Imperial College London

DrPeterWinskill

Faculty of MedicineSchool of Public Health

Imperial College Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 3946p.winskill

 
 
//

Location

 

UG1247 Praed StreetSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

62 results found

Winskill P, Hogan AB, Thwing J, Mwandigha L, Walker PGT, Lambert Bet al., 2021, Health inequities and clustering of fever, acute respiratory infection, diarrhoea and wasting in children under five in low- and middle-income countries: a Demographic and Health Surveys analysis, BMC Medicine, Vol: 19, ISSN: 1741-7015

BACKGROUND: Pneumonia, diarrhoea and malaria are responsible for over one third of all deaths in children under the age of 5 years in low and middle sociodemographic index countries; many of these deaths are also associated with malnutrition. We explore the co-occurrence and clustering of fever, acute respiratory infection, diarrhoea and wasting and their relationship with equity-relevant variables. METHODS: Multilevel, multivariate Bayesian logistic regression models were fitted to Demographic and Health Survey data from over 380,000 children in 39 countries. The relationship between outcome indicators (fever, acute respiratory infection, diarrhoea and wasting) and equity-relevant variables (wealth, access to health care and rurality) was examined. We quantified the geographical clustering and co-occurrence of conditions and a child's risk of multiple illnesses. RESULTS: The prevalence of outcomes was very heterogeneous within and between countries. There was marked spatial clustering of conditions and co-occurrence within children. For children in the poorest households and those reporting difficulties accessing healthcare, there were significant increases in the probability of at least one of the conditions in 18 of 21 countries, with estimated increases in the probability of up to 0.23 (95% CrI, 0.06-0.40). CONCLUSIONS: The prevalence of fever, acute respiratory infection, diarrhoea and wasting are associated with equity-relevant variables and cluster together. Via pathways of shared aetiology or risk, those children most disadvantaged disproportionately suffer from these conditions. This highlights the need for horizontal approaches, such as integrated community case management, with a focus on equity and targeted to those most at need.

Journal article

Mousa A, Winskill P, Watson OJ, Ratmann O, Monod M, Ajelli M, Diallo A, Dodd PJ, Grijalva CG, Kiti MC, Krishnan A, Kumar R, Kumar S, Kwok KO, Lanata CF, de Waroux OLP, Leung K, Mahikul W, Melegaro A, Morrow CD, Mossong J, Neal EF, Nokes DJ, Pan-Ngum W, Potter GE, Russell FM, Saha S, Sugimoto JD, Wei WI, Wood RR, Wu JT, Zhang J, Walker PG, Whittaker Cet al., 2021, Social Contact Patterns and Implications for Infectious Disease Transmission: A Systematic Review and Meta-Analysis of Contact Surveys., medRxiv

Background: Transmission of respiratory pathogens such as SARS-CoV-2 depends on patterns of contact and mixing across populations. Understanding this is crucial to predict pathogen spread and the effectiveness of control efforts. Most analyses of contact patterns to date have focussed on high-income settings. Methods: Here, we conduct a systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys we explored how contact characteristics (number, location, duration and whether physical) vary across income settings. Results: Contact rates declined with age in high- and upper-middle-income settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age-groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, but low-income settings were characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income-strata on the frequency, duration and type of contacts individuals made. Conclusions: These differences in contact patterns between settings have material consequences for both spread of respiratory pathogens, as well as the effectiveness of different non-pharmaceutical interventions. Funding: This work is primarily being funded by joint Centre funding from the UK Medical Research Council and DFID (MR/R015600/1).

Journal article

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Vaccine, Vol: 39, Pages: 2995-3006, ISSN: 0264-410X

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Journal article

Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Brazeau N, Cuomo-Dannenburg G, Hamlet A, Thompson H, Baguelin M, Fitzjohn R, Knock E, Lees J, Whittles L, Mellan T, Winskill P, COVID-19 Response Team IC, Howard N, Clapham H, Checchi F, Ferguson N, Ghani A, Walker P, Beals Eet al., 2021, Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria, Nature Communications, Vol: 12, Pages: 1-10, ISSN: 2041-1723

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% – 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 – 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% – 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus.

Journal article

Dixon M, Winskill P, Harrison W, Basanez M-Get al., 2021, Taenia solium taeniasis / cysticercosis: from parasite biology and immunology to diagnosis and control, Advances in Parasitology, Vol: 112, Pages: 133-217, ISSN: 0065-308X

Infection with the pork tapeworm (Taenia solium) is responsible for a substantial global burden of disease, not only restricted to its impact on human health, but also resulting in a considerable economic burden to smallholder pig farmers due to pig cysticercosis infection. The life-cycle, parasitology and immunology of T. solium are complex, involving pigs(the intermediate host, harbouring the larval metacestode stage), humans(the definitive host, harbouring the adult tapeworm, in addition to acting as accidental intermediate hosts) and the environment (the source of infection with eggs/proglottids). We review the parasitology, immunology, and epidemiology of the infection associated with each of the T. solium life-cycle stages, including the pre-adult/adult tapeworm responsible for human taeniasis; post-oncosphere and cysticercus associated with porcine and human cysticercosis, and the biological characteristics of eggs in the environment. We discuss the burden associated, in endemic settings, with neurocysticercosis (NCC) in humans, and the broader cross-sectoral economic impact associated both with NCC and porcine cysticercosis, the latter impacting food-value chains. Existing tools for diagnostics and control interventions that target different stages of the T. solium transmission cycle are reviewed and their limitations discussed. Currently, no national T. solium control programmes have been established in endemic areas, with further work required to identify optimal strategies according to epidemiological setting. There is increasing evidence suggesting that cross-sectoral interventions which target the parasite in both the human and pig host provide the most effective approaches for achieving control and ultimately elimination. We discuss future avenues for research on T. soliumto support the attainement of the goals proposed in the revised World Heal

Journal article

Olivera Mesa D, Hogan A, Watson O, Charles G, Hauck K, Ghani A, Winskill Pet al., 2021, Report 43: Quantifying the impact of vaccine hesitancy in prolonging the need for Non-Pharmaceutical Interventions to control the COVID-19 pandemic

Vaccine hesitancy – a delay in acceptance or refusal of vaccines despite availability 1 – has the potential to threaten the successful roll-out of SARS-CoV-2 vaccines globally 2 . Here, we evaluate the potential impact of vaccine hesitancy on the control of the pandemic and the relaxation of non-pharmaceutical interventions (NPIs) by combining an epidemiological model of SARS-CoV-2 transmission 3 with data on vaccine hesitancy from population surveys. Our findings suggest that the mortality over a 2-year period could be up to 8 times higher in countries with high vaccine hesitancy compared to an ideal vaccination uptake if NPIs are relaxed. Alternatively, high vaccine hesitancy could prolong the need for NPIs to remain in place. Addressing vaccine hesitancy with behavioural interventions is therefore an important priority in the control of the COVID-19 pandemic.

Report

Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, Brazeau NF, Charles GD, Gaythorpe KAM, Hamlet A, Knock E, Laydon DJ, Lees JA, Løchen A, Verity R, Whittles LK, Muhib F, Hauck K, Ferguson NM, Ghani ACet al., 2021, Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Publisher: Cold Spring Harbor Laboratory

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extended a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identified optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We found that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.

Working paper

Winskill P, Mousa A, Oresanya O, Counihan H, Okell L, Walker Pet al., 2021, Does integrated community case management (iCCM) target health inequities and treatment delays? Evidence from an analysis of Demographic and Health Surveys data from 21 countries in the period 2010 to 2018, Journal of Global Health, Vol: 11, Pages: 1-10, ISSN: 2047-2978

BackgroundIntegrated community case management (iCCM) is a programme that can, via community health workers (CHWs), increase access to timely and essential treatments for children. As well as improving treatment coverage, iCCM has an additional equity-focus with the aim of targetingunderserved populations. To assess the success of iCCM programmes it is important that we understand the contribution they are making to equitable health coverage.MethodsWe analysed demographic and health survey data from 21 countries over 9 years to assess evidence and evaluate iCCM programmes. We summarise the contribution CHWs are making relative to other healthcare provider groups and what treatment combinations CHWs are commonly prescribing. We assessed the ability of CHWs to target treatment delays and health inequities by evaluating time to treatment following fever onset and relationships between CHWs and wealth, rurality and remoteness.ResultsThere was good evidence that CHWs are being successfully targeted to improve inequities in healthcare coverage. There is a larger contribution of CHWs in areas with higher poverty, rurality and remoteness. In six surveys CHWs were associated with significantly shorter average timebetween fever onset and advice or treatment seeking, whilst in one they were associated with significantly longer times. In areas with active CHW programmes, the contribution of CHWs relative to other healthcare provider groups varied between 11% to 45% of treatment visits. The distribution of types of treatment provided by CHWs was also very variable between countries.ConclusionsThe success of an iCCM programme depends not only on increasing treatment coverage but addressing inequities in access to timely healthcare. Whilst much work is still needed to attain universal healthcare targets, and despite incomplete data, there is evidence that iCCM is successfully addressing treatment delays and targeting underserved populations.

Journal article

Gilmartin C, Nonvignon J, Cairns M, Milligan P, Bocoum F, Winskill P, Moroso D, Collins Det al., 2021, Seasonal malaria chemoprevention in the Sahel subregion of Africa: a cost-effectiveness and cost-savings analysis, LANCET GLOBAL HEALTH, Vol: 9, Pages: E199-E208, ISSN: 2214-109X

Journal article

Verity R, Okell L, Dorigatti I, Winskill P, Whittaker C, Walker P, Donnelly C, Ferguson N, Ghani Aet al., 2021, COVID-19 and the difficulty of inferring epidemiological parameters from clinical data Reply, LANCET INFECTIOUS DISEASES, Vol: 21, Pages: 28-28, ISSN: 1473-3099

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Thompson H, Imai N, Dighe A, Ainslie K, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Z, Cuomo-Dannenburg G, Djaafara B, Dorigatti I, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Hallett T, Hamlet A, Haw D, Hayes S, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Mousa A, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Donnelly C, Ferguson Net al., 2020, SARS-CoV-2 infection prevalence on repatriation flights from Wuhan City, China, Journal of Travel Medicine, Vol: 27, Pages: 1-3, ISSN: 1195-1982

We estimated SARS-CoV-2 infection prevalence in cohorts of repatriated citizens from Wuhan to be 0.44% (95% CI: 0.19%–1.03%). Although not representative of the wider population we believe these estimates are helpful in providing a conservative estimate of infection prevalence in Wuhan City, China, in the absence of large-scale population testing early in the epidemic.

Journal article

Hogan A, Winskill P, Ghani A, 2020, Estimated impact of RTS,S/AS01 malaria vaccine allocation strategies in sub-Saharan Africa: a modelling study, PLoS Medicine, Vol: 17, Pages: 1-19, ISSN: 1549-1277

Background: The RTS,S/AS01 vaccine against P. falciparum malaria infection completed phase 3 trials in 2014, and demonstrated efficacy against clinical malaria of approximately 36% over 4 years for a 4-dose schedule in children aged 5–17 months. Pilot vaccine implementation has recently begun in three African countries. If the pilots demonstrate both a positive health impact and resolve remaining safety concerns, wider roll-out could be recommended from 2021 onwards. Vaccine demand may however outstrip initial supply. We sought to identify where vaccine introduction should be prioritised to maximise public health impact under a range of supply constraints using mathematical modelling. Methods and Findings: Using a mathematical model of P. falciparum malaria transmission and RTS,S vaccine impact, we estimated the clinical cases and deaths averted in children aged 0–5 years in sub-Saharan Africa under two scenarios for vaccine coverage (100% and realistic) and two scenarios for other interventions (current coverage and WHO Global Technical Strategy targets). We used a prioritisation algorithm to identify potential allocative efficiency gains fromprioritising vaccine allocation among countries or administrative units to maximise cases or deaths averted. If malaria burden at introduction is similar to current levels, assuming realistic vaccine coverage and country-level prioritisation in areas with parasite prevalence >10%, we estimate 4.3 million (95% credible interval, CrI 2.8–6.8 million) malaria cases and 22,000 (95% CrI 11,000–35,000) deaths in children younger than 5 years could be averted annually at a dose constraint of 30 million. This decreases to 3.0 million (95% CrI 2.0–4.7 million) cases and14,000 (95% CrI 7,000–23,000) deaths at a dose constraint of 20 million,and increases to 6.6 million (95% CrI 4.2–10.8 million) cases and38,000 (95% CrI 18

Journal article

Haw D, Forchini G, Christen P, Bajaj S, Hogan A, Winskill P, Miraldo M, White P, Ghani A, Ferguson N, Smith P, Hauck Ket al., 2020, Report 35: How can we keep schools and universities open? Differentiating closures by economic sector to optimize social and economic activity while containing SARS-CoV-2 transmission

There is a trade-off between the education sector and other economic sectors in the control of SARS-Cov-2 transmission. Here we integrate a dynamic model of SARS-CoV-2 transmission with a 63-sector economic model reflecting sectoral heterogeneity in transmission and economic interdependence between sectors. We identify COVID-19 control strategies which optimize economic production while keeping schools and universities operational and constraining infections such that emergency hospital capacity is not exceeded. The model estimates an economic gain of between £163bn and £205bn for the United Kingdom compared to a blanket lockdown of non-essential activity over six months, depending on hospital capacity. Sectors identified as potential priorities for closure are contact-intensive and/or less economically productive.

Report

Brazeau N, Verity R, Jenks S, Fu H, Whittaker C, Winskill P, Dorigatti I, Walker P, Riley S, Schnekenberg RP, Heltgebaum H, Mellan T, Mishra S, Unwin H, Watson O, Cucunuba Perez Z, Baguelin M, Whittles L, Bhatt S, Ghani A, Ferguson N, Okell Let al., 2020, Report 34: COVID-19 infection fatality ratio: estimates from seroprevalence

The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the current pandemic. Previous estimates have relied on data early in the epidemic, or have not fully accounted for uncertainty in serological test characteristics and delays from onset of infection to seroconversion, death, and antibody waning. After screening 175 studies, we identified 10 representative antibody surveys to obtain updated estimates of the IFR using a modelling framework that addresses the limitations listed above. We inferred serological test specificity from regional variation within serosurveys, which is critical for correctly estimating the cumulative proportion infected when seroprevalence is still low. We find that age-specific IFRs follow an approximately log-linear pattern, with the risk of death doubling approximately every eight years of age. Using these age-specific estimates, we estimate the overall IFR in a typical low-income country, with a population structure skewed towards younger individuals, to be 0.23% (0.14-0.42 95% prediction interval range). In contrast, in a typical high income country, with a greater concentration of elderly individuals, we estimate the overall IFR to be 1.15% (0.78-1.79 95% prediction interval range). We show that accounting for seroreversion, the waning of antibodies leading to a negative serological result, can slightly reduce the IFR among serosurveys conducted several months after the first wave of the outbreak, such as Italy. In contrast, uncertainty in test false positive rates combined with low seroprevalence in some surveys can reconcile apparently low crude fatality ratios with the IFR in other countries. Unbiased estimates of the IFR continue to be critical to policymakers to inform key response decisions. It will be important to continue to monitor the IFR as new treatments are introduced. The code for reproducing these results are av

Report

Dixon MA, Winskill P, Harrison W, Whittaker C, Schmidt V, Sarti E, Bawm S, Dione MM, Thomas LF, Walker M, Basanez M-Get al., 2020, Force-of-Infection of Taenia solium porcine cysticercosis: a modelling analysis to assess global incidence and prevalence trends, Scientific Reports, Vol: 10, ISSN: 2045-2322

The World Health Organization (WHO) called, in 2012, for a validated strategy towards Taenia solium taeniasis/cysticercosis control and elimination. Estimating pig force-of-infection (FoI, the average rate at which susceptible pigs become infected) across geographical settings will help understand local epidemiology and inform effective intervention design. Porcine cysticercosis (PCC) age-prevalence data (from 15 studies in Latin America, Africa and Asia) were identified through systematic review. Catalytic models were fitted to the data using Bayesian methods, incorporating uncertainty in diagnostic performance, to estimate rates of antibody seroconversion, viable metacestode acquisition, and seroreversion/infection loss. There was evidence of antibody seroreversion across 5 studies, and of infection loss in 6 studies measured by antigen or necropsy, indicating transient serological responses and natural resolution of infection. Concerted efforts should be made to collect robust data using improved diagnostics to better understand geographical heterogeneities in T. solium transmission to support post-2020 WHO targets.

Journal article

Hogan A, Winskill P, Watson O, Walker P, Whittaker C, Baguelin M, Haw D, Lochen A, Gaythorpe K, Ainslie K, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Charles G, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Eales O, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Flaxman S, Green W, Hallett T, Hamlet A, Hinsley W, Imai N, Jauneikaite E, Jeffrey B, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Ower A, Parag K, Ragonnet-Cronin M, Siveroni I, Skarp J, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walters C, Wang H, Wang Y, Whittles L, Xi X, Muhib F, Smith P, Hauck K, Ferguson N, Ghani Aet al., 2020, Report 33: Modelling the allocation and impact of a COVID-19 vaccine

Several SARS-CoV-2 vaccine candidates are now in late-stage trials, with efficacy and safety results expected by the end of 2020. Even under optimistic scenarios for manufacture and delivery, the doses available in 2021 are likely to be limited. Here we identify optimal vaccine allocation strategies within and between countries to maximise health (avert deaths) under constraints on dose supply. We extended an existing mathematical model of SARS-CoV-2 transmission across different country settings to model the public health impact of potential vaccines, using a range of target product profiles developed by the World Health Organization. We show that as supply increases, vaccines that reduce or block infection – and thus transmission – in addition to preventing disease have a greater impact than those that prevent disease alone, due to the indirect protection provided to high-risk groups. We further demonstrate that the health impact of vaccination will depend on the cumulative infection incidence in the population when vaccination begins, the duration of any naturally acquired immunity, the likely trajectory of the epidemic in 2021 and the level of healthcare available to effectively treat those with disease. Within a country, we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly and other high-risk groups. However, if a larger supply is available, the optimal strategy switches to targeting key transmitters (i.e. the working age population and potentially children) to indirectly protect the elderly and vulnerable. Given the likely global dose supply in 2021 (2 billion doses with a two-dose vaccine), we find that a strategy in which doses are allocated to countries in proportion to their population size is close to optimal in averting deaths. Such a strategy also aligns with the ethical principles agreed in pandemic preparedness planning.

Report

van Elsland S, Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Charles G, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Donnelly C, Dorigatti I, Eales O, van Elsland S, Nascimento F, Fitzjohn R, Flaxman S, Forna A, Fu H, Gaythorpe K, Green W, Hamlet A, Hauck K, Haw D, Hayes S, Hinsley W, Imai N, Jeffrey B, Johnson R, Jorgensen D, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Olivera Mesa D, Pons Salort M, Ragonnet-Cronin M, Siveroni I, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walters C, Wang H, Wang Y, Whittles L, Winskill P, Xi X, Ferguson N, Beals E, Walker P, Anonymous Authorset al., 2020, Report 31: Estimating the burden of COVID-19 in Damascus, Syria: an analysis of novel data sources to infer mortality under-ascertainment

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported substantially lower mortality rates than in Europe and the Americas. One hypothesis is that these countries have been ‘spared’, but another is that deaths have been under-ascertained (deaths that have been unreported due to any number of reasons, for instance due to limited testing capacity). However, the scale of under-ascertainment is difficult to assess with currently available data. In this analysis, we estimate the potential under-ascertainment of COVID-19 mortality in Damascus, Syria, where all-cause mortality data has been reported between 25th July and 1st August. We fit a mathematical model of COVID-19 transmission to reported COVID-19 deaths in Damascus since the beginning of the pandemic and compare the model-predicted deaths to reported excess deaths. Exploring a range of different assumptions about under-ascertainment, we estimate that only 1.25% of deaths (sensitivity range 1% - 3%) due to COVID-19 are reported in Damascus. Accounting for under-ascertainment also corroborates local reports of exceeded hospital bed capacity. To validate the epidemic dynamics inferred, we leverage community-uploaded obituary certificates as an alternative data source, which confirms extensive mortality under-ascertainment in Damascus between July and August. This level of under-ascertainment suggests that Damascus is at a much later stage in its epidemic than suggested by surveillance reports, which have repo. We estimate that 4,340 (95% CI: 3,250 - 5,540) deaths due to COVID-19 in Damascus may have been missed as of 2nd September 2020. Given that Damascus is likely to have the most robust surveillance in Syria, these findings suggest that other regions of the country could have experienced similar or worse mortality rates due to COVID-19.

Report

Watson OJ, Winskill P, Brazeau N, Fitzjohn R, Walker PGT, Hereñú Det al., 2020, mrc-ide/squire: v0.4.34

SEIR transmission model of COVID-19

Software

Hogan A, Jewell B, Sherrard-Smith E, Watson O, Whittaker C, Hamlet A, Smith J, Winskill P, Verity R, Baguelin M, Lees J, Whittles L, Ainslie K, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Eaton J, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Haw D, Hayes S, Hinsley W, Imai N, Laydon D, Mangal T, Mellan T, Mishra S, Parag K, Thompson H, Unwin H, Vollmer M, Walters C, Wang H, Ferguson N, Okell L, Churcher T, Arinaminpathy N, Ghani A, Walker P, Hallett Tet al., 2020, Potential impact of the COVID-19 pandemic on HIV, TB and malaria in low- and middle-income countries: a modelling study, The Lancet Global Health, Vol: 8, Pages: e1132-e1141, ISSN: 2214-109X

Background: COVID-19 has the potential to cause substantial disruptions to health services, including by cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions in services for human immunodeficiency virus (HIV), tuberculosis (TB) and malaria in low- and middle-income countries with high burdens of those disease could lead to additional loss of life. Methods: We constructed plausible scenarios for the disruptions that could be incurred during the COVID-19 pandemic and used established transmission models for each disease to estimate the additional impact on health that could be caused in selected settings.Findings: In high burden settings, HIV-, TB- and malaria-related deaths over five years may increase by up to 10%, 20% and 36%, respectively, compared to if there were no COVID-19 pandemic. We estimate the greatest impact on HIV to be from interruption to antiretroviral therapy, which may occur during a period of high health system demand. For TB, we estimate the greatest impact is from reductions in timely diagnosis and treatment of new cases, which may result from any prolonged period of COVID-19 suppression interventions. We estimate that the greatest impact on malaria burden could come from interruption of planned net campaigns. These disruptions could lead to loss of life-years over five years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV/TB epidemics.Interpretation: Maintaining the most critical prevention activities and healthcare services for HIV, TB and malaria could significantly reduce the overall impact of the COVID-19 pandemic.Funding: Bill & Melinda Gates Foundation, The Wellcome Trust, DFID, MRC

Journal article

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, Whittaker C, Zhu H, Berah T, Eaton JW, Monod M, Perez Guzman PN, Schmit N, Cilloni L, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hallett T, Hamlet A, Hinsley W, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Volz E, Walters C, Wang H, Watson O, Winskill P, Xi X, Walker P, Ghani AC, Donnelly CA, Riley SM, Vollmer MAC, Ferguson NM, Okell LC, Bhatt Set al., 2020, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, Vol: 584, Pages: 257-261, ISSN: 0028-0836

Following the emergence of a novel coronavirus1 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions such as closure of schools and national lockdowns. We study the impact of major interventions across 11 European countries for the period from the start of COVID-19 until the 4th of May 2020 when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks prior, allowing for the time lag between infection and death. We use partial pooling of information between countries with both individual and shared effects on the reproduction number. Pooling allows more information to be used, helps overcome data idiosyncrasies, and enables more timely estimates. Our model relies on fixed estimates of some epidemiological parameters such as the infection fatality rate, does not include importation or subnational variation and assumes that changes in the reproduction number are an immediate response to interventions rather than gradual changes in behavior. Amidst the ongoing pandemic, we rely on death data that is incomplete, with systematic biases in reporting, and subject to future consolidation. We estimate that, for all the countries we consider, current interventions have been sufficient to drive the reproduction number Rt below 1 (probability Rt< 1.0 is 99.9%) and achieve epidemic control. We estimate that, across all 11 countries, between 12 and 15 million individuals have been infected with SARS-CoV-2 up to 4th May, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions and lockdown in particular have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.

Journal article

Sherrard-Smith E, Hogan AB, Hamlet A, Watson OJ, Whittaker C, Winskill P, Ali F, Mohammad AB, Uhomoibhi P, Maikore I, Ogbulafor N, Nikau J, Kont MD, Challenger JD, Verity R, Lambert B, Cairns M, Rao B, Baguelin M, Whittles LK, Lees JA, Bhatia S, Knock ES, Okell L, Slater HC, Ghani AC, Walker PGT, Okoko OO, Churcher TSet al., 2020, The potential public health consequences of COVID-19 on malaria in Africa., Nature Medicine, Vol: 26, Pages: 1411-1416, ISSN: 1078-8956

The burden of malaria is heavily concentrated in sub-Saharan Africa (SSA) where cases and deaths associated with COVID-19 are rising1. In response, countries are implementing societal measures aimed at curtailing transmission of SARS-CoV-22,3. Despite these measures, the COVID-19 epidemic could still result in millions of deaths as local health facilities become overwhelmed4. Advances in malaria control this century have been largely due to distribution of long-lasting insecticidal nets (LLINs)5, with many SSA countries having planned campaigns for 2020. In the present study, we use COVID-19 and malaria transmission models to estimate the impact of disruption of malaria prevention activities and other core health services under four different COVID-19 epidemic scenarios. If activities are halted, the malaria burden in 2020 could be more than double that of 2019. In Nigeria alone, reducing case management for 6 months and delaying LLIN campaigns could result in 81,000 (44,000-119,000) additional deaths. Mitigating these negative impacts is achievable, and LLIN distributions in particular should be prioritized alongside access to antimalarial treatments to prevent substantial malaria epidemics.

Journal article

Fu H, Xi X, Wang H, Boonyasiri A, Wang Y, Hinsley W, Fraser K, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewe T, Dighe A, Winskill P, van Elsland S, Ainslie K, Baguelin M, Bhatt S, Boyd O, Brazeau N, Cattarino L, Charles G, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Green W, Hamlet A, Hauck K, Haw D, Jeffrey B, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Schmit N, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Watson O, Whittaker C, Whittles L, Imai N, Bhatia S, Ferguson Net al., 2020, Report 30: The COVID-19 epidemic trends and control measures in mainland China

Report

Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, Djafaara BA, Cucunubá Z, Olivera Mesa D, Green W, Thompson H, Nayagam S, Ainslie KEC, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau NF, Cattarino L, Cuomo-Dannenburg G, Dighe A, Donnelly CA, Dorigatti I, van Elsland SL, FitzJohn R, Fu H, Gaythorpe KAM, Geidelberg L, Grassly N, Haw D, Hayes S, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Mishra S, Nedjati-Gilani G, Okell LC, Unwin HJ, Verity R, Vollmer M, Walters CE, Wang H, Wang Y, Xi X, Lalloo DG, Ferguson NM, Ghani ACet al., 2020, The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries, Science, Vol: 369, Pages: 413-422, ISSN: 0036-8075

The ongoing COVID-19 pandemic poses a severe threat to public health worldwide. We combine data on demography, contact patterns, disease severity, and health care capacity and quality to understand its impact and inform strategies for its control. Younger populations in lower income countries may reduce overall risk but limited health system capacity coupled with closer inter-generational contact largely negates this benefit. Mitigation strategies that slow but do not interrupt transmission will still lead to COVID-19 epidemics rapidly overwhelming health systems, with substantial excess deaths in lower income countries due to the poorer health care available. Of countries that have undertaken suppression to date, lower income countries have acted earlier. However, this will need to be maintained or triggered more frequently in these settings to keep below available health capacity, with associated detrimental consequences for the wider health, well-being and economies of these countries.

Journal article

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunubá Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC, Ferguson NMet al., 2020, Estimates of the severity of coronavirus disease 2019: a model-based analysis., Lancet Infectious Diseases, Vol: 20, Pages: 669-677, ISSN: 1473-3099

BACKGROUND: In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. METHODS: We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. FINDINGS: Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9-19·2) and to hospital discharge to be 24·7 days (22·9-28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for cen

Journal article

Winskill P, Whittaker C, Walker P, Watson O, Laydon D, Imai N, Cuomo-Dannenburg G, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Cattarino L, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, van Elsland S, Fitzjohn R, Flaxman S, Gaythorpe K, Green W, Hallett T, Hamlet A, Hinsley W, Knock E, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Thompson H, Unwin H, Wang Y, Whittles L, Xi X, Ferguson N, Donnelly C, Ghani Aet al., 2020, Report 22: Equity in response to the COVID-19 pandemic: an assessment of the direct and indirect impacts on disadvantaged and vulnerable populations in low- and lower middle-income countries, 22

The impact of the COVID-19 pandemic in low-income settings is likely to be more severe due to limited healthcare capacity. Within these settings, however, there exists unfair or avoidable differences in health among different groups in society – health inequities – that mean that some groups are particularly at risk from the negative direct and indirect consequences of COVID-19. The structural determinants of these are often reflected in differences by income strata, with the poorest populations having limited access to preventative measures such as handwashing. Their more fragile income status will also mean that they are likely to be employed in occupations that are not amenable to social-distancing measures, thereby further reducing their ability to protect themselves from infection. Furthermore, these populations may also lack access to timely healthcare on becoming ill. We explore these relationships by using large-scale household surveys to quantify the differences in handwashing access, occupation and hospital access with respect to wealth status in low-income settings. We use a COVID-19 transmission model to demonstrate the impact of these differences. Our results demonstrate clear trends that the probability of death from COVID-19 increases with increasing poverty. On average, we estimate a 32.0% (2.5th-97.5th centile 8.0%-72.5%) increase in the probability of death in the poorest quintile compared to the wealthiest quintile from these three factors alone. We further explore how risk mediators and the indirect impacts of COVID-19 may also hit these same disadvantaged and vulnerable the hardest. We find that larger, inter-generational households that may hamper efforts to protect the elderly if social distancing are associated with lower-income countries and, within LMICs, lower wealth status. Poorer populations are also more susceptible to food security issues - with these populations having the highest levels under-nourishment whilst also being

Report

Sherrard-Smith E, Hogan A, Hamlet A, Watson OJ, Whittaker C, Winskill P, Verity R, Lambert B, Cairns M, Okell L, Slater H, Ghani A, Walker P, Churcher T, Imperial College COVID19 response teamet al., 2020, Report 18: The potential public health impact of COVID-19 on malaria in Africa.

The COVID-19 pandemic is likely to severely interrupt health systems in Sub-Saharan Africa (SSA) over the coming weeks and months. Approximately 90% of malaria deaths occur in this region of the world, with an estimated 380,000 deaths from malaria in 2018. Much of the gain made in malaria control over the last decade has been due to the distribution of long-lasting insecticide treated nets (LLINs). Many SSA countries planned to distribute these in 2020. We used COVID-19 and malaria transmission models to understand the likely impact that disruption to these distributions, alongside other core health services, could have on the malaria burden. Results indicate that if all malaria-control activities are highly disrupted then the malaria burden in 2020 could more than double that in the previous year, resulting in large malaria epidemics across the region. These will depend on the course of the COVID-19 epidemic and how it interrupts local health system. Our results also demonstrate that it is essential to prioritise the LLIN distributions either before or as soon as possible into local COVID-19 epidemics to mitigate this risk. Additional planning to ensure other malaria prevention activities are continued where possible, alongside planning to ensure basic access to antimalarial treatment, will further minimise the risk of substantial additional malaria mortality.

Report

Ainslie KEC, Walters CE, Fu H, Bhatia S, Wang H, Xi X, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland SL, FitzJohn R, Gaythorpe K, Ghani AC, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati-Gilani G, Okell LC, Siveroni I, Thompson HA, Unwin HJT, Verity R, Vollmer M, Walker PGT, Wang Y, Watson OJ, Whittaker C, Winskill P, Donnelly CA, Ferguson NM, Riley Set al., 2020, Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment [version 1; peer review: 2 approved], Wellcome Open Res, Vol: 5, ISSN: 2398-502X

Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

Journal article

Grassly N, Pons Salort M, Parker E, White P, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Dorigatti I, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Fu H, Gaythorpe K, Geidelberg L, Green W, Hallett T, Hamlet A, Hayes S, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Ower A, Parag K, Pickles M, Ragonnet-Cronin M, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Ferguson Net al., 2020, Report 16: Role of testing in COVID-19 control

The World Health Organization has called for increased molecular testing in response to the COVID-19 pandemic, but different countries have taken very different approaches. We used a simple mathematical model to investigate the potential effectiveness of alternative testing strategies for COVID-19 control. Weekly screening of healthcare workers (HCWs) and other at-risk groups using PCR or point-of-care tests for infection irrespective of symptoms is estimated to reduce their contribution to transmission by 25-33%, on top of reductions achieved by self-isolation following symptoms. Widespread PCR testing in the general population is unlikely to limit transmission more than contact-tracing and quarantine based on symptoms alone, but could allow earlier release of contacts from quarantine. Immunity passports based on tests for antibody or infection could support return to work but face significant technical, legal and ethical challenges. Testing is essential for pandemic surveillance but its direct contribution to the prevention of transmission is likely to be limited to patients, HCWs and other high-risk groups.

Report

Ainslie K, Walters C, Fu H, Bhatia S, Wang H, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Ghani A, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati Gilani G, Okell L, Siveroni I, Thompson H, Unwin H, Verity R, Vollmer M, Walker P, Wang Y, Watson O, Whittaker C, Winskill P, Xi X, Donnelly C, Ferguson N, Riley Set al., 2020, Report 11: Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment

The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. As of 20 March 2020, over 254,000 cases and 10,000 deaths had been reported worldwide. The outbreak began in the Chinese city of Wuhan in December 2019. In response to the fast-growing epidemic, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. At the peak of the outbreak in China (early February), there were between 2,000 and 4,000 new confirmed cases per day. For the first time since the outbreak began there have been no new confirmed cases caused by local transmission in China reported for five consecutive days up to 23 March 2020. This is an indication that the social distancing measures enacted in China have led to control of COVID-19 in China. These interventions have also impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic is not yet clear. Here, we estimate transmissibility from reported cases and compare those estimates with daily data on within-city movement, as a proxy for economic activity. Initially, within-city movement and transmission were very strongly correlated in the 5 provinces most affected by the epidemic and Beijing. However, that correlation is no longer apparent even though within-city movement has started to increase. A similar analysis for Hong Kong shows that intermediate levels of local activity can be maintained while avoiding a large outbreak. These results do not preclude future epidemics in China, nor do they allow us to estimate the maximum proportion of previous within-city activity that will be recovered in the medium term. However, they do suggest that after very intense social distancing which resulted in containment, China has successfully exited their stringent social distancing policy to some degree. Globally, China is at a more advanced stage of the pandemic. Policies implemented to reduce the spread of CO

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00692043&limit=30&person=true