derivatives of M̄〈1〉∆ν and

M̄〈2〉∆ν below. Before doing so, I will simplify this task
by deducing a relationship between x−′m and x+′

m from the

constraints 〈∆ν〉∆m
(x̄m) = ∆ν(xb) = 0⇒ ∆ν

′
(xb) = 0.

∆ν ′(xb) =
d

dxb

(
1

∆m

∫ x+
m

x−m

∆ν(x) dx

)
= 0

⇒ −∆′m
∆m

∆ν(xb) +
1

∆m

[
x+′
m∆ν(x+

m)− x−′m∆ν(x−m)
]

= 0

∆ν = 0 means that x+′
m∆ν(x+

m) = x−′m∆ν(x−m). Recur-
sively applying this relationship and using the fact that
x0 ≡ xb ⇒ x′0 = 1 we find that

x′m∆ν(xm) = ∆ν(xb), ∀ xm ∈ Π(xb, `) (E4)

Because a microscopic change of xb cannot change ` by
more than a, the second term on the right hand side
of Eq. E2 is negligible for our purposes. Therefore, by
substituting Eq. E4 into Eq. E5 we find that

d

dxb
M̄〈n〉∆ν (xb) =

∆ν(xb)

`
[1− (−1)

n
]
∑
m

(
∆m

2

)n
− n

`

∑
m

∆mx̄
′
mM

(n−1)
∆ν (x̄m,∆m) (E5)

a. Case I: dM̄〈1〉
∆ν

/
dxb

For n = 1, Eqs. E3 and E4 mean that

d

dxb

[
∆mM〈1〉∆ν(x̄m,∆m)

]
=

∆m

2

[
x+′
m∆ν(x+

m) + x−′m∆ν(x−m)
]

= ∆m∆ν(xb)

Subsistuting this and M̄〈0〉∆ν(xb) = 0 into Eq. E5 gives

d

dxb
M̄〈1〉∆ν(xb) = ∆ν(xb) (E6)

This result can be derived at greater length without re-
quiring that ∆ν ′(xb) = 0 or ∆ν(xb) = 0.

b. Case II: dM̄〈2〉
∆ν

/
dxb

Inserting n = 2 in Eq. E5 and using Eqs. E3 and E4 gives

d

dxb
M̄〈2〉∆ν(xb) = −2

`

∑
m

x̄′mdm (E7)

where dm ≡ ∆mM〈1〉∆ν(x̄m,∆m) is the first moment of ∆ν
in Im. I define Xd to be the first-moment-weighted av-
erage of the interval midpoints, x̄m.

Xd ≡
∑
m x̄mdm∑
m dm

(E8)

In the limit a/l → 0 in an infinite macroscopically-
uniform material, Xd coincides both with xb and with
1
2 (x−M + xM). Rearranging Eq. E8 and taking the
derivative with respect to xb gives∑

m

x̄′mdm = X ′d
∑
m

dm +Xd

∑
m

d′m −
∑
m

x̄md
′
m (E9)

Using Eq. E4 and
∫ x+

m

x−m
∆ν(x) dx = 0, the derivative of

dm can be expressed as

d ′m =

(
∆m

2

)[
x+′
m∆ν(x+

m) + x−′m∆ν(x−m)
]

= ∆m∆ν(xb)⇒
∑
m

d ′m = `∆ν(xb) (E10)

The last term on the right hand side of Eq. E9 is∑
m

x̄md
′
m = ∆ν(xb)

∑
m

∆mx̄m ≈ ∆ν(xb)

∫ xM

x−M

x dx

= ∆ν(xb)
`

2
(x−M + xM) (E11)

Eqs. E7, E8, E9, E10, and E11 can be combined with∑
m dm = `M̄〈1〉∆ν(xb) to show that

d

dxb
M̄〈2〉∆ν(xb) = 2 ∆ν(xb)

[(
x−M + xM

2

)
−Xd

]
− 2X ′d M̄

〈1〉
∆ν(xb) (E12)

Now, because 1
2 (x−M + xM) and Xd both get closer xb as

l increases, their difference vanishes and X ′d becomes one
in the limit a/l→ 0. Therefore, in this limit,

d

dxb
M̄〈2〉∆ν(xb) = −2M̄〈1〉∆ν(xb) (E13)
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To derive Eqs. E6 and E13 we assumed that a/l could
be brought to zero without straying into regions having
different mesoscale averages ν̄. When this assumption is
not valid, some of the terms that were discarded should
be considered more carefully.

c. dS[∆V]
0

/
dx and dS[∆V]

1

/
dx

It is straightforward to use Eqs. 39, 42, E6, and E13 to
show that

dS [∆V]
0

dxb
= 0 (E14a)

dS [∆V]
1

dxb
= M̄〈1〉∆ν(xb) (E14b)

2. Macroscopic moment densities are independent of the
choice of microscopic intervals

It is important to demonstrate that, in the limit a/l→ 0,
our results do not depend on the choice of the set of mi-
crointervals, Π(xb, `), that partition the space around xb.
In this section it is demonstrated that all sets of points
which satisfy the requirements explained in Sec. VII.F

and and Sec. VII.G give the same values of M̄〈1〉∆ν(xb)

and M̄〈2〉∆ν(xb) and therefore the same values of S [∆V]
0

and S [∆V]
1 .

a. M̄〈1〉
∆ν(xb)

Let us assume that we are in the limit a/l→ 0 and that
for a particular choice, Π1(xb, `), of the set of microint-
erval boundary points, we find

M̄〈1〉∆ν(xb,Π1) =
1

`

∑
m

∫ x+
m

x−m

x∆ν(x) dx (E15)

where 〈∆ν〉∆m
(x̄m) = 0 has allowed each integrand

(x− x̄m)∆ν(x) to be simplified to x∆ν(x).

Now suppose that a new set Π2(xb, `s) of boundary
points sm ≡ xm + δxm is formed by changing every
point xm ∈ Π1(xb, `), except x0 = xb, by an amount
δxm, such that the average of ∆ν(x) on each of the new
microscopic intervals remains equal to ∆ν(xb) = 0 and
such that the ordering of the points does not change
(sm+1 > sm, ∀ m). The new set of microintervals
partitions the interval [s−M , sM ], where sM − s−M = `s,
|sM − xb − `s/2| < a, and a/`s ∼ a/l→ 0. I denote the
midpoint, width, left-hand boundary, and right-hand

boundary of the new mth interval by s̄m, ∆s
m, s−m, and

s+
m, respectively. By construction, the average of ∆ν(x)

on each microinterval is zero. Therefore,∫ s+m

s−m

∆ν(s) ds =

∫ x+
m

x−m

∆ν(x) dx = 0

⇒
∫ s+m

x+
m

∆ν(x) dx =

∫ s−m

x−m

∆ν(x) dx (E16)

The new average moment density is

M̄〈1〉∆ν(xb,Π2) =
1

`s

∑
m

[∫ x+
m

x−m

x∆ν(x) dx

+

∫ s+m

x+
m

x∆ν(x) dx−
∫ s−m

x−m

x∆ν(x) dx

]
(E17)

After cancelling terms in the sum, this can be written as

M̄〈1〉∆ν(xb,Π2) =
1

`s

M−1∑
m=−M

∫ xm+1

xm

x∆ν(x) dx

+
1

`s

∫ sM

xM

x ∆ν(x) dx+
1

`s

∫ x−M

s−M

x ∆ν(x) dx (E18)

Although the widths of all microintervals defined by
Π1(xb, `) and Π2(xb, `s) are less than a, I have not as-
sumed that |s̄m − x̄m| < a. If, for example, the width
of each new interval was larger than each old in-
terval, i.e., 0 < ∆m < ∆s

m < a, this would imply that
0 < sM − xM ∼Ma 6� l. Therefore, we cannot immedi-
ately dismiss the second and third terms on the right

hand side as negligible. However, M̄〈1〉∆ν(xb,Π1) was
assumed to be converged with respect to the magni-
tude of `. Therefore, without changing its value sig-
nificantly, I can expand the set Π1 to encompass the
ranges [xM , sM ] and [s−M , x−M ] by dividing these ranges
into microintervals and adding their boundary points to
Π1(xb, `) to form a new set Πnew

1 (xb, `
new) ⊃ Π1(xb, `)

containing Mnew > M microinterval boundary points on
each side of xb, and such that 0 < x−M − x−Mnew < a,
0 < xMnew − xM < a, and 0 < `new − `s . a. Eq. E18
then becomes

M̄〈1〉∆ν(xb,Π2) =
1

`s

Mnew−1∑
m=−Mnew

∫ xm+1

xm

x∆ν(x) dx

− 1

`s

∫ xMnew

sM

x ∆ν(x) dx− 1

`s

∫ s−M

x−Mnew

x ∆ν(x) dx

=
`new

`s
M̄〈1〉∆ν(xb,Π

new
1 ) +O

(a
l

)
(E19)

Therefore, if O(a/l) terms are neglected,

M̄〈1〉∆ν(xb,Π2) = M̄〈1〉∆ν(xb,Π1) (E20)

I have assumed that sM > xM and s−M < x−M , but a sim-
ilar procedure can be followed to prove the same result
for any other case, such as sM > xM and s−M > x−M .
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b. M̄〈2〉
∆ν(xb)

I will now demonstrate that M̄〈2〉∆ν(xb) is independent
of how the region around xb is partitioned. I will use
the partitions Π1(xb, `), Π2(xb, `s) and Πnew

1 (xb, `s), in-

troduced in the previous section, where `s > `, and
I again assume the limit a/l→ 0, which implies that

M̄〈2〉∆ν(xb,Π1) = M̄〈2〉∆ν(xb,Π
new
1 ). I will show that

M̄〈2〉∆ν(xb,Π1) = M̄〈2〉∆ν(xb,Π
new
1 ) = M̄〈2〉∆ν(xb,Π1).

`sM̄〈2〉∆ν(xb,Π2) =
∑
m

∫ s+m

s−m

(x− s̄m)2∆ν(x) dx =
∑
m

[∫ s+m

s−m

(x− x̄m)2∆ν(x) dx− 2 (s̄m − x̄m)

∫ s+m

s−m

x∆ν(x) dx

]

=
∑
m

[∫ x+
m

x−m

(x− x̄m)2∆ν(x) dx+

∫ s+m

x+
m

x2∆ν(x) dx−
∫ s−m

x−m

x2∆ν(x) dx − 2 s̄m

∫ s+m

s−m

x∆ν(x) dx +2 x̄m

∫ x+
m

x−m

x∆ν(x) dx

]

= `M̄〈2〉∆ν(xb,Π1) +

Mnew∑
m=M+1

∫ x+
m

x−m

(x− x̄m)2∆ν(x) dx+

−M−1∑
m=−Mnew

∫ x+
m

x−m

(x− x̄m)2∆ν(x) dx+ 2

Mnew∑
m=M+1

x̄m

∫ x+
m

x−m

x∆ν(x) dx

+ 2

−M−1∑
m=−Mnew

x̄m

∫ x+
m

x−m

x∆ν(x) dx− 2

M∑
m=−M

s̄m

∫ s+m

s−m

x∆ν(x) dx+ 2

M∑
m=−M

x̄m

∫ x+
m

x−m

x∆ν(x) dx

= `newM̄〈2〉∆ν(xb,Π
new
1 ) + 2

Mnew∑
m=−Mnew

x̄m

∫ x+
m

x−m

x∆ν(x) dx− 2

M∑
m=−M

s̄m

∫ s+m

s−m

x∆ν(x) dx (E21)

Denoting the dipole weighted mean positions (Eq. E8)
of sets Πnew

1 (xb, `s) and Π2(xb, `s) by Xd(Π
new
1 ) and

Xd(Π2), respectively, using Eq. E20, and neglecting
O(a/l) terms, allows this to be written as

M̄〈2〉∆ν(xb,Π2) = M̄〈2〉∆ν(xb,Π
new
1 )

+ 2M̄〈1〉∆ν(xb,Π
new
1 )Xd(Π

new
1 )− 2M̄〈1〉∆ν(xb,Π2)Xd(Π2)

= M̄〈2〉∆ν(xb,Π1) + 2M̄〈1〉∆ν(xb,Π1) [Xd(Π1)−Xd(Π2)]

In the limit a/l → 0, both Xd(Π1) and Xd(Π2) tend to
xb and so

M̄〈2〉∆ν(xb,Π2) = M̄〈2〉∆ν(xb,Π1) (E22)

3. Mesoscale averages of M̄〈n〉
∆ν (xb)

In general, both M̄〈1〉∆ν(xb) and M̄〈2〉∆ν(xb) vary microscopi-
cally with xb. It can be necessary to know their mesoscale

averages over xb, which are denoted byM〈1〉
∆ν andM〈2〉

∆ν ,
respectively. In Sec. VII.H.3 it was argued that idem-
potency of the mesoscale-averaging operation applied to

surface integrals requires both M〈1〉
∆ν and M〈2〉

∆ν to be
zero in regions of mesoscale uniformity. In this section
I prove that this requirement is satisfied in the a/l→ 0
limit.

I define `1 ∼ l and `2 ∼ l as the widths of the in-
tervals on which the mesoscale averages of M〈n〉∆ν and

M̄〈n〉∆ν , respectively, are calculated. I consider the av-

erage, over all u ∈ I(−`2/2, `2/2), of M̄〈1〉∆ν(xb + u).

As usual, when M̄〈1〉∆ν is being evaluated at xb + u,
I partition an interval of width `2 centered at a mi-
croscopic distance from xb + u into a set of microin-
tervals. I denote the left-hand boundary, right-hand
boundary, midpoint, and width of the mth microinter-
val, Im(u), by x−m = x−m(u), x+

m = x+
m(u), x̄m = x̄m(u),

and ∆m = ∆m(u), respectively. For each value of u,
the value of `1(u) = `1(0) + ∆`1(u) is chosen such that
∆ν(xb + u) = 0. It is always possible to choose it such
that ∆`1(u) < a. The values of x̄m and ∆m are cho-
sen such that 〈∆ν〉∆m(u) (x̄m(u)) = ∆ν(xb + u) = 0. To

avoid clutter I will only make the dependences of xm, x−m,
x+
m, ∆m, x̄m, and `1 on u explicit in my notation when

it is necessary for clarity.

The mesoscale average of M̄〈1〉∆ν(xb) is

〈
M̄(1)

ν

〉
`2

(xb) =
1

`2

∫ `2/2

−`2/2

(
1

`1

∑
m

∫ x+
m

x−m

x∆ν(x) dx

)
du

=
1

`2

∫ `2/2

−`2/2

(
1

`1

∫ `1/2

−`1/2
v∆ν(xb + u+ v) dv

)
du

Because terms of order a/`1 are negligible, we can ignore
the dependence of `1 on u. This allows us to switch the
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order of the integrations over u and v.〈
M̄(1)

ν

〉
`2

(xb)

=
1

`2 `1

∫ `1/2

−`1/2
u

(∫ −`2/2
`2/2

∆ν(xb + u+ v) dv

)
du

The inner integral vanishes in the limit a/`2 → 0. There-
fore,

M〈1〉
∆ν(xb) ≡

〈
M̄〈1〉∆ν

〉
l
(xb) = 0 (E23)

Because νB is constant on the microscale, it follows that
M〈1〉

ν is also zero. This is simply a consequence of
mesoscale uniformity implying local mesoscale isotropy.
By local mesoscale isotropy I mean that, for all n,∫ `/2

−`/2
un ν(x+ u) du =

∫ `/2

−`/2
un ν(x− u) du+O(a/l)

I now want to prove that the mesoscale averageM〈2〉
∆ν of

M̄〈2〉∆ν is zero, where

M̄〈2〉∆ν(xb + u) =
1

`1

∑
m

∫ x+
m

x−m

(x− x̄m)
2

∆ν(x) dx

=
1

`1

∑
m

[ ∫ x+
m

x−m

(x− xb − u)
2

∆ν(x) dx

− 2 (x̄m − xb − u)

∫ x+
m

x−m

x ∆ν(x) dx

]
=

1

`1

∫ xM

x−M

(x− xb − u)
2

∆ν(x) dx

− 2 [Xd − (xb + u)]M̄〈1〉∆ν(xb + u) (E24)

As defined in Sec. E.1.b, Xd = Xd(u) is the first-moment-
weighted average of the microinterval midpoints. Its
value tends to xb + u in the a/`1 → 0 limit; therefore,
the second term on the right hand side vanishes in this
limit. Since O(a/l) terms can be disregarded, we can as-
sume that x±M = xb + u± `1/2 and express the average

over u as

M〈2〉
∆ν(xb)

=
1

`2

∫ `2/2

−`2/2

1

`1

(∫ `1/2

−`1/2
v2 ∆ν(xb + u+ v) dv

)
du

=
1

`1

∫ `1/2

−`1/2
v2 〈∆ν〉`2 (xb + v) dv (E25)

where, to reach the second line from the first, we reverse
the order of integration, thereby neglecting the O(a/`1)
error made by ignoring the u−dependence of `1. The
value of 〈∆ν〉`2 (xb + v) fluctuates microscopically about
zero as v is varied, and its magnitude remains smaller

than δ
[ν̄]
A /2. Therefore, it is possible to choose a value of

η1 < a for which
∫ `1/2+η1
−`1/2 〈∆ν〉 (xb + v) dv = 0. There-

fore, we can add η1 to the upper limit of the integral at
the expense of a negligible O(a/l) error. Integrating by
parts gives

M〈2〉
∆ν(xb)

= − 2

`1

∫ `1/2+η1

−`1/2
v

(∫ v

−`1/2
〈∆ν〉`2 (xb + v′) dv′

)
dv

Let η2 > 0 be the shortest distance for which∫ v−η2
−`1/2 〈∆ν〉`2 (xb + v′) dv′ = 0. Because 〈∆ν〉`2 (xb + v′)

fluctuates microscopically about zero, η2 < a and∣∣∣∫ vv−η2 〈∆ν〉`2 (xb + v′) dv′
∣∣∣ < η2 δ

[ν̄]
A /2. Therefore,

∣∣∣M〈2〉
∆ν(xb)

∣∣∣ < a

`1
δ

[ν̄]
A

∣∣∣∣∣
∫ `1/2+η1

−`1/2
v dv

∣∣∣∣∣ ∼ 1

2

a3

`2
δ

[ν]
B (E26)

This vanishes in the a/`2 → 0 limit and so

M〈2〉
∆ν(xb) = 0 +O(a/l) (E27)

•

Appendix F: Proof that the mesoscale average of Φ
[∆ρ]
L

vanishes

The charge density,

∆ρ( #»u ;x, #»s b, R) ≡ ρ(x, #»s b + #»u )− ρ̄(x, #»s b;R),

is introduced in Sec. XIII.A, where ρ̄(x, #»s b;R) is the av-
erage of the volumetric charge density ρ on a disc of ra-

dius R, which is parallel to the surface and centered at

(x, #»s ). Φ
[∆ρ]
L (xb,

#»s b;R), which is defined in Eq. 69, can
be viewed as the microscopic electric potential at (xb,

#»s b)
from all of the areal charge densities ∆ρ( #»u ;x, #»s b, R) dx
on all such discs with centers at (x, #»s b) for x between
xL and xb. I will now demonstrate that the average of

Φ
[∆ρ]
L (xb,

#»s b;R) over all points on the disc of radius R1

at x = xb vanishes as R1 and the radius, R� R1, of the
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discs on which ∆ρ is defined, get very large.

I will assume that R is sufficiently large that the
mesoscale uniformity of microstructure allows us to ne-
glect the dependence of the disc-averaged charge density
ρ̄(x, #»s ;R) on the position #»s of the disc’s center in the

plane perpendicular to x̂. The disc parallel to the sur-
face of radius R1 � R and with its center at (xb,

#»s b) is
denoted by DR1(xb,

#»s b) and the disc of radius R cen-
tered at (x, #»s b) is denoted by DR(x, #»s b). I denote the
potential at point (xb,

#»s b + #»u ) ∈ DR1
(xb,

#»s b), from the
areal charge density ∆ρ( #»v ;x, #»s b, R) dx on DR(x, #»s b) by

dΦ
[∆ρ]
L (xb,

#»u ;x, #»s b, R), i.e.,

dΦ
[∆ρ]
L (xb,

#»u ;x, #»s b, R) = κdx

∫∫
| #»v |<R

∆ρ( #»v ;x, #»s b, R)√
(xb − x)2 + | #»v − #»u |2

d2v = κdx

∫∫
| #»u+ #»v |<R

∆ρ( #»v + #»u ;x, #»s b, R)√
(xb − x)2 + v2

d2v

= κdx

∫∫
| #»v |<R2

∆ρ( #»u + #»v ;x, #»s b, R)√
(xb − x)2 + v2

d2v

︸ ︷︷ ︸
dΦ

[∆ρ]
L,1 (xb,

#»u ;x, #»s b, R)

+κdx

∫∫
| #»v |>R2

| #»v+ #»u |<R

∆ρ( #»u + #»v ;x, #»s b, R)√
(xb − x)2 + v2

d2v

︸ ︷︷ ︸
dΦ

[∆ρ]
L,2 (xb,

#»u ;x, #»s b, R)

, (F1)

where κ = (4πε0)−1, v ≡ | #»v |, and I have split
the integral over DR(x, #»s b) into an integral
over the disc DR2(x, #»s b + #»u ), of radius R2 � R
and center (x, #»s b + #»u ), and an integral over
DR(x, #»s b) \ DR2

(x, #»s b + #»u ). We will be averaging

dΦ
[∆ρ]
L (xb,

#»u ;x, #»s b, R) over all (xb,
#»u ) ∈ DR1

(xb,
#»s b);

when we do so, the average of the first term,

dΦ
[∆ρ]
L,1 (xb,

#»u ;x, #»s b, R), vanishes because the mesoscale

uniformity of microstructure ensures that the aver-
age of ∆ρ on any disc of radius R1 vanishes in the
large-R1 limit. Therefore let us focus our attention on

dΦ
[∆ρ]
L,2 (xb,

#»u ;x, #»s b, R).

The average of dΦ
[∆ρ]
L (xb,

#»u ;x, #»s b, R) over all #»u
for which | #»u | < R1, is the average potential in
DR1

(xb,
#»s b + #»u ) from ∆ρ at points in DR(x, #»s b). Its

value is

〈
dΦ

[∆ρ]
L

〉
DR1

(xb,
#»s b)

(x, #»s b, R) =
κdx

πR2
1

∫∫
| #»u |<R1

d2u

∫∫
| #»v |>R2

| #»v+ #»u |<R

d2v
∆ρ( #»u + #»v ;x, #»s b, R)√

(xb − x)2 + v2
(F2)

=
κdx

πR2
1

∫∫
| #»v |>R2

d2v√
(xb − x)2 + v2

∫∫
| #»u |<R1

| #»u+ #»v |<R

∆ρ( #»u + #»v ;x, #»s b, R) d2u (F3)

=
κdx

πR2
1

∫
v>R2

dv√
(xb − x)2 + v2

∫ 2π

0

dθ

∫∫
| #»u |<R1

| #»u+ #»v |<R

∆ρ( #»u + #»v (v, θ);x, #»s b, R) d2u ,

(F4)

where #»v (v, θ) is #»v expressed in polar coor-
dinates. The integral over #»u is an integral
of ∆ρ on DR(x, #»s b) ∩ DR1

(x, #»s b + #»v ). When
DR(x, #»s b) ∩ DR1

(x, #»s b + #»v ) = DR1
(x, #»s b + #»v ) it

vanishes in the large-R1 limit. When DR1
(x, #»s b + #»v )

is not a subset of DR(x, #»s b), its integral on DR(x, #»s b)
is zero by definition and its average on DR1(x, #»s b + #»v )
vanishes in the large-R1 limit. Therefore, in this limit,
the average of ∆ρ on DR1

(x, #»s b + #»v ) \ DR(x, #»s b) is the

negative of its average on DR(x, #»s b) \ DR1(x, #»s b + #»v ).
The integral over θ is then a spatial average of ∆ρ on the
annulus swept out by DR1

(x, #»s b + #»v (v, θ)) \ DR(x, #»s b)
as θ varies between zero and 2π. It is also equal to
the negative of the average of ∆ρ on the disc of radius
v −R1 centered at (x, #»s b) consisting of all points in
DR(x, #»s b) that are not in DR1

(x, #»s b + #»v (v, θ)) for any
value of θ. Therefore, when R1 and R2 are large enough
it vanishes.
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