Imperial College London

Professor Peter Vincent

Faculty of EngineeringDepartment of Aeronautics

Professor of Computational Fluid Dynamics
 
 
 
//

Contact

 

+44 (0)20 7594 1975p.vincent

 
 
//

Location

 

211City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

65 results found

Vincent PE, Hunt AAE, Grinberg L, Sherwin SJ, Weinberg PDet al., 2009, A Realistic Representation of the Rabbit Aorta for use in Computational Haemodynamic Studies, ASME Summer Bioengineering Conference, Publisher: AMER SOC MECHANICAL ENGINEERS, Pages: 985-986

Conference paper

Vincent P, 2009, A Cellular Scale Study of Low Denisty Lipoprotein Concentration Polarisation in Arteries

Uptake of Low Density Lipoprotein (LDL) by the arterial wall is likely to play a key role in the process of atherogenesis, which occurs non-uniformly within the ar- terial vasculature. A particular process that may cause vascular scale heterogeneity in the rate of transendothelial LDL transport is the formation of a flow-dependent LDL concentration polarisation layer adjacent to the luminal surface of the arte- rial endothelium. In this thesis the effects of cellular scale endothelial features on such LDL concentration polarisation are investigated using an idealised theoretical model. Specifically, the effect of a spatially heterogeneous transmural water flux is considered (flowing only through intercellular clefts), as well as the effect of the endothelial glycocalyx layer (EGL). The idealised model is implemented using both analytical techniques and the spectral/hp element method. A range of scenarios are considered, including those were no EGL is present, those where an EGL is present but LDL cannot penetrate into it, and finally those where an EGL is present and LDL can penetrate into it.For cases where no EGL is present, particular attention is paid to the spatially averaged LDL concentration adjacent to various regions of the endothelial surface, as such measures may be relevant to the rate of transendothelial LDL transport. It is demonstrated, in principle, that a heterogeneous transmural water flux alone can act to enhance such measures, and cause them to develop a shear dependence (in addition to that caused by vascular scale flow features affecting the overall degree of LDL concentration polarisation). However, it is shown that this enhancement and additional shear dependence are likely to be negligible for a physiologically realistictransmural flux velocity of 0.0439μms−1 and an LDL diffusivity in blood plasma of 28.67μm2 s−1 .For cases where an EGL is present, measures of LDL concentration polarisation relevant to the rate of transendo

Thesis dissertation

Vincent PE, Sherwin SJ, Weinberg PD, 2008, Viscous Flow Over Outflow Slits Covered by an Anistropic Brinkman Medium: A Model of Flow Above Inter-Endothelial Cell Clefts, Physics of Fluids, Vol: 20

Journal article

Vincent PE, Sherwin SJ, Weinberg PD, 2007, Computational investigation of a mechanism by which blood flow could control lipoprotein uptake by the arterial, Joint Autumn Meeting of the British-Society-for-Cardiovascular-Research/British-Atherosclerosis-Society, Publisher: B M J PUBLISHING GROUP, ISSN: 1355-6037

Conference paper

Chittenden JP, Vincent P, Jennings CA, Ciardi Aet al., 2006, Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme, Publisher: American Institute of Physics, Pages: 335-338, ISSN: 0094-243X

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00331053&limit=30&person=true&page=3&respub-action=search.html