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1 Introduction

In the last twenty years, large dynamic factor models have been applied successfully to the

analysis of big panels of time series. Such data-rich environments are a common feature of

macroeconomics and finance, where a few common shocks drive the comovements of many

variables, so that information is scattered through a large number of interrelated series.1

In large factor models, the number of variables is infinite, and the observed data are

thought of as an (n, T )-dimensional realization of the double-indexed process xit, i = 1, . . . ,∞,

t = −∞, . . . ,∞.2 Each variable xit is decomposed into the sum of two unobservable compo-

nents, the “common component”, call it χit, and the “idiosyncratic component”, say eit. The

idiosyncratic components are poorly correlated across sections. By contrast, the common

components are driven by a small number q of unobservable shocks, say fjt, j = 1, . . . , q,

which are the same for all cross-sectional units. These shocks, often called “dynamic factors”,

are loaded through one-sided linear filters, or impulse-response functions, λij(L), where L is

the lag operator. A restriction which we shall not impose in this paper, but is often assumed

in the literature, is that the common components are contemporaneous linear combinations

of r ≥ q unobservable variables Fkt, k = 1, . . . , r, often called “static factors”. In such a case,

we say that the model admits a static factor representation; the dynamic nature of the model

comes from the fact that the static factors have a dynamic representation in the common

shocks.

Estimating the number of common shocks is of course a crucial preliminary step for the

estimation of large dynamic factor models. But in several situations it is also interesting

in itself. In finance, the number of shocks can be interpreted as the number of sources of

nondiversifiable risk. In consumer demand theory, the number of factors in budget share data

provides crucial information about the demand system (Lewbel (1991)). In macroeconomics,

determining the number of structural shocks can provide a useful guidance for theoretical

modeling.

Our empirical application concerns macroeconomics. RBC models postulate the existence

of a single supply shock that drives variables related to real economic activity (Kydland and

1Early theoretical contributions are Forni and Reichlin (1998), Forni, Hallin, Lippi, and Reichlin (2000,
2005), Forni and Lippi (2001), Stock and Watson (2002b), Bai and Ng (2002, 2007), Bai (2003). A partial
list of early applications include forecasting (Stock and Watson (2002a,b), Marcellino, Stock, and Watson
(2003), Boivin and Ng (2006), D’Agostino and Giannone (2012), structural macroeconomic analysis (Bernanke
and Boivin (2003), Bernanke, Boivin, and Eliasz (2005), Favero, Marcellino, and Neglia (2005), Eickmeier
(2007), Forni, Giannone, Lippi, and Reichlin (2009), Forni and Gambetti (2010)), nowcasting and business
cycle indicators (Forni and Lippi (2001), Cristadoro, Forni, Reichlin, and Veronese (2005), Giannone, Reichlin,
and Small (2008), Altissimo, Cristadoro, Forni, and Lippi (2010)), the analysis of financial markets (Corielli
and Marcellino (2006), Ludvigson and Ng (2007, 2009), Hallin, Mathias, Pirotte Speder, and Veredas (2011)).

2The main feature distinguishing large approximate dynamic factor models from traditional dynamic fac-
tor models (Sargent and Sims (1977), Geweke (1977)) is the fact that the idiosyncratic components are not
necessarily orthogonal to each other. This important generalization has the consequence that common and id-
iosyncratic components are no longer conceptually distinguishable to each other if the cross-sectional dimension
is finite. This motivates the assumption of an infinite number of variables.
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Prescott (1982)). In contrast, modern DSGE models feature several shocks: the one of Smets

and Wouters (2007), for instance, has even seven. Recently, Angeletos, Collard, and Dellas

(2020) argue that there could be just one shock, a non-inflationary demand shock, explaining

the bulk of business cycle fluctuation of real macroeconomic variables. How many shocks

are there in the macro economy? The answer to these important question can be given by

estimating the number of dynamic factors within a factor model.

Existing criteria are not entirely satisfactory. The methods proposed by Bai and Ng

(2007) and Amengual and Watson (2007) assume that the factor model can be written in the

static form, a restriction that reduces their scope. Moreover, they require the preliminary

determination of the number of static factors. This first step can be performed using different

methods, which can provide different outcomes, conditioning the final result. Hallin and Liska

(2007) propose an estimator (HL henceforth) which entails minimization of a loss function

which includes a penalty term. The use of penalty functions, while common in this field, is

problematic: several functional forms can be used, and each one of them can be multiplied

by an arbitrary constant, which calls for calibration. The Authors propose an ingenious

and effective method to calibrate their penalty function.3 The method, however, requires

evaluation of the loss function over a grid nj , Tj , j = 1, . . . , J , and the outcome is sensitive

to the choice of such a grid.4 Onatski (2009) proposes a test for the null of q = k against

the alternative of k < q ≤ kmax. The test can be used sequentially as a device to estimate

q; however, the procedure proposed in the paper (O henceforth) requires preliminary choices

which are discretionary to some extent and may be a source of error.

In this paper we study three new criteria to determine the number of dynamic factors,

that do not present any of these problems.

Our first two estimators are the dynamic equivalents of two criteria proposed by Ahn and

Horenstein (2013) to estimate the number of static factors, i.e. the “Eigenvalue Ratio” and

the “Growth Ratio”. In analogy with these denominations, we call these new estimators the

“Dynamic Eigenvalue Ratio” (DER) and the “Dynamic Growth Ratio” (DGR).

Let Σ̂n(ωℓ) be a suitable estimate5 of the spectral density matrix of the x’s at the Fourier

frequencies ωℓ = 2πℓ/T , ℓ = 0, 1, . . . , T − 1. Moreover, let µ̂nk(ωℓ) be the k−th eigenvalue of

Σ̂n(ωℓ) in decreasing order of magnitude. Finally, let µ̂nk be the average of these eigenvalues

across frequencies: µ̂nk =
∑T−1

ℓ=0 µ̂nk(ωℓ)/T . We call µ̂nk, k = 1, . . . , kmax, the “dynamic

eigenvalues”, to distinguish them from the ”static eigenvalues”, i.e. the eigenvalues of the

variance-covariance matrix of the variables, used by Ahn and Horenstein (2013) for the number

of static factors.

3A similar method is used also by Alessi, Barigozzi, and Capasso (2010) to determine the number of static
factors.

4Moreover, the result is dependent on the ordering of the variables in the data set. To solve this problem,
the procedure requires that the variables are reordered randomly; but this causes the result to contain a
stochastic element.

5We consider in this paper a periodogram smoothing estimate with rectangular window.
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The DER is simply the ratio of two adjacent dynamic eigenvalues, i.e

DERT
n (k) = µ̂nk/µ̂n,k+1

and kDER is defined as the value of k maximizing DERT
n (k) for k varying between 1 and a

maximum value kmax specified by the researcher. The definition of DGRT
n (k) and kDGR is

somewhat more involved and will be given below. In this paper we prove that kDER and

kDGR converge in probability to q as n and T go to infinity at the same rate (provided that

kmax ≥ q).

Our third estimator is closely related to the test statistic proposed by Onatski (2009), i.e.

µ̂nk(ω)− µ̂n,k+1(ω)

µ̂n,k+1(ω)− µ̂n,k+2(ω)
,

where ω is a frequency of interest. In the present paper we define the “Dynamic eigenvalue

Difference Ratio” (DDR) as the ratio above, where µ̂nk(ω) is replaced by µ̂nk:

DDRT
n (k) =

µ̂nk − µ̂n,k+1

µ̂n,k+1 − µ̂n,k+2
.

In words, we do not consider a specific frequency, but the average over all frequencies. Our

estimator of q, kDDR, is given by the value of k maximizing DDR.6 DDR has a few advantages

with respect to O. First, by averaging across frequencies, we do not have to choose a specific

frequency. Second, we do not need to combine in some way the potentially different results

obtained at different frequencies. Finally, not having a test, we also avoid the need to choose

a significance level either. We prove that kDDR converge in probability to q as n and T go to

infinity at the same rate.

The only one “nuisance parameter” of DDR, DER and DGR is the size of the smoothing

window used for estimation of the spectral density matrix. Hence, DDR, DER and DGR

are, so to speak, “safer” than HL and O, which, besides the window size, require additional

preliminary choices which might be sources of error.

To provide an intuition about our estimators, let us recall an important result in factor

model theory. A dynamic factor structure is characterized by the behavior of the eigenvalues of

the spectral density matrix Σn(ω) of the first n variables, as n → ∞ (Forni et al. (2000); Forni

and Lippi (2001)). The q largest eigenvalues diverge, whereas the others are bounded.7 We

show here that, under suitable assumptions, similar properties hold for the sample analogue

of such eigenvalues, i.e. µ̂nk(ω). The first q eigenvalues, properly normalized, diverge at the

6Indeed, in order to avoid denominators very close to 0, we ’correct’ the denominator by taking, for each
k, the maximum between µ̂n,k+1 − µ̂n,k+2 and the smallest non-zero eigenvalue.

7Similarly, the existence of a well defined static factor representation is linked to the behavior of the
eigenvalues of the variance-covariance matrix (rather than the spectral density matrix) of the first n variables,
say νnk (Chamberlain and Rothschild (1983)).
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same rate, whereas the others are bounded and bounded away from zero in probability. Now

let us consider DER. When both eigenvalues are either large or small, the ratio should be

relatively small, but, when k = q, the numerator is large and the denominator is small, so

that the ratio is large. The intuition behind DDR is similar. When k = q, the numerator

is large, since it is the difference between a large eigenvalue and a small one. On the other

hand, the denominator is small, since it is the difference between small eigenvalues.

We evaluate the small sample performance of DER, DGR and DDR compared to each

other and with HL and O, by means of a few Monte Carlo simulations.8 We run three main

experiments: (a) the one proposed by Hallin and Liska (2007); (b) the one proposed by

Onatski (2009), and (c) our own experiment. Simulation results are the following: (i) DDR

dominates DER and DGR in all experiments; (ii) DDR performs comparably or better than

HL and O for experiments (a) and (b) and performs better than HL and O in experiment (c).

We conclude that DDR is a safer and excellent alternative to existing criteria.

In principle, it is possible that a common shock has major effects on some frequency

bands but not on others. For example, a demand shock may not have long-term effects on

most variables related to real economic activity, like GDP growth, industrial production,

employment and unemployment. An interesting feature of DDR (as indeed of DER and

DGR) is that it can be applied to a single frequency or a frequency band, by averaging the

eigenvalues on the relevant frequencies rather than all frequencies. To illustrate this possible

usage of DDR we run a further experiment where the DGP is such that the spectral density

matrix of the common components has reduced rank at specific frequencies. We show that

DDR is reasonably able to detect the rank reduction.

In the empirical application we focus on a quarterly US macroeconomic data set: the

FRED-QD data set by McCracken and Ng (2020). DDR provides a clear-cut result: the US

macro economy is driven by two major shocks. This result holds both on specific frequency

bands and on the entire [0, π] interval. Moreover, it holds both for the whole sample and

several sub-samples.

The dynamic eigenvalues, beside being the basis for our criteria, are consistent estimates of

the total variance of the variables explained by the dynamic factors, decomposed by frequency.

Moreover, by combining the eigenvalues with the corresponding eigenvectors, we can estimate,

for each frequency, the variance explained by the common shocks for each variable Forni et al.

(2000).

We find that two common shocks are enough to capture the bulk of the variance of the

main macroeconomic aggregates, both at cyclical frequencies and in the long term.

The first dynamic factor explains almost nothing of the long-run variance of GDP, con-

8We do not consider in our simulations the methods proposed by Bai and Ng (2007) and Amengual and
Watson (2007), since, as already observed, these methods assume a factor model which can be written in the
static form (a restriction that we do not impose here) and require the preliminary determination of the number
of static factors.
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sumption, investment, unemployment rate and hours worked. Furthermore, it induces a

positive covariance between GDP growth and inflation changes. It therefore has the charac-

teristics of a demand shock. The second factor has instead the typical features of a supply

shock.

The demand shock explains most of the cyclical fluctuations in GDP and other real vari-

ables. The supply shock plays a minor, but not negligible, role. Furthermore, the demand

shock explains most of the variance in inflation and the federal funds rate at all frequencies.

These results are incompatible with both the RBC model and the hypothesis recently sug-

gested by Angeletos et al. (2020), that the cyclical fluctuations are explained by a single,

non-inflationary demand shock.

The paper is organized as follows. Section 2 introduce notation. In Section 3 we present

the model and the assumptions. In Section 4 we present our consistency results. Section 5

is devoted to our Monte Carlo exercises. The empirical study is presented in Section 6. The

Appendices present the proofs and additional material related to the empirical application.

2 Notation

3 The model and the assumptions

4 Main Results

4.1 Proof Outline

4.2 Lemmata
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5 Simulations

To evaluate the performance of the criteria defined in the previous sections, we run a few

Monte Carlo experiments. In subsections 5.1 and 5.2 we use three different specifications of

Model (??) to compare the performances of the criteria defined in the previous section with

each other and with HL and O. The conclusion is that DDR dominates DGR and DER and

performs comparably or better than HL and O.

As already observed (?), DDR (like DER and DGR) can be evaluated at a specific fre-

quency of interest or on a frequency band. To illustrate this possible usage of our preferred

criterion, in subsection 5.3 we conduct a further simulation exercise, where the DGP is such

that the spectral density matrix of the common components has reduced rank at specific

frequencies. We show that DDR, when evaluated at these frequencies, is able to detect the

rank reduction with reasonable accuracy.

5.1 Simulation design

First experiment. The first DGP follows the one proposed by Hallin and Liska (2007), Section

5. Precisely:

i. The common shocks fjt, j = 1, . . . , q, t = 1, . . . , T , q ≤ 3, are iid ∼ N (0, Dj), with

D1 = 1, D2 = .5 and D3 = 1.5.

ii. The idiosyncratic components are of form eit =
∑4

l=0

∑2
k=0 gi,l,k εi+l,t−k, where the εit’s

are iid ∼ N (0, 1), and the gi,l,k’s are iid ∼ U[1,1.5], where i = 1, . . . , n, t = 1, . . . , T , l =

1, . . . , 4, k = 0, 1, 2. The εit’s and the gi,l,k’s are mutually independent and independent

of the fjt’s. Hence the idiosyncratic components are both autocorrelated and “locally”

cross-correlated.

iii. the filters λij(L), i = 1, . . . , n, j = 1, . . . , q, are randomly generated (independently

from the fjt’s and eit’s) by one of the following devices: (1) MA loadings: λij(L) =

λij,0 + λij,1L+ λij,2L
2 with iid and mutually independent coefficients (λij,0, λij,1, λij,2) ∼

N (0, I3); (2) AR loadings: λij(L) = mij,0(1 − mij,1L)
−1(1 − mij,2L)

−1 with iid and

mutually independent coefficients mij,0 ∼ N (0, 1),mij,1 ∼ U[.8,.9] and mij,2 ∼ U[.5,.6].

Finally, for each i, the variance of each idiosyncratic component eit and that of the corre-

sponding common component χit =
∑q

j=1 λij(L)fjt are normalized to 0.5.

The artificial samples were generated with q = 2, 3 and (n, T )= (60, 100), (100, 100),

(70, 120), (120, 120), (150, 120). Notice that in this experiment we have both large and small

factors (the variance of the second factor is one half of that of the first factor and one third

of the variance of the third factor).

Second experiment. The second DGP is the one studied by Onatski (2009), Sections 5.1 and

5.3. The basic difference with respect to the previous DGP is that here the number of factors
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is kept fixed to q = 2, whereas the variance of the idiosyncratic components takes on different

values.

Precisely:

i. The common shocks fjt, k = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, Iq).

ii. The idiosyncratic components follow AR(1) processes both cross-sectionally and over

time: eit = ρi ei,t−1 + vit, vit = ρvi−1,t + ϵit, where ρi ∼ iidU[−.8,.8], ρ = .2 and ϵit ∼
iidN (0, 1).

iii. The filters λij(L), i = 1, . . . , n and j = 1, . . . , q, are randomly generated (independently

from the fjt’s and eit’s) by one of the following devices: (1) MA loadings: λij(L) =

mij,0(1 + mij,1L)(1 + mij,2L) with iid and mutually independent coefficients mij,0 ∼
N (0, 1),mij,1 ∼ U[0,1] andmij,2) ∼ U[0,1]; (2) AR loadings: same as in the first experiment;

λij(L) = mij,0(1−mij,1L)
−1(1−mij,2L)

−1 with iid and mutually independent coefficients

mij,0 ∼ N (0, 1),mij,1 ∼ U[.8,.9] and mij,2 ∼ U[.5,.6].

For each i, the idiosyncratic component eit and the common component χit =
∑q

j=1 λij(L)fjt

are normalized so that their variances equal σ2 and 1, respectively. Hence the idiosyncratic

to common variance ratio is σ2 for all i. Following Onatski (2009), we set q = 2 and (n, T, σ2)

equal to (70, 70, 1), (70, 70, 2), (70, 70, 4), (100, 120, 1), (100, 120, 2), (100, 120, 6), (150, 500, 1),

(150, 500, 8), (150, 500, 16).

Third experiment. The main feature of this experiment is that, unlike the previous ones, the

idiosyncratic-common variance ratio differs across different cross-sectional units. The loadings

are ARMA(1,2) filters and the number of factors is larger than in the previous experiments

(q = 2, 4, 6).

Precisely the third GDP is the following.

i. The common shocks fjt, j = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, Iq).

ii. Same as in the second experiment. The idiosyncratic components follow AR(1) processes

both cross-sectionally and over time: eit = ρi eit−1 + vit, vit = ρvi−1t + ϵit, where ρi ∼
iidU[−.8,.8], ρ = 0.2 and ϵit ∼ iidN (0, 1).

iii. the filters λij(L), i = 1, . . . , n and j = 1, . . . , q, are randomly generated (independently

from the fjt’s and eit’s) with ARMA loadings: λij(L) = (mij,0+mij,1L+mij,2L
2)/aij,0(1−

aij,1L), where the coefficients are iid and mutually independent, mij,s ∼ U[−1,1], s =

0, 1, 2, and aij,r ∼ U[−0.8,0.8], r = 0, 1.

In this experiment we want to control for the common to idiosyncratic variance ratio without

forcing all variables in the cross section to have the same ratio. To this end, for each artifi-

cial data set we compute the average sample variance of the common and the idiosyncratic
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components, say σ2
χ and σ2

e . Then we multiply all common components by 1/σχ, and all id-

iosyncratic components by s/σe, with s taking on two values: (i) s = 0.5 (small idiosyncratic

components) and (ii) s = 1 (large idiosyncratic components). Since variables do not have the

same variance, we standardize them before estimation.

We set q = 2, 4, 6 and (n, T )= (60, 80), (120, 80), (60, 240), (120, 240), (240, 480).

To compute DER, DGR and DDR, we use the periodogram smoothing estimator (??) with

the bandwidth parameter MT = ⌊0.75
√
T ⌉ and take the average of the eigenvalues evaluated

in the frequency grid ωℓ = 2πℓ/T , ℓ = 1, . . . , T − 1. As explained above, in order to avoid

denominators very close to 0, we correct the denominator of DDR by taking, for each k,

the maximum between µ̂n,k+1 − µ̂n,k+2 and the smallest non-zero eigenvalue µ̂n,m. In our

simulation, such correction is active in about 5% of the ratios.

We compare our criteria with HL and O. With regard to HL, we use the log information

criterion ICT
2;n with penalty p1(n, T ) and the Bartlett lag window with parameter MT =

⌊0.75
√
T ⌋, which yield the best performance in the simulations shown by the authors. The

method requires evaluation of the loss function over a grid nj , Tj , j = 1, . . . , J . We stick to

the one proposed by the authors, i.e. nj = n− 10j, Tj = T − 10j , j = 0, 1, 2, 3.

When dealing with O, we use the procedure described in Section 5.3 of Onatski (2009). We

found that the results are sensitive to the choice of the parameter m (Onatski, 2009, footnote

7). For the second experiment, we stick to Onatski’s choice, which is very effective (m = 30

for (n, T ) = (70, 70), m = 40 for (n, T ) = (100, 120), m = 65 for (n, T ) = (150, 500)). For the

first DGP, we usem = 15; for the third experiment, we use m = 15, 20, 30 for T = 80, 240, 480,

respectively. These values produce better results than the larger ones suggested in Onatski’s

paper.

For all experiments and all estimators we set kmax = 8. For all experiments we generate

500 artificial data sets. We evaluate the results by using the percentage of correct answers.

5.2 Simulation results

Table 1 reports results for the first experiment. Boldface numbers denote the estimator(s)

which perform best for each q, n, T configuration. Results for HL are very close to those

reported in Hallin and Lǐska (2007). HL and DDR have the best performances for all q, n, T

configurations. With MA loadings and AR loadings, q = 2, when HL has the best performance

DDR ranks second and vice versa; moreover, differences are very small. With AR loadings,

q = 3, DDR clearly outperforms HL, with the exception of the cases (n, T ) = (120, 120) and

(n, T ) = (150, 120), in which results are similar. DDR uniformly outperforms DGR, which in

turn does better than DER and O. In this experiment the second factor is small as compared

to the first and the third ones. Hence we can conclude that DDR is reasonably able to detect

small factor.

Table 2 reports results for the second experiment. Results for O are close to those reported
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in Onatski (2009). With MA loadings, O is the best method for all n, T, σ2 configurations,

but for the case (n, T, σ2) = (70, 70, 2), in which it is beaten by DDR. DDR is tied for first

with O in 5 cases, performs slightly better than O in the case above and ranks second in

the remaining three cases. Again, DDR uniformly dominates DGR, which in turn dominates

DER. With AR loadings, DDR performs the best for all n, T, σ2 configurations. As already

noticed by Onatski (2009), HL works well for low values of σ2, but fails dramatically for noisy

data, with the exception of the AR case with T = 500. Onatski (2009) argues that the grid

of the calibration procedure does not work with high values of σ2.

Table 3 reports results for the third experiment. In the upper panel (small idiosyncratic

components), DDR and DGR perform similarly and dominate all other estimators, with the

only exception of the configuration (q, n, T ) = (4, 120, 80), in which HL performs slightly bet-

ter. O does not perform well for q = 4, 6 and small T . In the lower panel (large idiosyncratic

components), DDR dominates DGR, which in turn dominates DER. No method is able to

correctly capture the number of factors for the (q, n, T ) configurations (4, 60, 120), (4, 120, 80),

(6, 60, 120), (6, 120, 80) and (6, 60, 240). In the remaining rows, DDR is the method that works

best in all cases except the (6, 120, 240) configuration, in which HL performs slightly better.

Again, O works reasonably well for q = 2 but not for q = 4, 6.

Surprisingly, HL fails for large n, T configurations, particularly in the case q = 2, which

should be the simplest one. The fact that the performance deteriorates as n, T gets larger

suggests that the calibration procedure for the penalty function does not work in these cases.

Paradoxically, the procedure works much better for the same cases when the idiosyncratic

components are larger (lower panel): here the problem is not that the data is noisy, but on

the contrary, it is that it is not noisy enough.

To better understand what is going on here, we run a fourth experiment.

Fourth experiment. The DGP is the same of the third experiment. The parameters q, n and

T are kept fixed, with values q = 3, n = 100, T = 100. The parameter s, which governs the

average idiosyncratic variance, varies between 0.3 and 1.2.

Table 4 shows results for HL and DDR. The table reports not only the percentage of correct

outcomes, but also the percentages of outcomes with q̂ < q and q̂ > q. HL performs very

well for intermediate values of s, but has problems for DGP’s with both small and large

idiosyncratic components. When s is very small, the number of factors is overestimated,

whereas when s is very large the number of factors is underestimated. On the other hand,

DDR does not loose accuracy for small idiosyncratic components; when data becomes noisier,

its performance deteriorates, but less than HL. More specifically, DDR and HL have similar

performances in the interval 0.50 ≤ s ≤ 0.80; for all other values of s, DDR outperforms HL,

and for extreme values of s the difference is very large. We conjecture that, by changing the

grid nj , Tj , j = 1, . . . , J over which to evaluate the loss function, HL would perform better.

But in practice we do not know in advance how noisy data is, so that the choice of the grid
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is a possible source of error.

Summing up, DDR dominates DGR and DER for almost all DGPs. In Experiment 1,

AR loadings, Experiment 2, AR loadings, and Experiment 3, large idiosyncratic components,

DDR has the best performance for almost all parameter configurations. For Experiment 1, MA

loadings, DDR and HL perform similarly and dominate the other estimators. For Experiment

3, small idiosyncratic components, DDR and DGR perform similarly and dominate the other

estimators. For Experiment 2, MA loading, O has best performance, but DDR ranks either

first or second in all cases. In Table 4, DDR generally outperforms HL.

We conclude that DDR is preferable to DGR and DER and has an excellent performance

compared to the best existing estimators.

5.3 Using DDR on selected frequency bands

In this subsection we run a fifth Monte Carlo experiment. We use two DGPs, the Trend-cycle

Model, and the Stop-band Model. In both models the spectral density matrix of the common

components has reduced rank at a specific frequency. In the Trend-cycle Model, one of the

common shock is loaded by all variables with impulse response functions which vanish for

L = 0. Hence, assuming that xt is the first difference of the I(1) vector yt, this shock has

transitory effects on all variables in yt. In the Stop-band Model one of the common shocks is

loaded by all variables with filters whose frequency response vanishes at frequency π/6, which

can be interpreted as a cyclical frequency, in that it corresponds to a period of 3 years with

quarterly data.

Fifth experiment. More precisely, in the fifth experiment the data are generated as follows.

i. We have two common shocks fjt, j = 1, 2, t = 1, . . . , T , which are iid ∼ N (0, I2).

ii. The idiosyncratic components are mutually independent white noises: eit = giϵit, where

ϵit ∼ iidN (0, 1) and the gi’s are iid ∼ U[−1,1].

iii. Trend-cycle Model. For the first factor, the permanent shock, we have the AR load-

ings λi1(L) = ai1,0/(1 − ai1,1L), where the coefficients are iid, mutually independent,

ai1,0 ∼ U[−1,1], ai1,1 ∼ U[−0.8,0.8]. For the second factor, the transitory shock, we have the

ARMA loadings λi2(L) = ai2,0(1−L)/(1−ai2,1L), where the coefficients are iid, mutually

independent, ai2,0 ∼ U[−1,1], ai2,1 ∼ U[0,0.7].

iv. Stop-band model. For the first factor we have the same AR loadings as in the Trend-

cycle model: λi1(L) = ai1,0/(1 − ai1,1L), ai1,0 ∼ U[−1,1], ai1,1 ∼ U[−0.8,0.8]. For the

second factor we use here a rough stop-band filter whose frequency response vanishes

at frequencies π/6 and −π/6. Precisely, we use the ARMA loadings λi2(L) = ai2,0(1 −
e−iπ/6L)(1 − eiπ/6L)/(1 − ai2,1L), where “i” in Roman font denotes the imaginary unit

and ai2,0 ∼ U[−0.5,0.5], ai2,1 ∼ U[0.8,0.9].



12

In the Trend-cycle model we have λi2(0) = 0 for all i, so that there is just one factor affecting

the variables at frequency 0. Hence q = 2 for ω ̸= 0 and q = 1 for ω = 0. To get an economic

interpretation of the model, assume that the variables are the growth rates of macroeconomic

series related to real economic activity, like for instance GDP and its components, employment

variables, industrial production indexes, hours worked and so on. Then the first factor is a

long-run, permanent shock, driving the common trends of the series, expressed in log levels.

For instance, it can be a technology shock, or a generic supply shock. On the other hand,

the second factor has transitory effects and can be interpreted as a demand shock driving a

common cycle. Both shocks may affect variables at business cycle frequencies.

In the Stop-band model, we have λi2(e
iπ/6) = λi2(e

−iπ/6) = 0 for all i, so that there is just

one factor affecting the variables at frequency π/6, which corresponds to a period of 3 years

with quarterly data. As a result, we have q = 1 for ω = ±π/6. The filters λi2(L), i = 1, . . . , n,

can be regarded as rough stop-band filters toning down cyclical frequencies. As an example,

the amplitude response of the filter (1− e−iπ/6L)(1− eiπ/6L)/(1− ai2,1L), with ai2,1 = 0.85,

is plotted in Figure 1.

Figure 1: Amplitude frequency response of the filter (1− e−iπ/6L)(1− eiπ/6L)/(1−ai2,1L) with ai2,1 = 0.85,
as a function of ω, ω ∈ [−π, π].

As in the third experiment, for each artificial data set we compute the average sample

variance of the common and the idiosyncratic components, say σ2
χ and σ2

e . Then we multiply

all common components by 1/σχ and all idiosyncratic components by s/σe, with s taking on

two values: (i) s = 0.6 (small idiosyncratic components) and (ii) s = 1.2 (large idiosyncratic

components). Again, we standardize the variables before estimation. For this exercise, we

set n = 120 and T = 240. DDR is evaluated at the points ω = 0 and ω = π/6. Moreover, it

is evaluated in the long-run frequency band [0, 2π/80], corresponding to cycles of 20 years or

more with quarterly data, in the cyclical band [2π/32, 2π/6], corresponding to cycles between



13

18 months and 8 years, and in the short-run band [2π/8, π], corresponding to cycles between

6 and 18 months. Finally, we evaluate DDR in the whole interval [0, π].

Table 5 reports the percentage of outcomes q̂ = 1, q̂ = 2 and q̂ > 2, over 500 replications.

Boldface numbers denote the percentage of correct outcomes. On the long-run band 0 ≤ ω ≤
2π/80 (which corresponds to periodicity greater than 20 years with quarterly data) the true

number of factors is 2 for both models, but, for the Trend-cycle model, the contribution of the

transitory shock to total variance is negligible, so that we consider correct the outcome q̂ = 1.

On the cyclical band 2π/32 ≤ ω ≤ 2π/8 the true number of factors is 2 for both models, but,

for the Stop-band model, the contribution of the non-cyclical shock to total variance is very

small, so that we consider correct the outcome q̂ = 1.

In most cases, DDR is able to detect the correct number of factors in all cases. At a first

sight, the worst outcome is the one of the Stop-band model, small idiosyncratic components

(upper-right panel), for the cyclical band, where the result is q̂ = 2 in almost 40% of the

cases. Indeed, we have already observed that the true number of factors is in fact 2. With

small idiosyncratic components, in several cases the criterion is able to detect the presence of

a second factor, despite the fact that its effect are very small.

6 How many shocks are there in the macro economy?

Howmany shocks are there driving the macroeconomic variables? How many long-term shocks

are there? and how many are the ones driving the business cycle? These important issues

have remained somewhat obscured in the empirical macroeconomic literature. Structural

VARs, which are the most common tool in empirical macroeconomic analysis, are not able to

answer these questions, since in VAR models the number of shocks is equal to the number of

variables that the researcher decides to include in the model. On the contrary, factor models

allow us to answer.

Existing evidence is mixed. Sargent and Sims (1977), by using a small-dimensional dy-

namic factor model, find that two shocks fit US macroeconomic data reasonably well. Gi-

annone, Reichlin, and Sala (2005) have no estimator, but argue informally in favor of two

shocks, basing on the explained variances of the principal component series of a large factor

model. Bai and Ng (2007), using their information criteria, find 7 static factors and 4 shocks.

Amengual and Watson (2007) find 7 static factors and 7 shocks. Hallin and Liska (2007) do

not find a clear-cut result: four shocks but perhaps only one. Onatski (2009) finds that his

proposed test cannot reject the null of 2 shocks versus the alternative of a number of shocks

between 3 and 7.

The above questions are interesting in themselves, as a possible guidance for macroeco-

nomic modeling. But they are also inextricably intertwined with others, which are central to

the macroeconomic debate of the last 30-40 years: are the main cyclical shocks permanent
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or transitory? are they mainly demand or supply shocks? This is not the place to summa-

rize this vast literature. We just want to mention a few contributions. The RBC model is

challenged by Blanchard and Quah (1989) and Gaĺı (1999), where it is argued that transi-

tory shocks explain a large fraction of output and unemployment fluctuations. Beaudry and

Portier (2006) argue that the bulk of the business cycle is explained by the news shock, that

is, a permanent shock that anticipates future increases in productivity. The predominance of

news shocks is questioned in Barsky and Sims (2011) and Forni, Gambetti, and Sala (2014).

Finally, Angeletos et al. (2020) identify what they call the “main cyclical shock” and show

that, on the one hand, it is disconnected from the long term, but, on the other hand, it has

very modest effects on inflation.

6.1 The number of shocks driving the US macro economy

For our empirical analysis we use the US quarterly macroeconomic data set recently developed

by McCracken and Ng (2020?). Of this data set we consider the n = 216 series starting from

the first quarter of 1960. The final date of the sample is the first quarter of 2020. As for the

transformations, we deviate from those suggested by the Authors for the interest rates, which

are taken in levels rather than in differences; furthermore, prices and other nominal variables

are taken in log-differences, rather than in double differences of the logs. The reason is that

we want to avoid a possible over-differentiation, which enhances the high frequencies, of little

interest for our analysis. The complete list of variables and transformations is provided in

Appendix C. After the transformations, the number of observations over time is T = 240.

We consider the entire sample and nine sub-samples: the five 40-year sub-samples 1960Q2-

2000Q1, 1965Q2-2005Q1, 1970Q2-2010Q1, 1975Q2-2015Q1 and 1980Q2-2020Q1, and the four

30-year sub-samples 1960Q2-1990Q1, 1970Q2-2000Q1 , 1980Q2-2010Q1 and 1990Q2-2020Q1.

To estimate q, we compute DDR on three frequency bands: the entire [0, π] band, the [0, 2π/6]

band, which excludes fluctuations of less than 18 months, of little interest for macroeconomic

analysis, and the [2π/32, 2π/6] cyclical band, which includes waves ranging from 18 months

to 8 years. For comparison, we consider DER, DGR, HL and O (only on the whole [0, π]

band). HL is calculated as in the simulations. For O, we use m = 20 for the whole sample

and for the 40-year sub-samples and m = 15 for the 30-year sub-samples. For DER, DGR and

DDR we set the bandwidth parameter MT = ⌊
√
T ⌉, according to the results of the simulation

exercise reported in Appendix D. For all estimators, we set kmax = 8.

Results are reported in Table 6. Our favorite estimator DDR selects 2 factors; this finding

is reasonably consistent across sub-samples. The same holds for DDRa, which excludes the

short-run frequencies. DDRbc presents a mixed evidence: two cyclical factors for the whole

sample and four sub-samples, just one factor for the remaining 5 sub-samples. By contrast,

HL selects 5 factors, whereas O is in favor of 3 factors. As for the sub-samples, HL oscillates

between 2 and 4 factors, with a prevalence of 4 factors, and O varies between 2 and 5, with
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a prevalence of 2 factors. Overall, DDR and DDRa are more parsimonious than HL and O

and more consistent across sub-samples.

Why do DDR and HL differ so much? One possible explanation is that there are 2 large

factors and 3 smaller factors, and that the latter are elusive to DDR but not to HL. This

interpretation contrasts however with the simulation of Table 1, where there are factors of dif-

ferent variance and DDR has a performance similar to that of HL. An alternative explanation

is that HL overestimates the number of factors, as in the simulation of Table 4.

Figure 2: Number of factors estimated by DDR when evaluated at each frequency (blue solid line) and on 5
frequency bands (red dotted line with circles).

From now on we focus solely on our favorite estimator, DDR. Figure 2 shows the number

of estimated factors by DDR for each single Fourier frequency in the interval [0, π/4] and each

one of the frequency bands [0, 2π/80] (long-run), [2π/80, 2π/32] (long cycles), [2π/32, 2π/16]

(medium cycles), [2π/16, 2π/6] (short cycles) and [2π/6, π] (short run). At frequency zero

DDR selects 2 factors; the estimator is somewhat unstable when evaluated on single frequen-

cies, fluctuating between 1 and 7 factors. Its value however stabilizes to 2 when averaging

the eigenvalues on the five bands above. The result of 2 estimated factors on all bands is

confirmed when using the bandwidths MT = ⌊a
√
T ⌉, with a = 0.8, 0.9, 1.1, 1.2.

Our conclusion is that there are two major shocks driving the US macro economy. The

presence of other shocks cannot be ruled out, but the latter are not large and/or pervasive

enough to be distinguished from the idiosyncratic components on the basis of existing data.

The result of 2 shocks is in line with the findings of Sargent and Sims (1977), Giannone et al.

(2005), and Onatski (2009).
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6.2 Common and idiosyncratic variance

The dynamic eigenvalues represent the variance explained by the principal component series,

broken down by frequency. The mean over all frequencies is the explained variance of the

data set; the mean over a band is the explained variance of that band (Brillinger (1981)).

Table 7 shows the explained variances of the first 6 principal component series for a few

frequency bands of interest. Each variance is divided by the total variance of the variables

on that band and multiplied by 100; therefore the numbers that appear in the table are the

percentages of variance accounted for by the first 6 principal components. The first principal

component, for instance, explains 33% of the sum of the variances of the variables, while the

second one explains about 17%. On all bands, the difference between the variance explained

by the second principal component and that explained by the third is relatively large, while

the difference between the third and the fourth is relatively small. This is the reason why the

criterion selects two factors.

The principal component series are consistent estimates of the dynamic factors (Forni

et al. (2000)). Hence the explained variances above are estimates of the variance explained by

the common shocks. If, as indicated by the criterion, there are only 2 common shocks, the sum

of the variances of the common components is about half of the total variance and the sum

of the idiosyncratic variances is the other half. At high frequencies, of little macroeconomic

interest, the common variance is only 30% of the total, while on the cyclical band and in the

long run the common variance is about 60%.

Of course, there are variables which have large idiosyncratic components and variables

with small idiosyncratic components. The idiosyncratic components may represent sectoral,

local, or foreign sources of variation, as well as measurement errors and other sources of fluc-

tuations affecting only a small number of variables in the data set. Hence sectoral industrial

production indexes, sectoral price indexes, exchange rates or variables measuring aspects of

the macro economy which are poorly represented in the data set have large idiosyncratic

components, whereas the main macroeconomic aggregates have small idiosyncratic compo-

nents. We estimate the spectral-density matrix of the variable components driven by the k-th

factors, k = 1, 2, by the simple formula

vk(ωℓ)µ̂k(ωℓ)v
′
k(ωℓ),

ωℓ = 2πℓ/T , ℓ = 0, 1 . . . , T − 1, where µ̂k(ωℓ) is the k-th eigenvalue of the spectral density

matrix Σ̂(ωℓ), vk(ωℓ) is the corresponding eigenvector and the prime denotes transposition

and conjugation (Forni et al. (2000)).

Table 8 shows, for seven key macroeconomic variables, the variance explained by the first

2 principal components along with the variance explained by the following three, from the

third to the fifth. The aim is to see how large is the explained variance for these variables



17

when retaining only two factors and how large is the variance that we loose with respect to

the choice q = 5 suggested by HL. We see from the table that, on the bands of macroeconomic

interest, the long run, the long waves and the business cycle, 2 factors are enough to capture

80-85% of GDP growth fluctuations, about 70% of consumption, about 80% of investment,

80-90% of the unemployment rate variation, 85-90% of hours worked, about 90% of inflation

and 80% of the federal funds rate. The variance that we loose by selecting q = 2 instead

of q = 5 is not negligible, particularly for consumption and the interest rate; nevertheless,

we can conclude that 2 factors are enough to capture the bulk of the variance of the main

macroeconomic aggregates on the frequency bands of main macroeconomic interest.

6.3 A cyclical shock and a long-run shock

Now let us go on and see how much of the variance of the above variables is explained by

the first factor and how much is explained by the second factor, for each frequency band. Of

course the factors are not identified according to macroeconomic criteria. Indeed, imposing an

economic identification scheme is beyond the scope of the present paper. Nevertheless, it turns

out that the explained variances make it possible to assign a precise economic meaning to the

common shocks resulting from the statistical identification and to draw some conclusions of

great economic interest.

The explained variances are shown in Table 9. The first dynamic factor accounts for

almost nothing of the variance of GDP and all real activity variables in the long run and the

long cycles band, which is instead explained by the second factor. We therefore find ourselves,

without having looked for it, in front of an identification à la Blanchard and Quah (1989): the

first factor is a temporary shock, while the second one is a permanent shock. It is very much

tempting to interpret the temporary shock as a demand shock and the long-run shock as a

supply shock. To confirm this interpretation, we look at the covariances of GDP growth and

inflation changes induced by the two shocks, and find that in fact such covariance is positive

for the temporary shock, which therefore has the features of a demand shock, and negative

for the long-run shock, which can then be regarded as a supply shock.9 In the last column

of the table are reported the explained variances at business cycle frequencies. The demand

shock is the most important cyclical shock for real activity variables. It accounts for 53% of

GDP growth fluctuations, 35% of consumption, 55% of investment, 62% of unemployment

and 59% of hours worked. The contribution of the permanent, supply shock is not negligible,

particularly for consumption, but is smaller, between 26 and 32%.

Figure 3 illustrates the same points by showing the spectral density of the seven variables

above, along with the spectra of the common components driven by the two shocks. The

upper-left panel refers to GDP growth. The supply shock accounts for the long run and the

long- medium cycles, but explains almost nothing of short cycles and short-run frequencies,

9This is shown in Figure 2 below.
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Figure 3: The estimated spectral density functions of seven variables (black line) and the components driven
by the first factor (red line) and the second factor (blue line). The variables are: GDP growth, consumption
growth, investment growth, unemployment rate changes, hours worked changes, GDP deflator inflation, federal
funds rate. Bottom-right panel: co-spectrum of GDP growth and inflation changes produced by the first factor
(red line) and the second factor (blue line). Lilac shadowed area: long-run frequencies; pink shadowed area:
business cycle frequencies.
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as if it were cut by a low-pass filter canceling waves of periodicity shorter than 4 years. By

contrast, the demand shock explains almost all cycles of 4 years or less and almost nothing

of longer cycles. A similar result holds for the other variables related to real activity: con-

sumption, investment, unemployment and hours worked. Inflation and the interest rate are

explained almost exclusively by the demand shock, both at business cycle frequencies and in

the long run. The bottom-right panel of Figure 3 shows the co-spectra of GDP growth and

inflation changes relative to the transitory shock (red line) and the permanent shock (blue

line). As anticipated above, the transitory shock induces a a positive covariance between

GDP growth and inflation changes, whereas the opposite is true for the permanent shock.10

The above results is in line with Blanchard and Quah (1989) and in sharp contrast with

both the RBC model and the idea that news shocks explain the bulk of business cycle fluctu-

ations. The finding by Angeletos et al. (2020), that the bulk of business cycle fluctuations is

not driven by a long-run shock is confirmed. On the other hand, the hypothesis put forward

by the Authors, that there could be just one non-inflationary demand shock affecting real

activity variables, is clearly rejected: output fluctuations are partly explained by the supply

shock, and the demand shock is closely related with inflation.

7 Summary and conclusion

10We consider inflation changes in place of inflation since the latter exhibits a large negative co-spectrum
with GDP growth for all of the first five principal component series, owing to the 70s and the early 80s,
characterized by low growth and high inflation.
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Tables

q n T HL O DER DGR DDR

MA loadings

2 60 100 99.6 47.6 80.8 92.4 98.4
100 100 99.6 71.2 87.8 96.6 99.2
70 120 97.8 53.2 87.2 96.2 99.6

120 120 99.4 78.4 96.6 99.4 100.0
150 120 99.6 83.0 97.4 99.4 100.0

3 60 100 62.0 15.8 27.2 52.6 77.0
100 100 91.2 24.6 29.6 52.0 87.8
70 120 89.8 18.8 32.8 62.2 90.8

120 120 99.0 25.8 43.0 70.4 97.0
150 120 99.8 29.6 48.0 74.2 97.4

AR loadings

2 60 100 96.8 81.2 84.4 92.8 98.8
100 100 99.4 93.0 90.4 94.6 99.4
70 120 99.8 88.8 89.2 95.8 99.4

120 120 100.0 96.8 94.4 97.4 100.0
150 120 100.0 96.8 96.4 98.0 100.0

3 60 100 31.2 33.4 41.2 54.6 67.6
100 100 62.4 54.4 49.0 66.0 87.0
70 120 69.4 49.8 49.6 63.2 81.0

120 120 90.8 67.6 57.8 70.0 91.6
150 120 94.6 74.4 63.2 75.8 93.6

Table 1: First experiment described in Section 5. Percentage of correct outcomes over 500
replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator, DER: Di-
namic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio estimator; DDR: Dynamic
Difference Ratio Estimator. Boldface numbers denote the estimator which performs best in
each row.
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n T σ2 HL O DER DGR DDR

MA loadings

70 70 1 100.0 100.0 99.6 99.8 100.0
70 70 2 94.6 99.8 89.2 94.0 100.0
70 70 4 1.6 89.0 49.4 58.2 77.6
100 120 1 100.0 100.0 100.0 100.0 100.0
100 120 2 100.0 100.0 99.6 100.0 100.0
100 120 6 3.0 98.8 54.0 62.2 81.4
150 500 1 100.0 100.0 100.0 100.0 100.0
150 500 8 100.0 100.0 99.2 99.8 100.0
150 500 16 40.2 97.4 45.6 47.0 88.8

AR loadings

70 70 1 99.0 98.8 90.8 96.0 99.4
70 70 2 85.6 89.4 78.4 87.8 98.4
70 70 4 14.4 64.6 61.0 69.4 84.8
100 120 1 100.0 99.0 99.6 100.0 100.0
100 120 2 100.0 99.4 95.8 98.2 100.0
100 120 6 44.8 77.6 75.4 82.0 91.4
150 500 1 100.0 98.4 100.0 100.0 100.0
150 500 8 100.0 97.8 99.6 100.0 100.0
150 500 16 99.6 91.6 91.4 93.0 99.8

Table 2: Second experiment described in Section 5 (q = 2). Percentage of correct outcomes
over 500 replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator,
DER: Dinamic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio estimator; DDR:
Dynamic Difference Ratio Estimator. Boldface numbers denote the estimator which performs
best in each row.
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q n T HL O DER DGR DDR

Small idiosyncratic components

2 60 120 99.2 98.8 100.0 100.0 100.0
120 80 88.6 90.8 100.0 100.0 99.8
60 240 99.6 100.0 100.0 100.0 100.0
120 240 35.6 100.0 100.0 100.0 100.0
240 480 0.6 100.0 100.0 100.0 100.0

4 60 120 97.6 64.8 88.8 97.0 98.6
120 80 89.2 36.2 67.2 86.6 88.8
60 240 100.0 94.6 100.0 100.0 100.0
120 240 91.6 99.2 100.0 100.0 100.0
240 480 73.4 100.0 100.0 100.0 100.0

6 60 120 8.6 23.8 17.8 56.4 57.0
120 80 0.8 16.4 5.0 26.6 21.8
60 240 96.8 54.0 96.4 99.2 99.8
120 240 98.6 87.0 100.0 100.0 100.0
240 480 91.6 99.8 100.0 100.0 100.0

Large idiosyncratic components

2 60 120 97.2 87.2 85.8 93.4 99.4
120 80 99.0 93.4 85.4 94.2 99.8
60 240 100.0 99.0 98.8 99.4 100.0
120 240 99.8 99.8 99.8 100.0 100.0
240 480 99.8 100.0 100.0 100.0 100.0

4 60 120 0.0 16.8 2.0 7.6 30.0
120 80 0.0 15.2 2.0 7.4 11.8
60 240 16.8 32.4 29.4 55.8 80.8
120 240 99.8 73.4 92.0 97.8 100.0
240 480 96.8 100.0 100.0 100.0 100.0

6 60 120 0.0 8.2 0.0 0.0 0.8
120 80 0.0 9.0 0.0 0.0 0.0
60 240 0.0 7.8 0.0 0.4 7.6
120 240 48.0 20.8 5.4 11.2 47.0
240 480 94.8 94.8 100.0 100.0 100.0

Table 3: Third experiment described in Section 5. Percentage of correct outcomes over 500
replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator, DER: Di-
namic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio estimator; DDR: Dynamic
Difference Ratio Estimator. Boldface numbers denote the estimator which performs best in
each row.
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HL DDR

s q̂ < q q̂ = q q̂ > q Total q̂ < q q̂ = q q̂ > q Total

0.30 0.0 12.2 87.8 100.0 0.0 99.8 0.2 100.0
0.35 0.0 41.4 58.6 100.0 0.0 99.6 0.4 100.0
0.40 0.0 69.4 30.6 100.0 0.0 99.8 0.2 100.0
0.45 0.0 88.8 11.2 100.0 0.2 99.4 0.4 100.0
0.50 0.0 98.4 1.6 100.0 0.0 99.8 0.2 100.0
0.55 0.0 99.8 0.2 100.0 0.2 99.6 0.2 100.0
0.60 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
0.65 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
0.70 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0
0.75 0.6 99.4 0.0 100.0 0.8 99.2 0.0 100.0
0.80 0.4 99.6 0.0 100.0 0.2 99.8 0.0 100.0
0.85 2.6 97.4 0.0 100.0 1.2 98.6 0.2 100.0
0.90 6.6 93.4 0.0 100.0 3.0 97.0 0.0 100.0
0.95 15.0 85.0 0.0 100.0 3.8 96.2 0.0 100.0
1.00 28.2 71.8 0.0 100.0 5.4 94.6 0.0 100.0
1.05 45.0 55.0 0.0 100.0 11.0 89.0 0.0 100.0
1.10 63.2 36.8 0.0 100.0 15.2 84.8 0.0 100.0
1.15 77.4 22.6 0.0 100.0 18.0 82.0 0.0 100.0
1.20 89.4 10.6 0.0 100.0 26.8 73.2 0.0 100.0

Table 4: DGP: model of the third experiment described in Section 5, with q = 3, n = 100,
T = 100 and s = 0.3 + 0.05i, i = 0, 1, . . . , 18. Percentage of underestimated outcomes,
correct outcomes and overestimated outcomes over 500 replications. HL: Hallin and Lǐska
(2007) estimator, DDR: Dynamic Difference Ratio Estimator. Boldface numbers denote the
percentage of correct outcomes.
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Trend-Cycle Model Stopband Model

Frequency band q̂ = 1 q̂ = 2 q̂ > 2 Total q̂ = 1 q̂ = 2 q̂ > 2 Total

Small idiosyncratic components

ω = 0 82.6 13.8 3.6 100.0 1.8 95.2 3.0 100.0
0 ≤ ω ≤ 2π/80 89.6 10.2 0.2 100.0 1.6 98.4 0.0 100.0
ω = 2π/12 0.0 100.0 0.0 100.0 99.8 0.2 0.0 100.0
2π/32 ≤ ω ≤ 2π/8 0.0 100.0 0.0 100.0 60.6 39.4 0.0 100.0
2π/8 ≤ ω ≤ π 0.0 99.4 0.6 100.0 0.0 96.4 3.6 100.0
0 ≤ ω ≤ π 0.0 99.8 0.2 100.0 0.0 98.0 2.0 100.0

Large idiosyncratic components

ω = 0 93.2 3.6 3.2 100.0 9.6 82.0 8.4 100.0
0 ≤ ω ≤ 2π/80 98.4 1.2 0.4 100.0 11.2 87.4 1.4 100.0
ω = 2π/12 3.8 96.2 0.0 100.0 100.0 0.0 0.0 100.0
2π/32 ≤ ω ≤ 2π/8 4.2 95.8 0.0 100.0 94.6 5.4 0.0 100.0
2π/8 ≤ ω ≤ π 0.0 99.8 0.2 100.0 0.6 98.4 1.0 100.0
0 ≤ ω ≤ π 0.0 99.8 0.2 100.0 1.4 98.2 0.4 100.0

Table 5: DGP: Trend-cycle Model (left panel) and Stopband Model (right panel) described in Section
5, with q = 2, n = 120, T = 240 and s = 0.6 (small idiosyncratic components), s = 1.2 (large
idiosyncratic components). Percentage of outcomes q̂ = 1, q̂ = 2 and q̂ > 2, over 500 replications,
obtained with the DDR estimator, evaluated at selected frequencies or frequency bands. Boldface
numbers denote the percentage of correct outcomes. In the Trend-cycle Model one of the two common
shocks has zero effect in the long-run for all variables, so that the true value of q at frequency 0 is 1.
On the long-run band 0 ≤ ω ≤ 2π/80 (which corresponds to periodicity greater than 20 years with
quarterly data) the true number of factors is 2, but the contribution of the transitory shock to total
variance is negligible, so that we consider correct the outcome q̂ = 1. In the Stopband Model one of
the two common shocks has zero effect at frequency π/6 for all variables, so that the true value of q at
this frequency is 1. On the cyclical band 2π/32 ≤ ω ≤ 2π/8 (which corresponds to cycles between 2
and 8 years with quarterly data) the true number of factors is 2, but the contribution of the transitory
shock to total variance is very small, so that we consider correct the outcome q̂ = 1.
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Sample span DDR DDRa DDRbc DER DGR HL O

1960Q2-2020Q1 2 2 2 2 2 5 3
1960Q2-2000Q1 2 2 1 1 1 4 2
1965Q2-2005Q1 2 2 1 1 1 4 2
1970Q2-2010Q1 2 2 2 2 2 4 2
1975Q2-2015Q1 2 2 2 2 2 4 5
1980Q2-2020Q1 2 2 2 2 2 4 2
1960Q2-1990Q1 1 2 1 1 1 3 5
1970Q2-2000Q1 1 1 1 1 1 4 4
1980Q2-2010Q1 2 3 2 2 2 2 2
1990Q2-2020Q1 2 2 1 2 2 3 3

Table 6: Number of factors detected by the competing criteria for the whole sample and nine
sub-samples. DDR: Dynamic Difference Ratio Estimator. DDRa: Dynamic Difference Ratio
Estimator evaluated on the [0 2π/6] frequency band. DDRa: Dynamic Difference Ratio
Estimator evaluated on the cyclical band [2π/32 2π/6]. DER: Dinamic Eigenvalue Ratio
estimator. DGR: Dynamic Growth Ratio estimator. HL: Hallin and Lǐska (2007) estimator.
O: Onatski (2009) estimator.

All Long run Long cycles Medium cycles Short cycles Business cycle
frequencies > 20 years 8-20 years 4-8 years 1.5-4 years 1.5-8 years

1st PC 33.0 35.7 36.1 39.4 44.9 42.4
2nd PC 17.5 23.6 23.1 23.2 14.6 18.3
3rd PC 7.7 8.6 8.3 8.2 6.4 7.1
4th PC 6.1 6.7 6.6 6.0 4.4 5.2
5th PC 4.7 4.8 4.8 4.0 3.7 3.9
6th PC 3.9 3.3 3.5 3.3 3.1 3.3

Table 7: Percentage of overall variance explained by the first 6 principal component series by
frequency band. All frequencies: [0 π]; Long run: [0 2π/80); Long cycles: [2π/80 2π/32);
Medium cycles: [2π/32 2π/16); Short cycles: [2π/16 2π/6); business cycle: [2π/32 2π/6).
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PC All Long run Long cycles Medium cycles Short cycles Bus. cycle
series freq. > 20 years 8-20 years 4-8 years 1.5-4 years 1.5-8 years

GDP first 2 72.5 84.2 84.3 84.3 80.9 82.0
next 3 16.2 7.8 7.0 5.7 9.8 8.5

Cons. first 2 55.2 69.9 69.8 70.9 64.8 67.3
next 3 15.9 16.5 15.7 14.9 13.0 13.5

Inv. first 2 72.2 77.9 77.5 83.4 85.1 84.4
next 3 8.7 14.1 13.4 5.9 3.3 4.2

U rate first 2 80.2 83.2 81.8 82.2 90.9 88.0
next 3 8.1 11.7 12.5 12.9 2.5 5.8

Hours first 2 76.9 87.0 86.7 88.2 90.9 89.8
next 3 8.2 8.2 8.4 8.0 2.0 4.1

Inflation first 2 84.0 91.5 91.0 90.7 74.7 86.2
next 3 7.4 5.2 5.5 6.0 12.4 7.8

FFR first 2 78.2 78.9 78.7 81.4 73.4 79.1
next 3 16.0 17.5 17.2 14.3 14.6 14.8

Table 8: Percentage of variance explained by the first 2 principal component series and the
following 3 for a few selected variables, by frequency band. All frequencies: [0 π]; Long run:
[0 2π/80); Long cycles: [2π/80 2π/32); Medium cycles: [2π/32 2π/16); Short cycles:
[2π/16 2π/6); business cycle: [2π/32 2π/6).
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All Long run Long cycles Medium cycles Short cycles Bus. cycle
Factors freq. > 20 years 8-20 years 4-8 years 1.5-4 years 1.5-8 years

GDP 1st 43.9 2.2 2.8 10.9 72.9 52.9
2nd 28.6 82.0 81.5 73.3 8.0 29.1

Cons. 1st 27.2 2.3 2.3 6.7 53.4 34.8
2nd 28.0 67.6 67.5 64.2 11.4 32.5

Inv. 1st 38.7 5.4 5.3 12.7 74.8 54.7
2nd 33.5 72.5 72.2 70.7 10.3 29.7

U rate 1st 46.7 10.7 10.8 18.1 82.1 62.1
2nd 33.5 72.6 70.9 64.1 8.8 25.9

Hours 1st 39.3 0.4 2.6 14.1 82.0 59.3
2nd 37.6 86.6 84.2 74.2 8.9 30.6

Inflation 1st 78.5 91.4 90.1 86.2 45.6 76.0
2nd 5.5 0.1 1.0 4.4 29.1 10.2

FFR 1st 74.9 78.7 78.1 78.4 57.5 73.7
2nd 3.2 0.2 0.6 3.0 15.9 5.4

Table 9: Percentage of variance explained by the first and the second factor for a few selected
variables, by frequency band. All frequencies: [0 π]; Long run: [0 2π/80); Long cycles:
[2π/80 2π/32); Medium cycles: [2π/32 2π/16); Short cycles: [2π/16 2π/6); business
cycle: [2π/32 2π/6).
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C Variables and transformations

The data are from FRED-QD. We retained the 216 series starting in 1960Q1. We report

here the ID number and the mnemonic. For the description of each variable see McCracken

and Ng (2020). Transformation codes: 1 = no transformation; 2 = first difference; 5 = log

difference; 7 = first difference of the of percentage variation.

ID FRED-QD Transf. FRED-QD ID FRED-QD Transf. FRED-QD
number ID number code Mnemonic number ID number code Mnemonic

1 1 5 GDPC1 52 54 5 CES9091000001
2 2 5 PCECC96 53 55 5 CES9092000001
3 3 5 PCDGx 54 56 5 CES9093000001
4 4 5 PCESVx 55 57 5 CE16OV
5 5 5 PCNDx 56 58 2 CIVPART
6 6 5 GPDIC1 57 59 2 UNRATE
7 7 5 FPIx 58 60 2 UNRATESTx
8 8 5 Y033RC1Q027SBEAx 59 61 2 UNRATELTx
9 9 5 PNFIx 60 62 2 LNS14000012
10 10 5 PRFIx 61 63 2 LNS14000025
11 11 1 A014RE1Q156NBEA 62 64 2 LNS14000026
12 12 5 GCEC1 63 65 5 UEMPLT5
13 13 1 A823RL1Q225SBEA 64 66 5 UEMP5TO14
14 14 5 FGRECPTx 65 67 5 UEMP15T26
15 15 5 SLCEx 66 68 5 UEMP27OV
16 16 5 EXPGSC1 67 73 5 LNS12032194
17 17 5 IMPGSC1 68 74 5 HOABS
18 18 5 DPIC96 69 76 5 HOANBS
19 19 5 OUTNFB 70 77 1 AWHMAN
20 20 5 OUTBS 71 79 1 AWOTMAN
21 22 5 INDPRO 72 80 1 HWIx
22 23 5 IPFINAL 73 81 5 HOUST
23 24 5 IPCONGD 74 82 5 HOUST5F
24 25 5 IPMAT 75 83 5 PERMIT
25 26 5 IPDMAT 76 84 5 HOUSTMW
26 27 5 IPNMAT 77 85 5 HOUSTNE
27 28 5 IPDCONGD 78 86 5 HOUSTS
28 29 5 IPB51110SQ 79 87 5 HOUSTW
29 30 5 IPNCONGD 80 88 5 CMRMTSPLx
30 31 5 IPBUSEQ 81 89 5 RSAFSx
31 32 5 IPB51220SQ 82 90 5 AMDMNOx
32 34 1 CUMFNS 83 92 5 AMDMUOx
33 35 5 PAYEMS 84 95 5 PCECTPI
34 36 5 USPRIV 85 96 5 PCEPILFE
35 37 5 MANEMP 86 97 5 GDPCTPI
36 38 5 SRVPRD 87 98 5 GPDICTPI
37 39 5 USGOOD 88 99 5 IPDBS
38 40 5 DMANEMP 89 100 5 DGDSRG3Q086SBEA
39 41 5 NDMANEMP 90 101 5 DDURRG3Q086SBEA
40 42 5 USCONS 91 102 5 DSERRG3Q086SBEA
41 43 5 USEHS 92 103 5 DNDGRG3Q086SBEA
42 44 5 USFIRE 93 104 5 DHCERG3Q086SBEA
43 45 5 USINFO 94 105 5 DMOTRG3Q086SBEA
44 46 5 USPBS 95 106 5 DFDHRG3Q086SBEA
45 47 5 USLAH 96 107 5 DREQRG3Q086SBEA
46 48 5 USSERV 97 108 5 DODGRG3Q086SBEA
47 49 5 USMINE 98 109 5 DFXARG3Q086SBEA
48 50 5 USTPU 99 110 5 DCLORG3Q086SBEA
49 51 5 USGOVT 100 111 5 DGOERG3Q086SBEA
50 52 5 USTRADE 101 112 5 DONGRG3Q086SBEA
51 53 5 USWTRADE 102 113 5 DHUTRG3Q086SBEA



34

ID FRED-QD Transf. FRED-QD ID FRED-QD Transf. FRED-QD
number ID number code Mnemonic number ID number code Mnemonic

103 114 5 DHLCRG3Q086SBEA 160 187 5 EXCAUSx
104 115 5 DTRSRG3Q086SBEA 161 188 1 UMCSENTx
105 116 5 DRCARG3Q086SBEA 162 190 2 B020RE1Q156NBEA
106 117 5 DFSARG3Q086SBEA 163 191 2 B021RE1Q156NBEA
107 118 5 DIFSRG3Q086SBEA 164 194 5 IPMANSICS
108 119 5 DOTSRG3Q086SBEA 165 195 5 IPB51222S
109 120 5 CPIAUCSL 166 196 5 IPFUELS
110 121 5 CPILFESL 167 197 1 UEMPMEAN
111 122 5 WPSFD49207 168 198 1 CES0600000007
112 123 5 PPIACO 169 199 5 TOTRESNS
113 124 5 WPSFD49502 170 200 7 NONBORRES
114 125 5 WPSFD4111 171 201 1 GS5
115 126 5 PPIIDC 172 202 1 TB3SMFFM
116 127 5 WPSID61 173 203 1 T5YFFM
117 129 5 WPU0561 174 204 1 AAAFFM
118 130 5 OILPRICEx 175 205 5 WPSID62
119 132 5 CES2000000008x 176 206 5 PPICMM
120 133 5 CES3000000008x 177 207 5 CPIAPPSL
121 135 5 COMPRNFB 178 208 5 CPITRNSL
122 136 5 RCPHBS 179 209 5 CPIMEDSL
123 138 5 OPHNFB 180 210 5 CUSR0000SAC
124 139 5 OPHPBS 181 211 5 CUSR0000SAD
125 140 5 ULCBS 182 212 5 CUSR0000SAS
126 142 5 ULCNFB 183 213 5 CPIULFSL
127 143 5 UNLPNBS 184 214 5 CUSR0000SA0L2
128 144 1 FEDFUNDS 185 215 5 CUSR0000SA0L5
129 145 1 TB3MS 186 216 5 CES0600000008
130 146 1 TB6MS 187 217 5 DTCOLNVHFNM
131 147 1 GS1 188 218 5 DTCTHFNM
132 148 1 GS10 189 219 5 INVEST
133 150 1 AAA 190 220 1 HWIURATIOx
134 151 1 BAA 191 221 5 CLAIMSx
135 152 1 BAA10YM 192 222 5 BUSINVx
136 154 1 TB6M3Mx 193 223 1 ISRATIOx
137 155 1 GS1TB3Mx 194 224 1 CONSPIx
138 156 1 GS10TB3Mx 195 225 1 CP3M
139 157 1 CPF3MTB3Mx 196 226 1 COMPAPFF
140 158 5 BOGMBASEREALx 197 227 5 PERMITNE
141 160 5 M1REAL 198 228 5 PERMITMW
142 161 5 M2REAL 199 229 5 PERMITS
143 162 5 MZMREAL 200 230 5 PERMITW
144 163 5 BUSLOANSx 201 231 5 NIKKEI225
145 164 5 CONSUMERx 202 234 5 TLBSNNCBx
146 165 5 NONREVSLx 203 235 1 TLBSNNCBBDIx
147 166 5 REALLNx 204 236 5 TTAABSNNCBx
148 168 5 TOTALSLx 205 237 5 TNWMVBSNNCBx
149 170 5 TABSHNOx 206 238 2 TNWMVBSNNCBBDIx
150 171 5 TLBSHNOx 207 239 5 TLBSNNBx
151 172 5 LIABPIx 208 240 1 TLBSNNBBDIx
152 173 5 TNWBSHNOx 209 241 5 TABSNNBx
153 174 1 NWPIx 210 242 5 TNWBSNNBx
154 175 5 TARESAx 211 243 2 TNWBSNNBBDIx
155 176 5 HNOREMQ027Sx 212 244 5 CNCFx
156 177 5 TFAABSHNOx 213 245 5 S&P 500
157 184 5 EXSZUSx 214 246 5 S&P: indust
158 185 5 EXJPUSx 215 247 1 S&P div yield
159 186 5 EXUSUKx 216 248 5 S&P PE ratio
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D Calibrating the window size

To better calibrate the window size of kDDR, kDER and kDGR for the macroeconomic data

set used in the empirical application, we run a further simulation exercise. We set n = 216 (the

number of series in the data set) and use two values for T , namely T = 240 (the time dimension

of the whole sample) and T = 120 (the size of a few sub-samples used in the application). For

the bandwidth parameter MT , we use MT = ⌊a
√
T ⌉, with a = 0.5, 0.75, 1, 1.25. The DGP is

the one used in the third experiment, Subsection 5.1, in the version with large idiosyncratic

components.

Table A reports the percentage of correct outcomes over 500 replications. DDRcb denotes

the Dynamic Difference Ratio Estimator evaluated on the cyclical band [2π/32 2π/6], which

is used in the empirical application. Boldface numbers denote the window size parameter a

which performs best for each value of q and each estimator.

Let us consider first the case T = 240, reported in the left part of the table. With q = 2, all

bandwidths are able to capture the correct q for all replications. With q = 4, the bandwidth

MT = ⌊0.5
√
T ⌉ performs poorly, particularly for DDR and DDRcb. The other bandwidth

perform well for all estimators. With q = 6, both the bandwidths with a = 0.5 and a = 0.75

have the worst performances, whereas the larger bandwidths perform well. Coming to the

sample size T = 120 reported in the right part of the table, we see that all values of a produce

good results for all estimators; however a = 0.75 and a = 1 perform somewhat better than

a = 0.5 and a = 1.25. With q = 4, a = 0.5 and a = 0.75 perform poorly; a = 1 is the

best choice for all but the DER estimator. Finally for q = 6 none of the estimators is able to

capture the correct q for all values of a. Overall, we see from the table that a = 1 and a = 1.25

have the best performances. For the empirical application, we choose a = 1, corresponding

to MT = ⌊
√
T ⌉.
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T = 240 T = 120

q a DER DGR DDR DDRcb DER DGR DDR DDRcb

2 0.50 100.0 100.0 100.0 100.0 97.8 99.4 99.8 97.0
0.75 100.0 100.0 100.0 100.0 99.2 99.8 100.0 99.6
1.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.4
1.25 100.0 100.0 100.0 100.0 99.0 99.8 99.8 91.8

4 0.50 87.8 98.2 82.4 61.2 2.8 12.2 0.0 2.0
0.75 100.0 100.0 100.0 99.6 39.8 63.2 50.4 70.0
1.00 99.8 99.8 100.0 100.0 57.4 77.8 94.6 73.0
1.25 99.8 100.0 100.0 99.8 60.8 77.0 92.2 60.2

6 0.50 0.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0
0.75 48.6 66.8 31.8 50.0 0.2 0.2 0.0 1.2
1.00 84.4 91.2 95.2 93.6 0.8 0.8 0.4 20.8
1.25 91.0 95.2 99.6 92.4 1.2 1.4 15.0 19.4

Table A: Calibration of the bandwidth parameter for the empirical application. The DGP
is the model of the third experiment described in Section 5, large idiosyncratic components,
with q = 2, 4, 6, n = 216, T = 240, 120. The bandwidth parameter is MT = ⌊a

√
T ⌉ with a =

0.5, 0.75, 1, 1.25. The Table reports the percentage of correct outcomes over 500 replications.
DER: Dinamic Eigenvalue Ratio estimator, DGR: Dynamic Growth Ratio estimator; DDR:
Dynamic Difference Ratio Estimator; DDRbc: Dynamic Difference Ratio Estimator evaluated
on the cyclical band [2π/32 2π/6]. Boldface numbers denote the window size parameter a
which performs best for each value of q and each estimator.
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