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1 Preliminary notation and main definitions

To facilitate the reading, this section presents the notation and the main definitions that we use

throughout the paper.

We use the bold font to denote vectors (in lower-case) and matrices (in upper-cases). The

notation Ia is used to define the identity matrix of dimension a×a, while 1a denotes an a×1 vector of

ones. The s-th coulumn (or row) of Ia is denoted by the a×1 vector ıs,a. Similarly, let 0a and 0a×b

be the a×1 vector of zeros and the zero matrix of dimension a×b, respectively. For any full-column-

rank matrix A of dimension a× b, we define the a× a matrix MA ≡ Ia−A(A′A)−1A′ ≡ Ia−PA,

with PA ≡ A(A′A)−1A′. We also write A > 0 and A ≥ 0 whenever the matrix A is positive

definite and semi-positive definite, respectively. We use 1{·} to denote the indicator function,

while E[·] and E[·|A] identify the the unconditional and conditional (on the event A) expectations,

respectively. Finally, ⊗, vec(·), vec−1(·) denote the Kronecker product, the vec operator, and the

inverse vec operator, respectively.1 The quantity A(2) ≡ (A �A), where the symbol � indicates

the Hadamard product. Convergence in distribution and in probability are denoted by →d and

→p, respectively. Finally, N (· , ·) denotes a Normally-distributed random vector.

All the moments throughout the Online Appendix are assumed to hold conditionally on the

factors F, even if not written explicitly, and all the limits below hold as N →∞.

DA FARE TIMEVARYING BETAS SECTION

OA.1 Notation for Anomalies

Dealing with anomalies also involves some specific notation, because such variables are both time-

and asset-specific. In fact, assuming that we have Kz anomaly variables, it requires dealing with

an array of dimension N × T − 1 × Kz. We emphasize the suffix T − 1 to remind that our data

sample is of size T − 1, due to the presence of the lagged anomaly variables. In particular we set

t = 2, ..., T whenever we refer to asset returns, while we use t = 1..., T − 1 to index the anomalies.

1The inverse vec operator reconstructs a matrix from a column vector. However, it necessarily requires defining
the desired number of rows and columns of the resultant matrix. In this paper we will only use this operator to
reconstruct matrices of dimension (T − 1)Kz× (T − 1). Thus, the inverse vec operator can be unambiguously defined
as vec−1(a) = (vec(I(T−1)Kz)′ ⊗ IT−1)(I(T−1)Kz ⊗ a) for every vector a of length (T − 1)2Kz × 1.
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We define the overall N ×Kz(T − 1) matrix of anomalies as

Z ≡ (z1, ..., zN )′

where we use the (lower case) notation zi to define the Kz(T − 1)× 1 vector

zi ≡
(
z

(1)
i,1 , · · · , z

(1)
i,T−1, · · · , z

(Kz)
i,1 , · · · , z(Kz)

i,T−1

)′
.

The N ×Kz matrix of anomalies at time t− 1 is defined as Zt−1 = (z1,t−1, · · · , zN,t−1)′, while the

T ×Kz matrix of anomalies specific for the i-th asset is Zi = (zi,1, · · · , zi,T−1)′, where zi,t−1 denotes

the Kz×1 vector zi,t−1 =
(
z

(1)
i,t−1, · · · , z

(Kz)
i,t−1

)′
. Taking the time-series average of the anomalies leads

to the N ×Kz matrix of sample averages Z̄ = 1
T−1

∑T−1
t=1 Zt.

Finally, we define the following Kz(T − 1)×Kz matrix of constants

J =
1

T − 1


1T−1 0T−1 . . . 0T−1

0T−1 1T−1 . . . 0T−1
...

...
. . .

...
0T−1 0T−1 . . . 1T−1

 =

(
IKz ⊗

1T−1

(T − 1)

)
=

1

T − 1

T−1∑
s=1

Js (OA.1)

with

Js =


ιs,T−1 0T−1 . . . 0T−1

0T−1 ιs,T−1 . . . 0T−1
...

...
. . .

...
0T−1 0T−1 . . . ιs,T−1

 = (IKz ⊗ ιs,T−1) for 1 ≤ s ≤ T − 1 (OA.2)

The matrix J applied to Z generates the time averages of the Kz anomaly variables, i.e. ZJ = Z̄,

while Js allows to select the s-th time-series element of each of the N assets and for all the Kz

anomalies. Notice also that ı′i,NZJs = z′i,s, for every 1 ≤ i ≤ N and 1 ≤ s ≤ T − 1.

OA.2 Assumptions

In this section, we recall all the assumptions required for the validity of our large-N asymptotic

theory, together with some comments. All the moments below are assumed to hold conditionally

on the factors F, even if not written explicitly, and all the limits below hold as N →∞.

It is useful to recall the N ×Kz(T − 1) matrix of anomalies Z ≡ (z1, ..., zN )′, where zi defines

the Kz(T − 1) × 1 vector zi ≡
(
z

(1)
i,1 , · · · , z

(1)
i,T−1, · · · , z

(Kz)
i,1 , · · · , z(Kz)

i,T−1

)′
. The N × Kz matrix of

anomalies at time t− 1 is defined as Zt−1 = (z1,t−1, · · · , zN,t−1)′, while the (T − 1)×Kz matrix of

anomalies specific for the i-th asset is Zi = (zi,1, · · · , zi,T−1)′, setting zi,t−1 =
(
z

(1)
i,t−1, · · · , z

(Kz)
i,t−1

)′
.
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Assumption OA.1 (smoothness of the premia parameters). The following hold:

P′γ0 = 0Kf
, P′δ̆f = 0Kf×Kf

, and P′∆z = 0Kf×N ,

setting the (T − 1) × Kf matrix δ̆f = (δ̆f,1, · · · , δ̆f,t−1)′, with δ̆f,t−1 ≡ δf,t−1 − ft = γf,t−1 −

E(ft|It−1,Π), and the (T − 1)×N matrix

∆z ≡



γ ′z,1 − γ ′z 0′Kz
. . . 0′Kz

0′Kz
γ ′z,2 − γ ′z . . . 0′Kz

...
...

. . .
...

0′Kz
0′Kz

. . . γ ′z,t−1 − γ ′z





Z′1

Z′1

...

Z′T−1

 ,

for some constant Kz × 1 vector γz satisfying N−1
∑N

i=1(Z′iZi)
−1Z′iRi →p γz.

Remark OA.1. When the risk factors are traded, δ̆f,t−1 = −γ01
′
Kf

for every t, and Assump-

tion OA.1 only concerns the zero-beta rate. In the special case of constant premia parameters,

when both the test assets and the risk factors are expressed as excess returns, and assuming that a

risk-free asset is also traded, then Assumption OA.1 is always satisfied.

One can avoid imposing the smoothness conditions of Assumption OA.1, and thus allowing

for time-series dependence between the time-varying premia and the risk factors, but at the cost

of more complicate expressions. In particular, (7) can be expressed as a panel data model with

interactive-fixed effects:

Rt = α+ Zt−1γ̄z + Bft + ut,

where the error term satisfies ut = ξt+∆gt for an asset-specific error ξt and a vector of zero-mean

latent factors gt possibly correlated with the observed risk factors ft, with loadings ∆, and where

γ̄z = T−1
∑T

t=1 γt−1,z. Assumption OA.1 implies orthogonality between ft and ut, resurrecting the

OLS estimator B̂. However, an alternative estimator for B exists that avoids Assumption OA.1

but leads to a more involved analysis of the CSR in the second pass. Details are available upon

request.

Assumption OA.2 (risk factors and anomalies). Set Z̃i ≡M1T−1Zi, and D ≡ (1T−1,F). Then,

for every T , the (T − 1)× (K + 1) matrix D̃i = (D, Z̃i) satisfies

D̃′iD̃i > 0 for every i = 1, ..., N.
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Assumption OA.3 (loadings).

1

N

N∑
i=1

βi → µβ and
1

N

N∑
i=1

βiβ
′
i → Σβ,

such that the matrix

ΣX ≡
[

1 µ′β
µβ Σβ

]
> 0.

Remark OA.2. Assumption OA.3 states that the limiting cross-sectional averages of the betas,

and of the squared betas, exist. The second part of Assumption OA.3 rules out the possibility of

spurious and weak factors and situations in which at least one of the elements of βi is cross-

sectionally constant. It implies that X = (1N ,B) has full (column) rank for N sufficiently large.

To simplify the exposition, we assume that the βi are non-random.2

Assumption OA.4 (asset-specific components). TheN×1 vector of error terms εt is independently

and identically distributed (i.i.d.) over time with

E[εt] = 0N (OA.3)

and with the N ×N variance-covariance matrix satisfying

Var [εt] =


σ2

1 σ12 · · · σ1N

σ21 σ2
2 · · · σ2N

...
... · · ·

...
σN1 σN2 · · · σ2

N

 ≡ Σ > 0, (OA.4)

where σij denotes the (i, j)-th element of Σ, for every i, j = 1, . . . , N , and with σ2
i ≡ σii.

Remark OA.3. The i.i.d. assumption over time is common to many studies, including ? and

Raponi, Robotti, and Zaffaroni (2020). Nonetheless, in principle, our large-N asymptotic theory

allows the εit to be arbitrarily correlated over time, at the cost of more complicated expressions and

derivations for the limiting distributions of the estimators. Condition (OA.4) is not imposing any

specific structure on the elements of Σ beyond non-singularity. In particular, we are not assuming

that the returns’ innovations are uncorrelated across assets or exhibit the same variance. However,

our large-N asymptotic theory needs to discipline the degree (as N increases) of cross-correlation

among the εt, as indicated in Assumption OA.5 below.

2See ? and Raponi, Robotti, and Zaffaroni (2020) for the analysis of asset pricing models with random betas.
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Assumption OA.5 (cross-sectional moments of asset-specific components). (i)

1

N

N∑
i=1

(
σ2
i − σ2

)
= o

(
1√
N

)
, (OA.5)

for some 0 < σ2 <∞.

(ii)
N∑

i,j=1

| σij | 1{i 6=j} = o (N) . (OA.6)

(iii)

1

N

N∑
i=1

µ4i → µ4, (OA.7)

for some 0 < µ4 <∞, where µ4i ≡ E[ε4i,t].

(iv)

1

N

N∑
i=1

σ4
i → σ4, (OA.8)

for some 0 < σ4 <∞.

(v)

sup
i
µ4i ≤ C <∞, (OA.9)

for a generic constant C.

(vi)

E[ε3i,t] = 0. (OA.10)

(vii)

1

N

N∑
i=1

κ4,iiii → κ4, (OA.11)

for some 0 ≤ |κ4| <∞, where κ4,iiii ≡ κ4[εit, εit, εit, εit] denotes the fourth-order cumulant of

the asset-specific component {εi,t, εi,t, εi,t, εi,t}.

(viii) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,i1i2...ih | = o (N) , (OA.12)

for at least one ij (2 ≤ j ≤ h) different from i1, where κh,i1,i2...ih is the mixed cumulant in

the {εi1,s, εi2,s, · · · , εih,s} of order h.
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Remark OA.4. Assumption OA.5 describes the cross-sectional behavior of the asset-specific com-

ponents. Specifically, Assumption OA.5(i) limits the cross-sectional heterogeneity of the returns’

conditional variance, while Assumption OA.5(ii) sets the maximum degree of (conditional) cross-

correlation among asset returns allowed by our theory. These assumptions are not very restrictive

and allow for several forms of strong cross-sectional dependence among the εit’s, such as, for ex-

ample, a factor structure of the following form:

εit = λiut + ηi,t, (OA.13)

where ut ∼ i.i.d.(0, 1) and ηi,t ∼ i.i.d.(0, σ2
η) over time and across units, and where ut and ηi,s are

mutually independent for every i, s and t. The coefficient λi is such that
∑N

i=1 |λi| = O(N δ), 0 ≤

δ < 1/4, and λ1 + · · · + λq ∼ CN δ, for some fixed q < N and some constant C. Although

Assumptions OA.5(i) and OA.5(ii) are easily satisfied in the special case of σ2 = σ2
η, notice that

the maximum eigenvalue of Σ is now unbounded as N →∞.3 This is in contrast with the standard

Asset Pricing Theory (APT), where instead boundedness of the maximum eigenvalue is the most

common assumption (see, e.g., the generalization of the APT by ?). Therefore, our assumptions

are milder than the ones postulated by the APT and thus more likely to be verified by the data.4

Other special cases nested in Assumption OA.5 (for which the cross-covariances σij are non-zero)

are network and spatial measures of cross-dependence and a suitably modified version of the block-

dependence structure of ?.5

SECONDO ME MEGLIO RIPETERLA, NON HA SENSO RIMANDARE A RRZ.

ANZI METTIAMO UNA VERSIONE RIDOTTA DI TABELLA RRZ? Qui c’e’

tutta la parte di cross-sectional dependence spiegata con la tabella della Monte Carlo

simulaton, che pero’ e’ IDENTICA a quella di Raponi, Robotti, and Zaffaroni (2020).

dobbiamo ripeterla o basta citarla? See my footnote in red above

Assumption OA.5(iii) simply posits the existence of the limit of the conditional fourth moment,

3The maximum eigenvalue of Σ is given by supcs.t.‖c‖=1 c′Σc.
4Specifically, Assumption OA.5 allows for the maximum eigenvalue of Σ to diverge at rate o

(√
N
)

(see

Raponi, Robotti, and Zaffaroni (2020), Proposition 3). This implies that the row-column norm of Σ, namely
sup1≤i≤N

∑N
j=1 |σij |, can now diverge as N → ∞. ? allow for an even faster rate of divergence, equal to o(N),

but in their setting both T and N tend to infinity jointly.
5Assumption BD.2 of ? on block sizes and block numbers requires that the largest block size shrinks with N

and that there are not too many large blocks; that is, the partition in independent blocks is sufficiently fine-grained
asymptotically. They show formally that such block-dependence structure is compatible with the unboundedness of
the maximum eigenvalue of Σ.
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averaged across assets. In Assumption OA.5(iv), the magnitude of σ4 reflects the degree of cross-

sectional heterogeneity of the conditional variance of the asset returns. Assumption OA.5(v) is a

bounded fourth-moment condition, uniform across assets, which implies that supi σ
2
i ≤ C < ∞.

Assumption OA.5(vi) is a convenient symmetry assumption, but it is not strictly necessary for

our results. Indeed, this assumption could be relaxed, even though the derivation of the asymptotic

distribution would be more cumbersome, due to the presence of several extra terms involving the

third moment of the disturbance. Assumptions OA.5(vii)-(viii) allow for non-Gaussianity of the

asset returns whenever κ4 > 0. For example, Assumptions OA.5(vii)-(viii) are satisfied when the

marginal distribution of asset returns is a Student-t with more than 4 degrees of freedom. However,

when estimating the asymptotic covariance matrix of our bias-adjusted estimators, one needs to set

κ4 = 0 merely for identification purposes. That said, higher-order cumulants are not constrained

to be zero, implying that, even when κ4 = 0, the distribution is not necessarily equivalent to the

Gaussian one.

Assumption OA.6 (CLT of asset-specific component). (i)

1√
N

N∑
i=1

εi→d N
(
0T−1, σ

2IT−1

)
. (OA.14)

(ii)

1√
N

N∑
i=1

vec
(
εiε
′
i − σ2

i IT−1

)
→d N

(
0(T−1)2 ,Uε

)
, (OA.15)

where Uε ≡ lim 1
N

∑N
i,j=1E

[
vec(εiε

′
i − σ2

i IT−1)vec(εjε
′
j − σ2

j IT−1)′
]
.

(iii) For any T × 1 vector c,

1√
N

N∑
i=1

(
c′ ⊗

(
1
βi

))
εi→d N

(
0Kf+1, (c

′c)σ2ΣX

)
. (OA.16)

Remark OA.5. From (OA.16), it follows that N−
1
2
∑N

i=1 (c′ ⊗ βi) εi →d N (0Kf
, (c′c)σ2Σβ).

Primitive conditions for Assumption OA.6 can be derived, but at the cost of raising the level of

complexity of our proofs.6

6For instance, when (OA.13) holds and all the above assumptions are satisfied, then (OA.14) follows by Theorem
2 of ? when ηit satisfy their martingale difference assumptions (see their Assumptions 1 and 2.) This result extends
easily to (OA.15)–(OA.16) under suitable additional assumptions. Details are available upon request.
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Remark OA.6. The expression for Uε in (OA.15) can be derived in closed form. In particular,

Raponi, Robotti, and Zaffaroni (2020) established that the T 2 × T 2 matrix Uε has the following

form

Uε =



U11 · · · U1t · · · U1T

...
. . .

...
...

...

Ut1 · · · Utt · · · UtT

...
...

...
. . .

...

UT1 · · · UTt · · · UTT


.

Each block of Uε is a T × T matrix. The blocks along the main diagonal, denoted by Utt, t =

1, 2, . . . , T , are themselves diagonal matrixes with (κ4 + 2σ4) in the (t, t)-th position and σ4 in

the (s, s) position for every s 6= t. The blocks outside the main diagonal, denoted by Uts, s, t =

1, 2, . . . , T with s 6= t, are all made of zeros except for the (s, t)-th position that contains σ4; that

is,

↓
t-th column

↓
t-th column

Utt =→
t-th
row



σ4 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · σ4 0 · · · · · · 0
0 · · · 0 (κ4 + 2σ4) 0 · · · 0
0 · · · · · · 0 σ4 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 σ4


, Uts = →

s-th
row



0 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 · · · · · · 0
0 · · · 0 σ4 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 0


.

Assumption OA.7 (moments and CLT of anomalies). Define the Kz(T−1)2×1 vector ui ≡ εi⊗zi.

(i)

Z′1N
N
→p (µz ⊗ 1T−1) ≡ µz,T−1

for a finite Kz×1 vector µz =
(
µ

(1)
z , . . . , µ

(Kz)
z

)′
≡ limN→∞

1
N

∑N
i=1µzi , setting µzi ≡ E[zi,s].
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(ii)

Z′Z

N
→p ΣZ,

for a finite Kz(T−1)×Kz(T−1) matrix ΣZ, such that J′ΣZJ > 0 and J′t−1ΣZJt−1 > 0,

for every 2 ≤ t ≤ T .

(iii)

Z′B

N
→p ΣZB,

for a finite Kz(T − 1)×Kf matrix ΣZB.

(iv) Setting µui ≡ E[ui],

1

N

N∑
i=1

µui = o

(
1√
N

)
.

(v) Setting Σu,ij ≡ Cov[ui,uj ], for i, j = 1, ..., N ,

1

N

N∑
i=1

Σu,ii → ΣU ≡ (σ2IT−1 ⊗ΣZ) and
N∑

i,j=1

Σu,ij1i 6=j = o(N).

(vi) For any i, j = 1, ..., N ,

Cov
[
zi,t, ε

′
j ⊗ ε′j

]
= 0Kz×(T−1)2 , Cov

[
εi, ε

′
j ⊗ (uj − E[uj ])

′ ] = 0T−1×Kz(T−1)3 .

(vii)

1√
N

N∑
i=1

(ui − µui)→d N
(
0Kz(T−1)2 ,ΣU

)
.

(viii) Setting Σuε,ij ≡ Cov
[
εi ⊗ εi,u′j

]
,

1

N

N∑
i=1

Σuε,ii → Σuε = 0(T−1)2×Kz(T−1)2 and
1

N

N∑
i,j=1

Σuε,ij → 0(T−1)2×Kz(T−1)2 .

(ix)

1

N2

N∑
i,j=1

Cov
[
ui ⊗ ui,u′j ⊗ u′j

]
→ 0K2

z (T−1)4×K2
z (T−1)4 .
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(x) Let PZ̃i
= Z̃i(Z̃

′
iZ̃i)

−1Z̃′i, with its generic (t, s) element denoted by pi,ts, for t, s = 1, ..., T −1,

where Z̃i =M1T−1Zi. Then, for every 1 ≤ t+ 1, s+ 1, va, ua ≤ (T − 1), with a = 1, ..., 4, the

following hold:

(x.1)
1

N

N∑
i=1

PZ̃i
→p PZ̃ , for a finite matrix PZ̃ ,

(x.2)
1

N

N∑
i=1

(PZ̃i
�PZ̃i

)→p P
(2)

Z̃
, for a finite matrix P

(2)

Z̃
,

(x.3)
1

N

N∑
i=1

PZ̃i
(εiε

′
i − σ2

i IT−1) = PZ̃

1

N

N∑
i=1

(εiε
′
i − σ2

i IT−1) + op

(
1√
N

)
,

(x.4)
1

N2

N∑
i,j=1

κ4

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

pj,s−1va ,

4∏
a=1

εi,ua+1,

4∏
a=1

εj,va+1

]
= o(1),

(x.5)
1

N2

N∑
i,j=1

κ3

[
4∏

a=1

pi,t−1ua ,
4∏

a=1

pj,s−1va ,
4∏

a=1

εi,ua+1

]
= o(1),

(x.6)
1

N2

N∑
i,j=1

κ3

[
4∏

a=1

pi,t−1ua ,
4∏

a=1

εi,ua+1,
4∏

a=1

εj,va+1

]
= o(1),

(x.7)
1

N2

N∑
i,j=1

Cov

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

εj,va+1

]
= o(1),

(x.8)
1

N2

N∑
i,j=1

Cov [pj,su1pi,tv1 , εi,t+1εj,s+1εiu1+1εjv1+1] = o(1),

(x.9)
1

N

N∑
i=1

Cov

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

εi,va+1

]
= o(1).

where κ3[·, ·, ·] and κ4[·, ·, ·, ·] denote the mixed cumulants of order 3 and 4, respectively.

(xi) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κph,i1i2...ih | = o (N) , (OA.17)

for at least one ij (2 ≤ j ≤ h) different from i1, where κph,i1,i2...ih is the mixed cumulant in the

{pi1,t1−1u1 ,pi2,t−21u2 , · · · ,pih,th−1uh , } of order h, for every 2 ≤ t1, · · · , th, u1, · · · , uh ≤ T .

Remark OA.7. By Assumption OA.7 (iv),

Z′ε′

N
→p ΣZε = 0Kz(T−1)×(T−1).

12



Moreover, Assumption OA.7 (vii) implies

√
Nvec

(
Z′ε′

N

)
=
√
N

(
1

N

N∑
i=1

(εi ⊗ zi)

)
→d N

(
0Kz(T−1)2 ,ΣU

)
.

Remark OA.8. Notice that, using our assumptions, 1
N Z̄′1N = 1

NJ
′Z′1N →p µz, and also

1
NJ
′
t−1Z

′1N →p µz. Clearly the two estimators have the same limiting behavior, with the former

being be a more efficient estimator for µz.

Remark OA.9. Assumption OA.7 imposes some basic regularity conditions on the behavior of the

matrix Z, and controls for the degree of cross-sectional dependence between anomalies and excess

returns, which slowly dissipates as N increases.

To get a sense of the degree of cross-sectional dependence allowed by our theory, we use a Monte

Carlo experiment, where we consider the same data generating process described in the simulation

study in Section OA.7, with the error term following the process in (OA.87). We consider the

simplest case of one anomaly (Kz = 1) and report the sample cross-sectional correlation (both

in levels and in absolute terms) between returns’ innovation (εit) and anomaly’ innovation (ηit),

averaged across the time-series dimension (either T = 36 and T = 72), for different values of

the parameter δ in (OA.87) - which controls the strength of the cross-sectional correlation between

shocks and anomalies. Specifically, we consider the following two measures of (average) sample

correlation between anomalies and asset returns:

ρ(δ,N) ≡ 1

T

T∑
t=1

 ∑N
i=1 εitηit(∑N

i=1 ε
2
it

) 1
2
(∑N

i=1 η
2
it

) 1
2

 and τ(δ,N) ≡ 1

T

T∑
t=1

∣∣∣∣∣∣∣
∑N

i=1 εitηit(∑N
i=1 ε

2
it

) 1
2
(∑N

i=1 η
2
it

) 1
2

∣∣∣∣∣∣∣ ,
(OA.18)

and report the results in Table I, for δ = {0, 0.10, 0.25, 0.50, 0.75, 1.00}, and for T = 36 (panel

A) and T = 72 (panel B). Remember that, by (OA.87), the degree of cross-correlation is inversely

related to δ, where our theory requires δ > 0 for consistency of the premia estimators, and δ ≥ 0.5

for their asymptotic normality. Table I confirms that our setup admits a sizable cross-sectional

dependence between anomalies and returns. For example, when δ = 0.50, then both ρ and τ are

0.67 when N=100 and 0.37 when N=500, which represents a significant degree of correlation even

when N is sufficiently large. As expected, the strength of the correlation vanishes when both N and

δ increases.
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Table I: Conditional average cross-correlations between anomalies and asset returns.

Panel A: T = 36
ρ(δ,N) τ(δ,N)

δ 0.00 0.10 0.25 0.50 0.75 1 .0 0.00 0.10 0.25 0.50 0.75 1.00

N
10 0.993 0.990 0.980 0.941 0.835 0.631 0.993 0.990 0.980 0.941 0.835 0.642
100 0.993 0.984 0.942 0.669 0.279 0.097 0.993 0.984 0.942 0.669 0.279 0.121
500 0.993 0.978 0.883 0.369 0.083 0.017 0.993 0.978 0.883 0.369 0.085 0.041
1000 0.993 0.976 0.848 0.282 0.060 0.019 0.993 0.976 0.848 0.282 0.060 0.028

Panel B: T = 72
ρ(δ,N) τ(δ,N)

δ 0.00 0.10 0.25 0.50 0.75 1.00 0.00 0.10 0.25 0.50 0.75 1.00

N
10 0.993 0.989 0.979 0.939 0.838 0.656 0.993 0.989 0.979 0.939 0.838 0.656
100 0.993 0.984 0.942 0.663 0.266 0.082 0.993 0.984 0.942 0.663 0.266 0.102
500 0.993 0.979 0.885 0.372 0.083 0.016 0.993 0.979 0.885 0.372 0.084 0.036
1000 0.994 0.976 0.849 0.273 0.046 0.007 0.994 0.976 0.849 0.273 0.052 0.029
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Remark OA.10. Primitive conditions for Assumption OA.7 can be readily obtained. For instance,

one can assume that the Kz × 1 vector of anomalies (zit) follow a linear process, such as:

zit = µiz +
∞∑
k=0

∆ikηi,t−k, (OA.19)

with innovations ηi,t ∼ (0Kz ,Ση) i.i.d. across time, and such that N−1
∑N

i=1(
∑∞

k=0 ‖ ∆ik ‖) ≤

C <∞,∆i0 = IKz, N−1
∑N

i=1 ‖ µiz ‖≤ C <∞ and E(ηi,tε
′
t) 6= 0Kz×N for every 1 ≤ i ≤ N .

The specification in (OA.19) represents a common assumption in time-series econometrics, in

which case the matrices ΣZZ and ΣZB will be constant, with their (a, b) entries being a general

function of (a− b).7 Moreover, one can also easily allow for cyclical and trending behaviors (either

deterministic or stochastic) for the zit in (OA.19). This could be relevant, for instance, when

considering firms’ characteristics such as value and size, which typically display significant time-

variation. In this case, the limit of the cross-sectional averages involving the anomaly variables

might not be constant across time, a situation that our methodology can handle but at the cost of a

much heavier notation and formalism.

OA.2.1 Additional assumptions required for the WLS estimation

In this Section, we introduce additional assumptions that are required for the validity of the WLS

estimation described in Section 6. Before stating the main assumptions, it is useful to introduce

some preliminary notation. In the following, we denote by wi. ≡ (wi,1, · · · ,wi,T−1)′ the (T − 1)× 1

vector of weights specific for the i-th asset, and by w.t−1 ≡ (w1,t−1, · · · ,wN,t−1)′ the N × 1 vector

of weights at time (t − 1), for every 2 ≤ t ≤ T , with the N × T matrix W = (w.1, · · · ,w.T−1) =

(w1., · · · ,w′N.).

Assumption OA.8. (CSR WLS weights)

7One can further generalize (OA.19), allowing for a (dynamic) factor structure such as zit = µiz+
∑∞
k=0 ∆ikηi,t−k+∑∞

k=0 ∆†ikηt−k, for an i.i.d sequence ηt = (η1t , · · · , ηKz
t )′ ∼ (0Kz ,Ση†) of common shocks. However, in this case,

the matrices ΣZZ and ΣZB could have a random component because they depend on terms like ηkt η
k′
s , for every

k, k′ = 1, ...,Kz and t, s = 1, ..., T − 1, with their generic (t, s) element not being a function of (t− s) only. However,
despite this lack of stationarity, our results continue to hold (conditionally on the ηt) thanks to the fixed T assumption.
The asymptotic distribution of the estimators will be mixed-normal, implying that the test statistics will possess the
conventional chi-square distribution and all the testing procedures will still be feasible. Details are available upon
request.
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(i)
1′NWt−11N

N
→p 1.

(ii) For any real number h > 1 then,

1′NWh
t−11N

N
→p µ

h
w,t−1

(iii)

1

N

N∑
i=1

wi.w
′
i. →p ΣW.

Remark OA.11. By Assumption OA.8, granularity follows since N−11′NWt−11N →p 1 by As-

sumption OA.8(i) and N−21′NW2
t−11N = O(N−1) = o(1) by Assumption OA.8(ii).

Remark OA.12. An important example of commonly-used weights satisfying Assumption OA.8 is

when

wi,t =
Nw$

i,t∑N
j=1 w$

j,t

, (OA.20)

where w$
i,t represents the dollar-value of the market capitalization of stock i at time t. Notice that

the multiplication by N in the numerator of (OA.20) is just a normalization factor implied by

Assumption OA.8(i), which requires that the sample average of the weights goes to 1 as N goes to

infinity.

Assumption OA.9. (Weighted loadings) Let Wt−1 satisfy Assumption OA.8 and let the loadings

βi be a non-random sequence. As N →∞, then

1

N
B′Wt−11N →p µβ and

1

N
B′Wt−1B→p Σβ, (OA.21)

such that

ΣX ≡

[
1 µ′β

µβ Σβ

]
> 0. (OA.22)

Remark OA.13. Assumption OA.9 generalizes Assumption OA.3 to weighted averages. Notice

that, due to the granularity assumption, the weighted averages in (OA.21) achieve the same limits

of un-weighted counterparts in Assumption OA.3.
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Assumption OA.10. (Weighted cross-sectional moments of returns’ innovations) As N →∞,

(i) Let 0 < σ2 <∞.Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1

(
σ2
i − σ2

)
= op

(
1√
N

)
, (OA.23)

(ii)
N∑

i,j=1

wi,t−1 | σij | 1{i 6=j} = op (N) . (OA.24)

(iii) Let 0 < µ4 <∞, and let µ4i = E[ε4it]. Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1µ4i →p µ4, (OA.25)

(iv) Let 0 < σ4 <∞. Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1σ
4
i →p σ4, (OA.26)

(v) Let κ3(a, b, c) denote the third-order cumulant of the random variables a, b, and c. Then,

κ3[εi,t, εj,s,wj,h] = 0, and κ3[εi,t, εj,s, zj,h] = 0Kz . (OA.27)

(vi) Let κ4,iiii = κ4[εi,t, εi,t, εi,t, εi,t] denote the fourth-order cumulant of the asset-specific error

{εi,t, εi,t, εi,t, εi,t}. Then, for some 0 ≤ |κ4| <∞ and for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1κ4,iiii →p κ4. (OA.28)

(vii) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,wi1,t−1i2...ih | = o (N) , (OA.29)

and

sup
i1

N∑
i2,...,ih=1

|κhwi1,t−1,zi2,r,i3...ih
| = o (N) , (OA.30)

for at least one ij (2 ≤ j ≤ h) different from i1, where κh,wi1,t−1i2...ih is the mixed cumulant in

the {wi1,t−1, εi2,s, · · · , εih,s} of order h, and κh,wi1,t−1,zi2,r,i3...ih
is the mixed cumulant in the

{wi1,t−1, zi2,r, εi3,s, · · · , εih,s} of order h.
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Remark OA.14. Assumption OA.10 extends Assumption OA.5 to the case of weighted averages.

Notice that, due to the granularity assumption in Assumption OA.8, all the weighted averages in

(OA.23)–(OA.30) the same limits of the corresponding un-weighted averages in Assumption OA.5.

Assumption OA.11. (Weighted moments and CLT of anomalies) We define the (T − 1)2 × 1

vector vi ≡ (εi ⊗wi) and the corresponding N × (T − 1)2 matrix V ≡ (v1, · · · ,vN )′, such that

E[vi] ≡ µvi <∞, and Σv,ij ≡ Cov [vi,vj ].

(i)

ε (Wt−1 − E[Wt−1]) ε′

N
→p 0(T−1)×(T−1).

(ii)

Z′t−1Wt−11N

N
→p µz,t−1 and

Z′t−1Wt−1Zt−1

N
→p ΣZ,t−1.

(iii) Let ΣZW be a finite Kz(T − 1)× (T − 1) matrix. Then,

Z′W

N
→p ΣZW.

(iv)
1

N
(Zt−1 − E[Zt−1])′ (Wt−1 − E[Wt−1]) ε′ →p 0Kz×(T−1).

(v)

1

N
(Zt−1 − E[Zt−1])′Wt−1ε

′ − 1

N
(Zt−1 − E[Zt−1])′ ε′ = op

(
N−

1
2

)
.

(vi)

X′M1NV

N
= op

(
N−

1
2

)
, and

Z′M1NV

N
= op

(
N−

1
2

)
.

(vii)

1

N

N∑
i=1

Σv,ii → ΣV ≡ σ2IT−1 ⊗ΣW, and
N∑
i=1

Σv,ij1i 6=j = o(N)
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(viii)

1√
N

N∑
i=1

(vi − µvi)→d N
(
0(T−1)2 ,ΣV

)
and

1

N

N∑
i=1

µvi = o
(
N−

1
2

)
.

(ix)

1√
N

N∑
i=1

(zi − µzi)→d N(0Kz(T−1),ΣZZ) and
1

N

N∑
i=1

(µzi − µz) = o(N−
1
2 ).

Remark OA.15. Assumption OA.11 states the limit of several sample moments that involve the

anomalies, the weighs and the asset-specific errors, together with their mutual correlation across

time. Specifically, we assume that each asset-specific error is uncorrelated with past values of both

anomaly variables and weights, but each εs could be potentially correlated with contemporary or

future values of Zt and Wv, whenever s ≤ t or s ≤ v. This implies that, despite the granularity

assumption, the limit of certain quantities will depend on the weights, as they are allowed to be

correlated with both anomalies and error-specific components.

Remark OA.16. To simplify the analysis, we also impose zero mixed third-moment conditions.

This sometimes involves de-meaning the anomaly variables which, in general, could not have zero

mean. The main moment conditions are summarized in the following assumption.

Remark OA.17. Assumption (ix) is a strengthening of our previous assumptions required by the

added difficulties associated with the weighted estimator.

OA.2.2 Additional assumptions required for estimation under model misspecification

Assumption OA.12. (mixed-moments of pricing errors)

(i)
1

N
εmt−1 →p

[
θt−1,m

0T−t+1

]
,

with θt−1,m ≡ (θt−3,m, θt−4,m, . . . , θ0,m)′, defined as, for every 2 ≤ s, t ≤ T ,

1

N

N∑
i=1

εi,smi,t−1 →p θt−1−s,m, such that θu,m = 0 for u < 0.

(ii)
1

N
m′t−1mt−1 →p σt−1mm.
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(iii)

1

N

N∑
i=1

PD̃i
εimi,t−1 →p 0T−1.

Remark OA.18. Assumption (OA.12)-(i) is very mild, as the zeros arise only as a consequence

of the temporal iid-ness of the εi,t, and (OA.12)-(ii) is ruling out explosive limiting behaviour of

the average of the squared pricing errors. Finally, (OA.12)-(iii) simplifies the formulae and is

strengthening the notion that the loadings to the omitted risk factors and the omitted anomalies are

cross-sectionally unrelated to the anomalies and to the loadings of the risk factors of the candidate

model.

OA.2.3 Additional assumptions required for the cross-sectional R-squared test

In this Section we introduce additional assumptions that are required to derive the R-squared test

described in Section 8.

Assumption OA.13. (i)

1

N

N∑
i=1

βi − µβ = o
(
N−

1
2

)
and

1

N

N∑
i=1

βiβ
′
i −Σβ = o

(
N−

1
2

)
.

(ii)

1√
N

N∑
i=1

((zi ⊗ zi)− vec(ΣZ))→d N(0K2
z
,UZ), with

1

N

N∑
i=1

E [(zi ⊗ zi)− vec(ΣZ)] = o
(
N−

1
2

)
,

1

N

N∑
i=1

E [(zi ⊗ zi)− vec(ΣZ)] [(zi ⊗ zi)− vec(ΣZ)]′ → UZ,

N∑
i,j=1
i6=j

E [(zi ⊗ zi)− vec(ΣZ)] [(zj ⊗ zj)− vec(ΣZ)]′ = o(N), and
1

N

N∑
i,j=1

Cov
[
(zi ⊗ zi), z

′
j

]
→ Σz⊗z.

(iii)
√
N

(
Z′1N
N
− µz,T−1

)
→d N

(
0Kz(T−1),ΣZ − µz,T−1µ

′
z,T−1

)
.

(iv)

1

N

N∑
i,j=1

Cov
(
(zi ⊗ zi), (ε

′
j ⊗ ε′j)

)
→ ΣZ⊗ε = 0((T−1)Kz)2×(T−1)2 .
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(v)

1

N

N∑
i,j=1

Cov
(
(zi ⊗ zi),u

′
j

)
→ ΣZU = 0((T−1)Kz)2×(T−1)2Kz

.

OA.3 Preliminary Lemmas

In this section, we establish several results which are required to derive the asymptotic results of

the new CSR OLS estimators. All the results below hold as N →∞.

Lemma 1 ( Raponi, Robotti, and Zaffaroni (2020)). Under Assumptions OA.1–OA.7,

(i)

σ̂2 − σ2 = Op

(
1√
N

)
.

(ii)

X̂′X̂ = Op(N).

(iii)

Σ̂X →p ΣX + Λ1 .

(iv)

(X̂−X)′(X̂−X)

N
→p Λ1 .

(v)

X′εt = Op

(√
N
)
, X′ε̄ = Op

(√
N
)
.

(vi)

(X̂−X)′XΓf,t = Op

(√
N
)
, (X̂−X)′XΓ̄f = Op

(√
N
)
.

(vii)

(X̂−X)′ε̄ = Op

(√
N
)
.

(viii)

(X̂−X)′εt =

[
0

−σ2P′ıt−1,T−1

]
+Op

(√
N
)
.
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(ix) When the identification assumption κ4 = 0 holds, then

σ̂4 →p σ4.

where σ̂4 is defined in Theorem 2.

Proof. All these results are already established - or are immediate extensions - of Lemmas 1–7 in

Raponi, Robotti, and Zaffaroni (2020). �

Lemma 2. Under Assumptions OA.1–OA.7,

(i)
Z̄′Z̄

N
= J′

Z′Z

N
J→p J

′ΣZJ.

(ii)

Z̄′X̂

N
→p

[
µz,J

′ΣZB

]
≡ ΣZX.

(iii)
Z′t−1Zt−1

N
= J′t−1

Z′Z

N
Jt−1 →p J

′
t−1ΣZJt−1.

(iv)

Z′t−1X̂

N
→p

[
µz,J

′
t−1ΣZB

]
≡ ΣZX,t−1.

Proof. Part (i) follows immediately from Assumption OA.7(ii), once one recognizes that ZJ = Z̄.

To prove part (ii), first notice that the first column of the matrix Z̄′X̂
N coincides with Z̄′1N

N , which

converges to µz,T−1, by Assumption OA.7(i). The remaining Kf columns of the matrix satisfy:

Z̄′B̂

N
=

Z̄′B

N
+

Z̄′ε′

N
P→p J

′ΣZB,

by Assumptions OA.7(iii) and OA.6(i). Parts (iii) and (iv) follow precisely from parts (i) and (ii),

by replacing J with Jt−1. �

Lemma 3. Under Assumptions OA.1–OA.7, (i)

1

N
X̂′
(
ε̄+ (X− X̂)Γ̄f

)
→p −Λ1Γ̄f . (OA.31)
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(ii)

1

N
Z̄′
(
ε̄+ (X− X̂)Γ̄f

)
→p 0Kz . (OA.32)

(iii)

1

N
X̂′
(
εt + (X− X̂)Γf,t−1

)
→p −Λ1Γf,t−1 + Λ2,t−1. (OA.33)

(iv)

1

N
Z′t−1

(
εt + (X− X̂)Γf,t−1

)
→p 0Kz . (OA.34)

Proof. Parts (i) and (iii) follow immediately by Lemma 1, where in part (iii) we set Λ2,t−1 ≡[
0

−σ2P′ıt−1,T−1

]
. �

OA.3.1 Additional Lemmas required for WLS Estimation

This section establishes several preliminary results which are needed to derive the asymptotic results

of the WLS OLS estimator described in Section 6. All the results below hold as N →∞.

Lemma 4. Under Assumptions OA.1–OA.7 and OA.8-OA.11,

(i)

εWt−11N
N

→p 0T−1.

(ii)

εWt−1B

N
→p 0(T−1)×Kf

(iii)

B̂′Wt−1B̂

N
→p Σβ + σ2P′P.

(iv)

εWt−1ε
′

N
→p σ

2IT−1.
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Proof. The results in parts (i) and (ii) follow from Assumptions OA.8-OA.11, since

εWt−11N
N

=
1

N

N∑
i=1

εiwi,t−1 =
1

N

N∑
i=1

εi (wi,t−1 − E[wi,t−1]) +
1

N

N∑
i=1

εiE[wi,t−1] + op(1)→p 0T−1,

and, by independence between εi and βi,

εWt−1B

N
=

1

N

N∑
i=1

εiwi,t−1β
′
i

=
1

N

N∑
i=1

εiwi,t−1
1

N

N∑
i=1

β′i + op(1)→p 0(T−1)×Kf
.

To prove part (iii), notice that

B̂′Wt−1B̂ = B′Wt−1B + (B̂−B)′Wt−1(B̂−B) + (B̂−B)′Wt−1B + B′Wt−1(B̂−B).

By Assumption OA.9, N−1B′Wt−1B→p Σβ and, using part (i) and (ii),

(B̂−B)′Wt−1B

N
= P′

1

N

N∑
i=1

wi,t−1εiβ
′
i →p 0Kf×Kf

.

Finally, using the same arguments

(B̂−B)′Wt−1(B̂−B)

N
=

1

N
P′

N∑
i=1

wi,t−1εiε
′
iP→p σ

2P′P.

�

Lemma 5. Under Assumptions OA.1–OA.7 and OA.8-OA.11,

(i)

Z′t−1Wt−1B

N
→p µz,t−1µ

′
β.

(ii)

Z′t−1Wt−1εt

N
→p 0Kz .

(ii)

Z′t−1Wt−1ε
′

N
→p 0Kz×(T−1).
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Proof. Part (i) follows immediately by taking into account the non-randomness of the βi

Z′t−1Wt−1B

N
=

1

N

N∑
i=1

zi,t−1wi,t−1β
′
i =

1

N

N∑
i=1

wi,t−1zi,t−1
1

N

N∑
i=1

β′i + op(1)

→p µz,t−1µ
′
β,

by Assumptions OA.9 and OA.11. Using the same arguments and by Lemma 4, part (ii) follows

since

Z′t−1Wt−1εt

N
=

1

N

N∑
i=1

zi,t−1wi,t−1ε
′
i =

1

N

N∑
i=1

zi,t−1wi,t−1
1

N

N∑
i=1

ε′i + op(1)→p 0Kz .

For part (iii), notice that, by Assumption OA.11,

Z′t−1Wt−1ε
′

N
=

1

N

N∑
i=1

wi,t−1zi,t−1ε
′
i

=
1

N

N∑
i=1

(wi,t−1 − E[wi,t−1] + E[wi,t−1]) (zi,t−1 − E[zi,t−1] + E[zi,t−1]) ε′i

=
1

N

N∑
i=1

E[wi,t−1]E[zi,t−1]ε′i +
1

N

N∑
i=1

(wi,t−1 − E[wi,t−1]) E[zi,t−1]ε′i

+
1

N

N∑
i=1

E[wi,t−1] (zi,t−1 − E[zi,t−1]) ε′i +
1

N

N∑
i=1

(wi,t−1 − E[wi,t−1]) (zi,t−1 − E[zi,t−1]) ε′i

=
1

N

N∑
i=1

(wi,t−1 − E[wi,t−1]) E[zi,t−1]ε′i +
1

N

N∑
i=1

E[wi,t−1] (zi,t−1 − E[zi,t−1]) ε′i + op(1)

→p 0Kz×(T−1)

�

Lemma 6. Under Assumptions OA.1–OA.7 and OA.8-OA.11,

X̂′Wt−1εt
N

→p σ
2

[
0

P′ıt,T−1

]
.

Proof. Let us rewrite

X̂′Wt−1εt
N

=
X′Wt−1εt

N
+

(X̂−X)′Wt−1εt
N

.
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Now, by Lemma 4, N−1X′Wt−1εt →p 0Kf+1. Moreover,

(X̂−X)′Wt−1εt
N

=
(X̂−X)′ (Wt−1 − E[Wt−1] + E[Wt−1]) εt

N

=
(X̂−X)′E[Wt−1]εt

N
+ op(1)→p σ

2

[
0

P′ıt,T−1

]
.

�

Lemma 7. Under Assumptions OA.1–OA.7 and OA.8-OA.11, when κ4 = 0, for every 2 ≤ t ≤ T ,

σ̂
2(w)
t−1 →p σ

2 and σ̂
(w)
4,t−1 →p σ4,

setting σ̂
(w)
4,t−1 ≡ N−1

∑T
s=2

∑N
i=1 wi,t−1ε̂

4
i,s/(3tr

(
M

(2)

D̃

)
),

Proof. The result can be easily obtained by following the corresponding results in Raponi, Robotti,

and Zaffaroni (2020) (see their Lemmas 1 and 6), by replacing simple averages (e.g. εε′) with the

corresponding weighted averages (e.g., εWt−1ε
′) and using the Assumptions OA.8–OA.11 �

OA.3.2 Additional Lemmas required for OLS Estimation under model misspecifica-
tion

Lemma 8. Under Assumptions OA.1–OA.7 and OA.12,

θ̂t−1,m ≡ St−1(
1

N
ε̂′m̂t−1 − σ̂2MD̃ιt−1,T−1)→p θt−1,m,

setting m̂t−1 ≡ Rt−(X̂,Zt−1)(Γ̂
∗(m)′
f,t−1 , γ̂

∗(m)′
z,t−1 )′ and recalling M

(−1)
D,t−1 = M−1

11 (It−2,0t−2×T−t+1) where

M11 is the top-left block of size (t− 2)× (t− 2) of the matrix MD.
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Proof. For every 2 ≤ s ≤ t− 1,

1

N

N∑
i=1

ε̂ism̂i,t−1

=
1

N

N∑
i=1

ι′s−1,T−1MD̃i
εi

(
mi,t−1 + (x′i − x̂′i)Γ̃f,t−1 + x̂′i(Γ̃f,t−1 − Γ̂

∗(m)
f,t−1) + z′i,t−1(γ̃z,t−1 − ˆ̃γ

∗(m)
z,t−1) + εi,t

)
=

1

N

N∑
i=1

ι′s−1,T−1MD̃i
εi

(
mi,t−1 + εi,t

)
+Op(N

− 1
2 ) =

1

N

N∑
i=1

ι′s−1,T−1(MD −PZ̃i
)εi

(
mi,t−1 + εi,t

)
+Op(N

− 1
2 )

=
1

N
ι′s−1,T−1MDε

(
mt−1 + εt

)
− 1

N

N∑
i=1

ι′s−1,T−1PZ̃i
εi

(
mi,t−1 + εi,t

)
+Op(N

− 1
2 )

→p ι
′
s−1,T−1(MD

[
θt−1,m

0T−t+1

]
+ σ2

MDιt−1,T−1),

as N−1
∑N

i=1MD̃i
εi(x

′
i − x̂′i)Γt−1 = Op(N

− 1
2 ), given MD̃i

P = 0T−1×Kf , recalling that MD̃i
=

MD − PZ̃i
, implying N−1

∑N
i=1MD̃i

εimi,t−1 = MD(N−1
∑N

i=1 εimi,t−1) + op(1). Therefore, re-

calling MD =

[
M11 M12

M′
12 M22

]
, where M11 is t− 2× t− 2,


1
N

∑N
i=1 ε̂i,2m̂i,t−1

1
N

∑N
i=1 ε̂i,3m̂i,t−1

...
1
N

∑N
i=1 ε̂i,t−1m̂i,t−1

→p= M11θt−1,m + σ2(It−2,0t−2×T−t+1)MDιt−1,T−1).

Reorganizing terms, assuming without loss of generality that M11 is nonsingular, as D is full rank

(for t < T −Kf ), yields

θ̂t−1,m ≡M−1
11

[(
1
N

∑N
i=1 ε̂i,2m̂i,t−1

1
N

∑N
i=1 ε̂i,3m̂i,t−1

...
1
N

∑N
i=1 ε̂i,t−1m̂i,t−1

)− σ̂2(It−2,0t−2×T−t+1)MDιt−1,T−1

]

= St−1(
1

N
ε̂m̂t−1 − σ̂2MDιt−1,T−1)→p θt−1,m.

QED

Lemma 9. Under Assumptions OA.1–OA.7 and OA.12,

1′Nm̂t−1

N
→p 0,

σ̂t−1,mm ≡
m̂′t−1m̂t−1

N
− σ̂2Q̂′t−1Q̂t−1 + 2δ̂

∗(m)′
f,t−1 P′

[
θ̂t−1,m

0T−t+1

]
→p σt−1,mm.
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Proof. Let us first establish the second statement. Consider

m̂′t−1m̂t−1 = m′t−1mt−1 + ε′tεt + Γ̃′f,t−1(X− X̂)′(X− X̂)Γ̃f,t−1 + (Γ̃f,t−1 − Γ̂
∗(m)
f,t−1)′X̂′X̂(Γ̃f,t−1 − Γ̂

∗(m)
f,t−1)

+(γ̃z,t−1 − γ̂m∗z,t−1)′Z′t−1Zt−1(γ̃z,t−1 − γ̂m∗z,t−1) + 2m′t−1εt + 2m′t−1(X− X̂)Γ̃t−1 + 2m′t−1X̂(Γ̃t−1 − Γ̂m∗t−1)

+2m′t−1Zt−1(γ̃z,t−1 − γ̂∗(m)
z,t−1) + 2ε′t(X− X̂)Γ̃f,t−1 + 2ε′tX̂(Γ̃f,t−1 − Γ̂

∗(m)
f,t−1) + 2ε′tZt−1(γ̃z,t−1 − γ̂∗(m)

z,t−1)

+2Γ̃′f,t−1(X− X̂)′X̂(Γ̃f,t−1 − Γ̂
∗(m)
f,t−1) + 2Γ̃′f,t−1(X− X̂)′Zt−1(γ̃z,t−1 − γ̂∗(m)

z,t−1)

+2(Γ̃f,t−1 − Γ̂
∗(m)
f,t−1)′X̂′Zt−1(γ̃z,t−1 − γ̂∗(m)

z,t−1)

= m′t−1mt−1 + ε′tεt + Γ̃′f,t−1(X− X̂)′(X− X̂)Γ̃f,t−1 + 2m′t−1(X− X̂)Γ̃f,t−1 + 2ε′t(X− X̂)Γ̃f,t−1 +Op(N
1
2 ).

The result then follows, noticing that

σ̂2 − ε
′
tεt
N
→p 0,

σ̂2δ̂
∗(m)′
f,t−1 P′Pδ̂

∗(m)
f,t−1 − Γ̃′f,t−1

(X− X̂)′(X− X̂)

N
Γ̃f,t−1 →p 0,

2(θ̂′t−1,m,0
′
T−t+1)Pδ̂

∗(m)
f,t−1 − 2

m′t−1(X− X̂)

N
Γ̃f,t−1 →p 0 and

2σ̂2ι′t−1,T−1Pδ̂
∗(m)
f,t−1 − 2

ε′t(X− X̂)

N
Γ̃f,t−1 →p 0,

and collecting terms, recognizing that Q̂′t−1Q̂t−1 = 1 + δ̂
∗(m)′
f,t−1 P′Pδ̂

∗(m)
f,t−1 − 2ι′t−1,T−1Pδ̂

∗(m)
f,t−1.

The first statement easily follows from 1′Nm̂t−1 = 1′Nmt−1 + 1′Nεt + 1′N (X − X̂)Γ̃f,t−1 +

1′NX̂(Γ̃f,t−1 − Γ̂
∗(m)
f,t−1) + 1′NZt−1(γ̃z,t−1 − γ̂∗(m)

z,t−1) = 1′Nmt−1 +Op(N
1
2 ). QED
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OA.4 Proofs of theorems

Proof of Theorem 1. First, let us define the quantities that make the asymptotic covariance

matrix of the estimator:

Lt−1 ≡

[
ΣX Σ′ZX,t−1

ΣZX,t−1 J
′
t−1ΣZJt−1

]
, and Ot−1 ≡

[
Ut−1 σ2Gt−1H

′
t−1

σ2Ht−1G
′
t−1 Ht−1ΣUH′t−1

]
, (OA.35)

with Lt−1 is assumed to be positive definite, Ut−1 ≡ σ2Q′t−1Qt−1ΣX +

[
0 0′Kf

0Kf
V′t−1UεVt−1

]
,

N−1
∑N

i=1MD̃i
→pMD̃, Z′t−1X̂/N →p ΣZX,t−1, Vt−1 ≡ (Qt−1⊗P)−

(
vec(MD̃)/(T − 2−K)

)
Q′t−1P,

Gt−1 ≡
[
Qt−1 ⊗ µz,T−1, Qt−1 ⊗ΣZB

]′
, and Ht−1 ≡ Q′t−1⊗J′t−1, with Qt−1 ≡ ıt−1,T−1−Pδf,t−1,

and where ΣX, Uε, ΣZB, ΣZ, ΣU and µz,T−1 are defined in Assumptions OA.3, OA.6, and OA.7.

Starting from (31), we rewrite

[
Γ̂∗f,t−1

γ̂∗z,t−1

]
=

[
Γf,t−1

γz,t−1

]
+

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]−1

×

×

([
NΛ̂1

0Kz×(Kf+1)

]
Γf,t−1 +

[
X̂′

Z′t−1

](
εt + (X− X̂)Γf,t−1

)
−

[
NΛ̂2,t−1

0Kz

])
.(OA.36)

By Lemmas 1-3

Λ̂1Γf,t−1 +
1

N
X̂′
(
εt + (X− X̂)Γt−1

)
− Λ̂2,t−1 = Op

(
1√
N

)
, and that

1

N
Z′t−1

(
εt + (X− X̂)Γf,t−1

)
→p 0Kz

Moreover, by Lemmas 1 and 2, N−1

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]−1

= Op(1).

To prove part (ii), noticing that εt = ε′ıt−1,T−1, we get that
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1√
N

(
NΛ̂1Γf,t−1 + X̂′

(
εt + (X− X̂)Γf,t−1

)
−NΛ̂2,t−1

)
=

=

1′N ε
′

√
N

Qt−1

B′ε′√
N

Qt−1

+

 0

P ′ εε′√
N

Qt−1 +
√
Nσ̂2P′Pδf,t−1

+

[
0

σ̂2P′ıt−1,T−1

]
(OA.37)

=

1′N ε
′

√
N

Qt−1

B′ε′√
N

Qt−1

+

 0

P ′ εε′√
N

Qt−1 −
√
Nσ̂2P′Qt−1

 .
Moreover, we have that

1√
N

Z′t−1

(
εt + (X− X̂)Γf,t−1

)
=

Z′t−1ε
′

√
N

Qt−1 (OA.38)

Therefore, using (OA.37) and (OA.38) in (OA.36), it follows that

√
N

[
Γ̂∗f,t−1 − Γf,t−1

γ̂∗z,t−1 − γz,t−1

]
=

 X̂′X̂
N − Λ̂1

X̂′Zt−1

N

Z′t−1X̂

N

Z′t−1Zt−1

N

−1

×




1′N ε
′

√
N

Qt−1

B′ε′√
N

Qt−1

0Kz

+


0

P′ εε
′

√
N

Qt−1 −
√
Nσ̂2P′Qt−1

0Kz

+


0

0Kz

Z′t−1ε
′

√
N

Qt−1




=

 X̂′X̂
N − Λ̂1

X̂′Zt−1

N

Z′t−1X̂

N

Z′t−1Zt−1

N

−1

(I1 + I2 + I3) . (OA.39)

Now, by Lemmas 1(iv) and 2, we have that

1

N

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]
→p Lt−1. (OA.40)

Regarding the variances of the terms I1 and I2, under Assumption OA.6, we get

Var

1′N ε
′

√
N

Qt−1

B′ε′√
N

Qt−1

→p σ
2Q′t−1Qt−1ΣX, and (OA.41)
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Var

(
P′
εε′√
N

Qt−1 −
√
Nσ̂2P′Qt−1

)
→p V′t−1UεVt−1. (OA.42)

Notice also that, under Assumption OA.5, the two terms I1 and I2 are uncorrelated. Consider now

the term I3, and notice that zi,t ≡ J′tZ′ıi,N . Then, using the properties of the vec(·) operator,

recalling that ui ≡ εi ⊗ zi and Ht−1 ≡ Q′t−1 ⊗ J′t−1, it follows that

Z′t−1ε
′

√
N

Qt−1 =
1√
N

N∑
i=1

zi,t−1ε
′
iQt−1 =

1√
N

N∑
i=1

J
′
t−1Z

′ıi,Nε
′
iQt−1

=
1√
N

N∑
i=1

(
Q′t−1 ⊗ J′t−1

)
vec
(
Z′ıi,Nε

′
i

)
=

1√
N

N∑
i=1

(
Q′t−1 ⊗ J′t−1

)
(εi ⊗ zi)

=
1√
N

N∑
i=1

Ht−1ui. (OA.43)

Therefore, using (OA.43), and under Assumption OA.7(v), one obtains

Var

(
Z′t−1ε

′
√
N

Qt−1

)
= Ht−1

1

N

N∑
i,j=1

Σu,ijH
′
t−1 → Ht−1ΣUH′t−1 (OA.44)

Finally, let us consider the covariance terms of I3 with both I1 and I2. To derive the covariance

between I3 and I2, we establish

Cov

(
P′
εε′√
N

Qt−1 −
√
Nσ̂2P′Qt−1,Q

′
t−1

εZt−1√
N

)
=

= E

((Qt−1 ⊗P)−
vec(MD̃)

T − 2−K
Q′t−1P

)′
1

N

N∑
i,j=1

vec
(
εiε
′
i − σ2

i IT−1

)
u′jH

′
t−1

+ o(1)

= V′t−1

1

N

N∑
i,j=1

Σuε,ijH
′
t−1 → 0Kf×Kz

by Assumption OA.7(viii). Finally, to derive the Cov(I1, I
′
3), we need to calculate

Cov

1′N ε
′

√
N

Qt−1

B′ε′√
N

Qt−1

 ,Q′t−1

εZt−1√
N

 =
1

N

N∑
i,j=1

σij

(
Q′t−1 ⊗ E

[[
1

βi

]
z′j

])
H′t−1

→ σ2Gt−1H
′
t−1.
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by Assumption OA.7 and where we set Gt−1 ≡
[
Qt−1 ⊗ µz,T−1, Qt−1 ⊗ΣZB

]′ [
Qt−1 ⊗ µz,T−1, Qt−1 ⊗ΣZB

]′
.

Therefore, putting all the above results together, and recalling that Ut−1 ≡ σ2Q′t−1Qt−1ΣX +[
0 0′Kf

0Kf
V′t−1UεVt−1

]
, yield Ot−1, concluding the proof. �

Proof of Theorem 2. By Lemma 1 and Lemma 2(iii) and (iv), it follows that L̂t−1 →p Lt−1.

By part (i) of Theorem 1, then δ̂∗f,t−1 →p δf,t−1, implying that Q̂t−1 is a consistent estimator of

Qt−1. Moreover, as N →∞, MD̃ →pMD̃, µ̂T−1,z →p µT−1,z, Σ̂ZB →p ΣZB, and Z′Z/N →p ΣZ.

It follows that V̂t−1 →p Vt−1, Ĝt−1 →p Gt−1, and Ĥt−1 →p Ht−1. Finally, a consistent estimator

of Ût−1 requires a consistent estimate of the matrix Uε, which can be obtained using Lemma 1(ix).

This concludes the proof of Theorem 2. �

Proof of Theorem 3. First, let us define the quantities that make the asymptotic covari-

ance matrix of the estimator. Let µz ≡ limN→∞
1
N

∑N
i=1 E[zi,t], and µx ≡ (1,µ′β)′. Set λt−1 ≡

Y′t−1ΣVYt−1, with Yt−1 ≡ Qt−1⊗ ıt−1,T−1 and define St−1 ≡ µzY
′
t−1(σ2IT−1⊗Σ′ZW)H′t−1.Then,

set

O
(w)
t−1 ≡ λt−1

[
µxµ

′
x µxµ

′
z

µzµ
′
x µzµ

′
z

]
+ M

(w)
t−1 (OA.45)

with

M
(w)
t−1 ≡


0 0′Kf

0′Kz

0Kf
V′t−1UεVt−1 0Kf×Kz

0Kz 0Kz×Kf
Ht−1ΣUH′t−1 + St−1 + S′t−1



where Qt−1, Vt−1, and Ht−1 are defined in the proof to Theorem 1, ΣZW, ΣZ,t−1, ΣV, and µz,t−1

are defined in Assumption OA.11, and ΣX, Uε, and ΣU are defined in Assumptions OA.3, OA.6,

and OA.7.

Next, let us start the proof from the definition in (42) and rewrite
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Γ̂
∗(w)
f,t−1

γ̂
∗(w)
z,t−1

−
Γf,t−1

γz,t−1

 =

X̂′Wt−1X̂−NΛ̂
(w)
1,t−1 X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

−1

×

×

NΛ̂
(w)
1,t−1

0K+1

Γf,t−1 +

 X̂′Wt−1

Z′t−1Wt−1

 (εt + (X− X̂)Γf,t−1)−

NΛ̂
(w)
2,t−1

0Kz

 .

(OA.46)

To shorten the proof, let us establish first part (ii) of the theorem and derive the asymptotic

distribution of the above expression, since its
√
N -rate of convergence will then immediately follow.

First notice that, by Assumptions OA.8, OA.9 and OA.11,

1

N

X̂′Wt−1X̂−NΛ̂
(w)
1,t−1 X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

→p Lt−1,

where we set µX ≡
[

1
µβ

]
.

Now consider the next term in (OA.46) and notice that:

X̂′Wt−1εt + X̂′Wt−1(X− X̂)Γf,t−1 −NΛ̂
(w)
2,t−1 +NΛ̂

(w)
1,t−1Γf,t−1

= X′Wt−1εt +

 0

P′εWt−1εt −Nσ̂2(w)
t−1 P′ıt−1,T−1


− X′Wt−1ε

′Pδf,t−1 +

[
0

−P′εWt−1ε
′Pδf,t−1 +Nσ̂

2(w)
t−1 P′Pδf,t−1

]

= X′Wt−1ε
′ıt−1,T−1 −X′Wt−1ε

′Pδf,t−1 +

 0

P′
(
εWt−1ε

′ −Nσ̂2(w)
t−1 IT−1

)
Qt−1



= X′Wt−1ε
′Qt−1 +

 0

P′
(
εWt−1ε

′ −Nσ̂2(w)
t−1 IT−1

)
Qt−1


= a11 + a12,
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setting a11 ≡ X′Wt−1ε
′Qt−1 and a12 ≡

[
0

P′
(
εWt−1ε

′ −Nσ̂2(w)
t−1 IT−1

)
Qt−1

]
. Moreover,

Z′t−1Wt−1εt + Z′t−1Wt−1(X− X̂)Γf,t−1 = Z′t−1Wt−1ε
′Qt−1

=
(
E[Zt−1]′Wt−1ε

′ + (Zt−1 − E[Zt−1])′Wt−1ε
′)Qt−1

= E[Zt−1]′Wt−1ε
′Qt−1 + (Zt−1 − E[Zt−1])′Wt−1ε

′Qt−1

= a21 + a22,

setting a21 ≡ E[Zt−1]′Wt−1ε
′Qt−1 and a22 ≡ (Zt−1 − E[Zt−1])′Wt−1ε

′Qt−1.

Let us start with the term a11. Using Assumption OA.11, and noticing that Wt−11N ≡Wıt−1,T−1,

we can write that

1√
N

X′Wt−1ε
′Qt−1 =

1√
N

(
X′Wt−1ε

′ −X′
1N1′N
N

Wt−1ε
′ + X′

1N1′N
N

Wt−1ε
′
)

Qt−1

=
1√
N

(
X′1N1′NWt−1ε

′

N

)
Qt−1 + op(1)

=
X′1N
N

1′NWt−1ε
′Qt−1√

N
+ op(1)

=
X′1N
N

ı′t−1,T−1W
′ε′Qt−1√

N
+ op(1)

=
X′1N
N

(
Q′t−1 ⊗ ı′t−1,T−1

) 1√
N

N∑
i=1

εi ⊗ wi + op(1)

→d N
(
0Kf+1, λt−1µXµ

′
X

)
,

recalling µX = (1,µ′β)′, λt−1 = Y′t−1ΣVYt−1, with Yt−1 = (Qt−1 ⊗ ıt−1,T−1) and ΣV defined in

Assumption OA.11.

Consider now the term in a12 and notice that, by Assumptions OA.10 and OA.11, and following
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the same steps adopted for (OA.42),

1√
N

P′
(
εWt−1ε

′ −Nσ̂2(w)
t−1 IT−1

)
Qt−1

=
√
NP′

(
ε (Wt−1 − E[Wt−1]) ε′

N
+
εE[Wt−1]ε′

N
− σ̂2(w)

t−1 IT−1

)
Qt−1

=
√
NP′

(
εE[Wt−1]ε′

N
− σ̂2(w)

t−1 IT−1

)
Qt−1 + op(1)

=
√
N
(
Q′t−1 ⊗P′

)
vec

(
εE[Wt−1]ε′

N
− σ̂2(w)

t−1 IT−1

)
+ op(1)

= V′t−1µw,t−1
1√
N

N∑
i=1

vec
(
εiε
′
i − σ2

i IT−1

)
+ op(1)

→d N
(
0Kf

,V′t−1UεVt−1

)
where µw,t−1 →p 1 by Assumption OA.8, with Uε defined in Assumption OA.6.

For the term a21, using Assumption OA.6 and following the same steps for a11, we get

1√
N

E[Zt−1]′Wt−1ε
′Qt−1 =

1√
N

(
E[Zt−1]′

(
IN −

1N1′N
N

)
Wt−1ε

′Qt−1 + E[Zt−1]′
1N1′N
N

Wt−1ε
′Qt−1

)
=

1√
N

(
E[Zt−1]′

1N1′N
N

Wt−1ε
′Qt−1

)
+ op(1)

= E[Zt−1]′
1N
N

1√
N

1′NWt−1ε
′Qt−1 + op(1)

= E[Zt−1]′
1N
N

(
Q′t−1 ⊗ ı′t−1,T−1

) 1√
N

N∑
i=1

εi ⊗ wi + op(1)

→d N
(
0Kz , λt−1µzµ

′
z

)
.

Finally, for the term a22, the following holds

√
N

(
(Zt−1 − E[Zt−1)]′Wt−1ε

′

N

)
Qt−1 =

√
N

(
(Zt−1 − E[Zt−1])′ε′

N

)
Qt−1 + op(1)

→d N (0Kz ,Ht−1ΣUH′t−1).

We can now derive the asymptotic distribution of the estimator. Indeed, using all the results
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derived above, we have

1√
N

NΛ̂
(w)
1,t−1

0K+1

Γf,t−1 +

 X̂′Wt−1

Z′t−1Wt−1

 (εt + (X− X̂)Γf,t−1)−

NΛ̂
(w)
2,t−1

0Kz



=


1′NWt−1ε′√

N
Qt−1(

B′1N
N

)
1′NWt−1ε′√

N
Qt−1

0Kz

+


0

P′ 1√
N

(
εWt−1ε

′ −Nσ̂2(w)
t−1 IT−1

)
Qt−1

0Kz



+


0

0Kf(
E[Zt−1]′1N

N

)(
1′NWt−1ε′√

N

)
Qt−1

+


0

0Kf

(Zt−1−E[Zt−1])′Wt−1ε′√
N

Qt−1


= a1 + a2 + a3 + a4,

setting a1 ≡


1′NWt−1ε′√

N
Qt−1(

B′1N
N

)
1′NWt−1ε′√

N
Qt−1

0Kz

, a2 ≡

 0

P′ 1√
N

(
εWt−1ε

′ −Nσ̂2(w)
t−1 IT−1

)
Qt−1

0Kz

, a3 ≡

 0
0Kf(

E[Zt−1]′1N
N

)(
1′NWt−1ε′√

N

)
Qt−1

, and a4 ≡

 0
0Kf

(Zt−1−E[Zt−1])′Wt−1ε′√
N

Qt−1

.

Notice that all the terms have zero mean. Therefore, using the results above:

Var[a1]→ λt−1

[
µXµ

′
X 0(Kf+1)×Kz

0Kz×(Kf+1) 0Kz×Kz

]
, Var[a2]→


0 0′Kf

0′Kz

0Kf
V′t−1UεVt−1 0Kf×Kz

0Kz 0Kz×Kf
0Kz×Kz

 ,

Var[a3]→ λt−1


0 0′Kf

0′Kz

0Kf
0Kf×Kf

0Kf×Kz

0Kz 0Kz×Kf µzµ
′
z

 , and Var[a4]→


0 0′Kf

0′Kz

0Kf
0Kf×Kf

0Kf×Kz

0Kz 0Kz×Kf
Ht−1ΣUH′t−1

 .

It remains to evaluate the covariances terms. Under Assumption OA.5, then Cov[a1,a
′
2] →

0(K+1)×(K+1), and Cov[a1,a
′
4]→ 0(K+1)×(K+1), while

Cov[a1,a
′
3]→ λt−1

[
0(Kf+1)×(Kf+1) µxµ

′
z

0Kz×(Kf+1) 0Kz×Kz

]
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Regarding a2, notice that, Assumption OA.5, Cov[a2,a
′
3] → 0(K+1)×(K+1) and Cov(a2,a

′
4) →

0(K+1)×(K+1). Finally,

Cov[a3,a
′
4]→


0 0′Kf

0′Kz

0Kf
0Kf×Kf

0Kf×Kz

0Kz 0Kz×Kf
St−1



setting St−1 ≡ µzY
′
t−1(σ2IT−1 ⊗Σ′ZW)H′t−1. In fact,

Cov[a3,a
′
4] = E

µzı
′
t−1,T−1

1

N

N∑
i=1

wi.ε
′
iQt−1

1

N

N∑
j=1

wj,t−1vec
′(zjε

′
j)(Qt−1 ⊗ Jt−1)


= µz(Q

′
t−1 ⊗ ı′t−1,T−1)E

 1

N

N∑
i=1

(εi ⊗wi.)
1

N

N∑
j=1

wj,t−1(ε′j ⊗ z′j)

 (Qt−1 ⊗ Jt−1)

= µz(Q
′
t−1 ⊗ ı′t−1,T−1)E

(
1

N

N∑
i=1

wi,t−1(εiε
′
i ⊗wi.z

′
j)

)
(Qt−1 ⊗ Jt−1) + o(1).

Collecting terms concludes the proof.

�

Proof of Theorem 5. Rewrite the premia estimator as

[
Γ̂
∗(m)
f,t−1

γ̂
∗(m)
z,t−1

]
=

[
Γ̃f,t−1

γ̃z,t−1

]
+

X̂′X̂−N(Λ̂1 + Λ̂
(m)
1,t−1) X̂′Zt−1 −NΛ̂

(m)
3,t−1

Z′t−1X̂ Z′t−1Zt−1

−1

×

[[
N(Λ̂1 + Λ̂

(m)
1,t−1)

0Kz×Kf+1

]
Γ̃f,t−1 +

[
NΛ̂

(m)
3,t−1

0Kz×Kz

]
γ̃z,t−1 +

[
X̂′

Z′t−1

]
(mt−1 + εt + (X− X̂)Γ̃f,t−1)−

[
N(Λ̂2,t−1 + Λ̂

(m)
2,t−1)

0Kz

]]
.

Concerning the bias terms, the proof follows the corresponding part of the proof to Theorem 1,

except for the additional terms arising from 1
N X̂′mt−1− Λ̂

(m)
2,t−1 + Λ̂

(m)
1,t−1Γ̃f,t−1 + Λ̂

(m)
3,t−1γ̃z,t−1, equal
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to (excluding the zero elements of the first row)

1

N
(B̂−B)′mt−1 −P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂Rt

)
0T−t+1

]
+ P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂X̂
)

0T−t+1×Kf+1

]
Γ̃f,t−1

+P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂Zt−1

)
0T−t+1×Kz

]
γ̃z,t−1 + P′

[
M−1

11

(
σ̂2(It−2,0t−2×T−t+1)MDιt−1,T−1

)
0T−t+1

]

=
1

N
(B̂−B)′mt−1 −P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂mt−1

)
0T−t+1

]

+P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂X̂
)

0T−t+1×Kf+1

]
Γ̃f,t−1 −P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂X
)

0T−t+1×Kf+1

]
Γ̃f,t−1

+P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂Zt−1

)
0T−t+1×Kz

]
γ̃z,t−1 −P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂Zt−1

)
0T−t+1×Kz

]
γ̃z,t−1

+P′

[
M−1

11

(
σ̂2(It−2,0t−2×T−t+1)MDιt−1,T−1

)
0T−t+1

]
−P′

[
M−1

11

(
(It−2,0t−2×T−t+1) 1

N ε̂εt

)
0T−t+1

]

= −P′
[
M−1

11 M12

IT−t+1

]
1

N
εt,T−1mt−1 + P′

[
M−1

11

(
(It−2,0t−2×T−t+1)( 1

N

∑N
i=1 MD̃i

εiε
′
i)P
)

0T−t+1×Kf

]
δ̃f,t−1

+P′

[
M−1

11

(
(It−2,0t−2×T−t+1)(σ̂2

MD − 1
N

∑N
i=1 MD̃i

εiε
′
i)ιt−1,T−1

)
0T−t+1

]

= −P′
[
M−1

11 M12

IT−t+1

]
1

N
εt,T−1mt−1 −P′

[
M−1

11

(
(It−2,0t−2×T−t+1)( 1

N

∑N
i=1 MD̃i

εiε
′
i − σ̂2

MD)Qt−1,T−1

)
0T−t+1

]
= Op(N

− 1
2 ),

recalling that (B̂−B)′mt−1 = B̂′mt−1, N−1
∑N

i=1 MD̃i
εimi,t−1 =MD(N−1

∑N
i=1 εimi,t−1)+op(1),

and ε =

[
ε2,t−1

εt,T−1

]
, with ε2,t−1 ≡ (ε2, . . . , εt−1)′, εt,T−1 ≡ (εt, . . . , εT−1)′. Notice that the bias

adjustment corresponding to the anomalies Zt−1 cancels out for every finite N .

Regarding part (ii), the limiting distribution of Γ̂
∗(m)
f,t−1 and γ̂

∗(m)
z,t−1, and their (joint) asymptotic
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covariance matrix, follow by

√
N

[
Γ̂
∗(m)
f,t−1 − Γ̃f,t−1

γ̂
∗(m)
z,t−1 − γ̃z,t−1

]
=

[
X̂′X̂
N − (Λ̂1 + Λ̂

(m)
1,t−1) X̂′Zt−1

N − Λ̂
(m)
3,t−1

Z′t−1X̂

N

Z′t−1Zt−1

N

]−1

×

(
1′N ε

′
√
N

Qt−1

B′ε′√
N

Qt−1

0Kz



+

 0

P′ εε
′

√
N

Qt−1 −
√
Nσ̂2P′Qt−1

0Kz

+

 0
0Kf√

N
(

Z′t−1ε
′

N

)
Qt−1



+


0

−P′
[
M−1

11 M12

IT−t+1

]
1√
N
εt,T−1mt−1

0Kz

+


0

−P′

[
M−1

11

(
(It−2,0t−2×T−t+1)

√
N( 1

N

∑N
i=1 MD̃i

εiε
′
i − σ̂2MD)Qt−1,T−1

)
0T−t+1

]
0Kz


)

=

[
X̂′X̂
N − (Λ̂1 + Λ̂

(m)
1,t−1) X̂′Zt−1

N − Λ̂
(m)
3,t−1

Z′t−1X̂

N

Z′t−1Zt−1

N

]−1

(a1 + a2 + a3 + a4 + a5) .

We follow the corresponding part of the proof to Theorem 1, and use their results, to which we

need to add the derivation of Var[a4],Var[a5], and of the covariances of a4 and a5 with a1,a2,a3,
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obtaining

Var[a4] ≡ σ2σt−1mm


0 0′Kf 0′Kz

0Kf P′
[
M−1

11 M12

IT−t+1

] [
M′

12M
−1
11 IT−t+1

]
P 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,

Var[a5] ≡

 0 0′Kf 0′Kz
0Kf At−1UεA

′
t−1 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,
Cov[a4,a

′
1] ≡ 0Kz+Kf+1×Kz+Kf+1,

Cov[a4,a
′
2] ≡

0 0′Kf 0′Kz

0Kf −P′
[
M−1

11 M12

IT−t+1

] [
0T−t+1×(t−2)2 (θ′t−1,m ⊗ σ2IT−1) (σ2IT−1 ⊗ θ′t−1,m) 0T−t+1×(T−t+1)2

]
Vt−1 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,
Cov[a4,a

′
3] → 0Kz+Kf+1×Kz+Kf+1,

Cov[a4,a
′
5] =

0 0′Kf 0′Kz

0Kf −P′
[
M−1

11 M12

IT−t+1

] [
0T−t+1×(t−2)2 (θ′t−1,m ⊗ σ2IT−1) (σ2IT−1 ⊗ θ′t−1,m) 0T−t+1×(T−t+1)2

]
At−1′ 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,
Cov[a5,a

′
1] ≡ 0Kz+Kf+1×Kz+Kf+1,

Cov[a5,a
′
2] ≡

 0 0′Kf 0′Kz
0Kf At−1UεVt−1 0Kf×Kz
0Kz 0Kz×Kf 0Kz×Kz

 and

Cov[a5,a
′
3] →p 0Kf+Kz+1×Kf+Kz+1,

recalling that m′t−11N = 0 by construction and
m′t−1mt−1

N →p σt−1,mm by our assumptions, and we

set

At−1 ≡ −P′

[
(Q′t−1,T−1 ⊗M−1

11 (It−2,0t−2×T−t+1)MD)(I(T−1)2 − vec(IT−1)
vec′(MD̃)
T−Kf−Kz2)

0T−t+1×(T−1)2

]
,

and where for Cov[I4, I
′
3] we used the result N−1

∑N
i=1mi,t−1εt,T−1ε

′Qt−1z
′
i,t−1 →p 0T−t+1×Kz .

Collecting terms, one finally obtains

M
(m)
t−1 ≡ Var[a1] + Var[a2] + Var[a3] + Var[a4] + Var[a5] + (OA.47)

Cov[a3,a
′
1] + Cov[a1,a

′
3] + Cov[a4,a

′
2] + Cov[a2,a

′
4] + Cov[a5,a

′
2] + Cov[a2,a

′
5] + Cov[a4,a

′
5] + Cov[a5,a

′
4].
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The asymptotic covariance matrix for Γ̂
∗(m)
f,t−1 and γ̂

∗(m)
z,t−1 will then be L−1

t−1(Ot−1 + M
(m)
t−1)L−1

t−1, with

Lt−1 and Ot−1 defined in (OA.35) and, given N−1Λ̂
(m)
3,t−1 = op(1),

L̂
(m)
t−1 =

[
X̂′X̂
N − (Λ̂1 + Λ̂

(m)
1,t−1) X̂′Zt−1

N − Λ̂
(m)
3,t−1

Z′t−1X̂

N

Z′t−1Zt−1

N

]
→p Lt−1. (OA.48)

�

Proof of Theorem 6 We need to establish the limiting distribution of (61) under (i) and (ii).

First, notice that, by using the definition in (60), and replacing it into (61), we get

T 2
z,t−1 ≡ N

(
γ̂∗′z,t−1Z

′
t−1MX̂Zt−1γ̂

∗
z,t−1

R′tM1NRt

)
. (OA.49)

Let us start from the denominator of (OA.49) and rewrite it as R′tM1NRt = R′tRt−R′t1N1′NRt/N .

Recalling that Rt = γ0,t−11N + Zt−1γz,t−1 + Bδf,t−1 + εt, then:

R′t1N
N

= γ0,t−1 + δ′f,t−1

B′1N
N

+ γ ′z,t−1

Z′t−11N

N
+
εt
′1N
N

→p γ0,t−1 + δ′f,t−1µβ + γ ′z,t−1µz.

Moreover, using the same arguments,

R′tRt

N
= γ2

0,t−1 + δ′f,t−1

B′B

N
δf,t−1 + γ ′z,t−1

Z′t−1Zt−1

N
γz,t−1 +

εt
′εt
N

+ 2 γ0,t−1
1′NB

N
δf,t−1 + 2 γ0,t−1

1′NZt−1

N
γz,t−1 + 2γ0,t−1

1′Nεt
N

+ 2δ′f,t−1

B′Zt−1

N
γz,t−1 + 2δ′f,t−1

B′εt
N

+ 2γ ′z,t−1

Z′t−1εt

N

→p γ2
0,t−1 + δ′f,t−1Σβδf,t−1 + γ ′z,t−1J

′
t−1ΣZJt−1γz,t−1 + σ2

+ 2γ0,t−1µβ
′δf,t−1 + 2γ0,t−1µ

′
zγz,t−1 + 2δ′f,t−1Σ

′
ZBJt−1γz,t−1

Therefore, combining terms

R′tM1NRt

N
=

R′tRt

N
−

R′t1N1′NRt

N

→p δ′f,t−1

(
Σβ − µβµ′β

)
δf,t−1 + γ ′z,t−1

(
J
′
t−1ΣZJt−1 − µzµ′z

)
γz,t−1

+ σ2 + 2δ′f,t−1

(
Σ′ZBJt−1 − µβµ′z

)
γz,t−1

≡ σR̃,t,
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implying that σR̃,t > σ2 > 0.

Consider now the numerator of (OA.49) and notice that, under Assumptions OA.3–OA.7 and using

Lemma 2,

Z′t−1MX̂Zt−1

N
→p J

′
t−1ΣZJt−1 −ΣZX,t−1

(
ΣX + σ2P′P

)−1
Σ′ZX,t−1 ≡ ΣZX̂Z,t−1.

Moreover, using Theorems 1-(ii) and 2, we have that

√
N
(
γ̂∗z,t−1 − γz,t−1

)
→d N

(
0Kz ,L

−1
z,t−1 Ot−1 L−1′

z,t−1

)
,

with Lz,t−1 ≡
[
0Kz×(Kf+1), IKz

]
Lt−1. Therefore, under the null hypothesis of γz,t−1 = 0Kz , and

denoting for brevity V̂LOL ≡ L̂−1
z,t−1 Ôt−1 L̂−1′

z,t−1, and VLOL ≡ L−1
z,t−1 Ot−1 L−1′

z,t−1, with L̂z,t−1 ≡[
0Kz×(Kf+1), IKz

]
L̂t−1, we have that

√
N
(
V̂LOL

)− 1
2
γ̂∗z,t−1 →d N (0Kz , IKz), and

(
V̂LOL

) 1
2
(

Z′t−1MX̂Zt−1

N

)(
V̂LOL

) 1
2

R′tM1NRt/N
→p

(VLOL)
1
2 ΣZX̂Z,t−1 (VLOL)

1
2

σR̃,t

≡ Θt−1,

with Θt−1 being a symmetric and positive definite matrix admitting the spectral decomposition

Θt−1 = ∆1,t−1∆2,t−1∆
′
1,t−1, for an orthogonal matrix ∆1,t−1 and a diagonal matrix ∆2,t−1 =

diag(d1,t−1, · · · , dKz,t−1), whose diagonal elements correspond to the eigenvalues of Θt−1. There-

fore, combining these results into (OA.49), we have

T 2
z,t−1 ≡

√
N γ̂∗′z,t−1

(
Z′t−1MX̂Zt−1

N

)√
N γ̂∗z,t−1

R′tM1NRt/N

=

√
N γ̂∗′z,t−1

(
V̂LOL

)− 1
2
(
V̂LOL

) 1
2
(

Z′t−1MX̂Zt−1

N

)(
V̂LOL

) 1
2
(
V̂LOL

)− 1
2 √

N γ̂∗z,t−1

R′tM1NRt/N

→d ξ′Θt−1ξ = ξ′∆1,t−1∆2,t−1∆
′
1,t−1ξ =

Kz∑
i=1

χ2
1,jdj,t−1

denoting ξ ∼ N (0′Kz
, IKz), and where the last equality follows by noticing that ξ∆1,t−1 ∼ N (0Kz , IKz),

given ∆′1,t−1IKz∆1,t−1 = IKz . Finally, notice that, under the null hypothesis of part (i),

σR̃,t = δ′f,t−1

(
Σβ − µβµ′β

)
δf,t−1 + σ2.

This concludes the proof of part (i).
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To prove part (ii), let us first define the following d× 1 random vector

θ =

(
vec

(
Z′Z

N

)
,
Z′1N
N

, vec

(
Z′B

N

)
, vec

(
Z′ε′

N

)
, vec

(
B′ε′

N

)
, vec

(
εε′

N

)
,
ε′1N
N

)
(OA.50)

with d ≡ ((T − 1)Kz)
2 + (T − 1)Kz + (T − 1)KzKf + (T − 1)2Kz + (T − 1)Kf + (T − 1)2 + (T − 1).

Then, consider R̂2
z,t−1 in (60) and notice that it can be written as a function of θ, such that

R̂2
z,t−1 = gt−1(θ),

with gt−1(·) being an elementary and differentiable function, made by simple products and ratios

of the arguments in θ.8 All the random quantities in θ admit a continuous second-order derivative,

implying

√
N



vec
(

Z′Z
N −ΣZ

)
Z′1N
N − µz,T−1

vec
(

Z′B
N −ΣZB

)
vec
(

Z′ε′

N

)
vec
(

B′ε′

N

)
vec
(
εε′

N −
σ2

T−1

)
ε′1N
N


→d N (0d,Vθ),

with the d× d covariance matrix Vθ having the following form

Vθ ≡



Var[θ1] Cov[θ1,θ
′
2] · · · Cov[θ1,θ

′
7]

Cov[θ2,θ
′
1] Var(θ2] · · · Cov[θ2,θ

′
7]

...
...

. . .
...

Cov[θ7,θ
′
1] Cov[θ7,θ

′
2] · · · Var[θ7]

 , (OA.51)

setting θ1 ≡
√
Nvec

(
Z′Z
N −ΣZ

)
, θ2 ≡

√
N
(

Z′1N
N − µz,T−1

)
, θ3 ≡

√
Nvec

(
Z′B
N −ΣZB

)
, θ4 ≡

vec
(

Z′ε′√
N

)
, θ5 ≡ vec

(
B′ε′√
N

)
, θ6 ≡

√
Nvec

(
εε′

N −
σ2

T−1

)
, and θ7 ≡ ε′1N√

N
.

Now, by Assumptions OA.7 and OA.13, Var(θ1) = Var
[
vec
(

Z′Z√
N

)]
→ UZ, Var(θ2) = Var

[
Z′1N√
N

]
→

ΣZ − µz,T−1µ
′
z,T−1, Var(θ3) = Var

[
vec
(

Z′B√
N

)]
→ (Σβ ⊗ΣZ)−

(
µβµ

′
β ⊗ µz,T−1µ

′
z,T−1

)
≡ Σ̃β⊗Z,

Var(θ4) = Var
[
vec
(

Z′ε′√
N

)]
→ (σ2IT−1 ⊗ ΣZ), Var(θ5) = Var

[
vec
(

B′ε′√
N

])
→ (σ2IT−1 ⊗ Σβ),

Var(θ6) = Var
[
vec
(

εε′√
N

)]
→ Uε, and Var(θ7) = Var

[
ε′1N√
N

]
→ σ2.

8To ease the exposition, we do not repor the gt−1(.) function, because it is elementary. Details are available upon
request.
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Consider now all the covariance terms. Under Assumptions OA.6, OA.7 and OA.13, we have

Cov[θ1,θ
′
2] → Σz⊗z, Cov[θ1,θ

′
3] → Σz⊗z

(
µ′β ⊗ IKz

)
, Cov[θ2,θ

′
3] → µ′β ⊗

(
ΣZ − µz,T−1µ

′
z,T−1

)
,

Cov[θ4,θ
′
5]→ σ2IT−1⊗µz,T−1µ

′
β, Cov[θ4,θ

′
7]→ σ2IT−1⊗µ′z,T−1, and Cov[θ5,θ

′
7]→ σ2IT−1⊗µ′β.

Moreover, under Assumption OA.5, it follows that all the remaining covariance terms are zero

matrices. Putting all together gives Vθ.

Therefore, by the mean-value theorem, it follows that

√
N(R̂2

z,t−1 −R2
z,t−1)→d N (0, ωz,t−1) with ωz,t−1 ≡ G′t−1VθGt−1, (OA.52)

setting Gt−1(x) ≡ ∂gt−1(x)/∂x for a generic d-dimensional vector x, and Gt−1 ≡ Gt−1(x0) with 9

x0 ≡
(

vec′ (ΣZ) ,µ′z,T−1, vec′(ΣZB),0′(T−1)2Kz
,0′(T−1)Kf

, vec′(σ2IT−1),0′(T−1)

)′
.

Finally, a consistent estimator ω̂z,t−1 for ωz,t−1 is obtained by replacing Gt−1 with

Ĝt−1 ≡ Gt−1

(
(vec′

(
Z′Z

N

)
, vec′

(
Z′1N
N

)
, vec′

(
Z′B̂

N

)
,0′(T−1)2Kz

,0′(T−1)Kf
, vec′(σ̂2IT−1))′,0′(T−1)

)
,

and replacing the terms of Vθ with their sample counterparts, yielding

ω̂z,t−1 ≡ Ĝ′t−1V̂θĜt−1. (OA.53)

�

9The mapping from vectorized matrices to the original matrices is given by the linear function vec−1
m×p(x) =

(vec′(Ip)⊗ Im)(Ip ⊗ x) mapping the mp× vector x into a m× p matrix.
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OA.5 Further Results on the CSR OLS and CSR WLS Estimators

This section is structured as follows. First, we focus on the traditional two-pass CSR OLS and CSR

WLS in (30) in (41), respectively, showing the bias that arises, both in the fixed-T and large-T cases.

Next, focusing for simplicity only on the CSR OLS estimator, we study the limiting properties of

the locally-averaged estimator (40). Finally, we provide further results for the CSR OLS under

global misspecification (53), by deriving the misspecification-robust estimator (53), together with

the corresponding standard error, asymptotically valid when N →∞.

OA.5.1 The Augmented-Traditional CSR OLS and CSR WLS Eestimators

In this section, we investigate the limiting behaviour of the augmented traditional CSR OLS and

CSR WLS estimators defined in (30) in (41), respectively, when N →∞ and T is kept fixed. These

estimators generalize the conventional approach to the case when both anomalies and (estimated)

loadings are used in the cross-sectional OLS regression, hence resolving the bias coming from the

potential lack of orthogonality between the risk factors and the anomalies. However, as we show in

Propositions OA.1 and OA.2 below, other sources of bias arise in the fixed-T setup, making them

biased.

Proposition OA.1 (biases of CSR OLS — time-varying estimator). Let K = Kz +Kf , and define

the two matrices

Λ1 ≡

[
0 0′Kf

0Kf
σ2P′P

]
, Λ2,t−1 ≡ σ2

[
0

P′ıt−1,T−1

]
. (OA.54)

Under Assumptions OA.1–OA.7, as N →∞,

[
Γ̂f,t−1

γ̂z,t−1

]
→p

[
Γf,t−1

γz,t−1

]
+ C−1

t−1

(
−
[

Λ1

0K+1

]
Γt−1 +

[
Λ2,t−1

0Kz

])
, (OA.55)

where

Ct−1 =

[
ΣX + Λ1 Σ′ZX,t−1

ΣZX,t−1 J
′
t−1ΣZJt−1

]
. (OA.56)

Proof. Using (29), we can rewrite:[
Γ̂f,t−1

γ̂z,t−1

]
=

[
Γf,t−1

γz,t−1

]
+

[
X̂′X̂ X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]−1 [
X̂′

Z′t−1

]
(εt + (X− X̂)Γf,t−1).
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By Lemmas 1 and 2, then N−1

[
X̂′X̂ X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]
→p Ct−1, and, by Lemma 3,

1

N

[
X̂′

Z′t−1

]
(εt + (X− X̂)Γf,t−1)→p

(
−
[

Λ1

0K+1

]
Γf,t−1 +

[
Λ2,t−1

0Kz

])
.

�

Proposition OA.2 (biases of CSR WLS — time-varying estimator—weighted). Under Assump-

tions OA.1–OA.11, as N →∞,Γ̂
(w)
f,t−1

γ̂
(w)
z,t−1

→p

[
Γf,t−1

γz,t−1

]
+ D−1

t−1

(
−
[

Λ1

0Kz×(Kf+1)

]
Γf,t−1 +

[
Λt−1,2

0Kz

])
(OA.57)

where

Dt−1 ≡

 1 µ′β µ′z,t−1

µβ Σβ + σ2P′P µβµ
′
z,t−1

µz,t−1 µz,t−1µ
′
β ΣZ,t−1

 ,
with µz,t−1,ΣZ,t−1 are defined in Assumption OA.11.

Proof. Rewrite:[
Γ̂wf,t−1

γ̂wz,t−1

]
=

[
Γf,t−1

γz,t−1

]
+

[
X̂′Wt−1X̂ X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

]−1 [
X̂′Wt−1

Z′t−1Wt−1

]
(εt + (X− X̂)Γf,t−1).

By Lemmas 4–5,

1

N

[
X̂′Wt−1X̂ X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

]
→p Dt−1. (OA.58)

By Lemmas 5 and 6,

1

N

[
X̂′

Z′t−1

]
Wt−1(εt + (X− X̂)Γt−1)→p

(
−
[

Λ1

0Kz×(Kf+1)

]
Γt−1 +

[
Λt−1,2

0Kz

])
.

QED

Remark OA.19. Proposition OA.1 shows that the conventional augmented CSR OLS estimator

is biased whenever N →∞ and T is kept fixed. However, it is possible to show that bias also arises

in the conventional large-T–fixed-N setting. Specifically, when P′ε →p 0Kf×N and (X,Zt−1) has

full-column rank, then[
Γ̂f,t−1

γ̂z,t−1

]
→p

[
Γf,t−1

γz,t−1

]
+

[
X′X X′Zt−1

Z′t−1X Z′t−1Zt−1

]−1 [
X′

Z′t−1

]
εt. (OA.59)
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The result in (OA.59) shows a bias term which is linear in εt and, hence, random and not pre-

dictable, making the bias term impossible to estimate consistently.

The same applies to the CSR WLS estimator. When P′ε→p 0Kf×N and W
1
2
t−1(X,Zt−1) has a

full-column rank, then as T →∞ and N remains fixed,Γ̂
(w)
f,t−1

γ̂
(w)
z,t−1

→p

Γf,t−1

γz,t−1

+

[
X′Wt−1X X′Wt−1Zt−1

Z′t−1Wt−1X Z′t−1Wt−1Zt−1

]−1
 X′Wt−1

Z′t−1Wt−1

 εt, (OA.60)

hence, also affected by a random bias.
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OA.5.2 Anomalies with Time-Varying Premia: Locally-Averaged CSR OLS Estima-
tion

In Theorems 1 we have shown that our time-varying estimator Γ̂∗f,t−1 and γ̂∗z,t−1 accurately capture

the true premia Γf,t−1 and γz,t−1 at any given point in time. However, when premia’s time-variation

is sufficiently smooth and not too abrupt - something that seems not so hard to justify in our fixed-T

environment - one could benefit from the time-series dimension of the panel and obtain more precise

estimates of the premia parameters by means of rolling-windows average estimates. As explained

in Section 5, this reasoning suggests to use the locally-averaged CSR OLS estimator (40):

[
Γ̂∗f

γ̂∗z

]
≡

[
X̂′X̂−NΛ̂1 X̂′Z̄

Z̄′X̂ Z̄′Z̄

]−1 [
X̂′R̄

Z̄′R̄

]
,

where Λ̂1 is defined in (32), and where Γ̂∗f ≡
(
γ̂∗0 , δ̂

∗′
f

)′
. The next theorem establishes its limiting

statistical properties.

Theorem OA.1 (large-N–fixed-T - consistency and asymptotic normality of the locally-aver-

aged bias-adjusted CSR OLS estimator). Under Assumptions OA.1—OA.7 and Ĉov(Zt−1,γz,t−1) =

op(N
−1/2), as N →∞,

(i)

Γ̂∗f − Γf = Op

(
1√
N

)
and γ̂∗z − γz = Op

(
1√
N

)
, (OA.61)

(ii)

√
N

[
Γ̂∗f − Γf

γ̂∗z − γz

]
→d N

(
0K+1,L

−1OL−1′
)
, (OA.62)

where

L ≡

[
ΣX Σ′ZX

ΣZX J
′ΣZJ

]
> 0, and O ≡

[
U σ2GH′

σ2HG′ HΣUH′,

]
(OA.63)

with U ≡ σ2

T−1

[
1 + (T − 1)δ̄f

′P′Pδ̄f

]
ΣX +

[
0 0′Kf

0Kf
V′UεV

]
, Uε, ΣZB, ΣZX, ΣU and µz,T−1
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defined in Assumptions OA.3 and OA.7, and in Lemma 2, and where

Q ≡ 1T−1

(T − 1)
−Pδ̄f ,

V ≡ (Q⊗P)−
vec(MD̃)

T −K − 2
Q′P,

G ≡
[
Q⊗ µz,T−1, Q⊗ΣZB

]′
,

H ≡ Q′ ⊗ J′.

Proof. Starting from the definition in (40), we can rewrite[
Γ̂∗f

γ̂∗z

]
=

[
Γ̄f

γ̄z

]
+

[
X̂′X̂−NΛ̂1 X̂′Z̄

Z̄′X̂ Z̄′Z̄

]−1([
NΛ̂1Γ̄f

0Kz

]
+

[
X̂′

Z̄′

]
(ε̄+ (X− X̂)Γ̄f)

)
. (OA.64)

By Lemma 1 and Assumption OA.7, 1
N

[
X̂′X̂−NΛ̂1 X̂′Z̄

Z̄′X̂ Z̄′Z̄

]−1

= Op(1). Moreover, notice that

[
X̂′

N
ε̄− X̂′

N
(X̂−X)Γ̄f + Λ̂1Γ̄f

]
=

[
X̂′

N
ε̄−

[
1′N

ε′

NPδ̄f

B′ε′

N Pδ̄f + P′ εε
′

N Pδ̄f − σ̂2P′Pδ̄f

]]
,

where

1

N
X̂′ε̄ =

1

N
(X̂−X)′ε̄+

1

N
X′ε̄ = Op

(
N−

1
2

)
by Lemma 1, whereas by Assumptions OA.6(i) and OA.6(iii)

1

N
P′

N∑
i=1

εi = Op

(
N−

1
2

)
, and

1

N

N∑
i=1

βiε
′
iPδ̄f = Op

(
N−

1
2

)
.

Next, note that the term P′ 1
N εε

′Pδ̄1 − σ̂2P′Pδ̄f can be rewritten as

P′

(
εε′

N
− 1

N

N∑
i=1

σ2
i IT−1

)
Pδ̄f −

[
(σ̂2 − σ2)−

(
1

N

N∑
i=1

σ2
i − σ2

)]
P′Pδ̄f , (OA.65)

with P′ 1
N

(
εε′ −

∑N
i=1 σ

2
i IT−1

)
Pδ̄1 = Op

(
N−

1
2

)
by Assumption OA.6(ii), σ̂2 − σ2 = Op

(
N−

1
2

)
,

and 1
N

∑N
i=1 σ

2
i − σ2 = o

(
N−

1
2

)
by Lemma 1 and Assumption OA.5(i). It implies that the term

in (OA.65) is Op

(
N−

1
2

)
, which concludes the proof of part (i).

To prove part (ii), first notice that,
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√
N

[
Γ̂∗f − Γ̄f

γ̂∗z − γ̄z

]
=

 X̂′X̂
N − Λ̂1

X̂′Z̄
N

Z̄′X̂
N

Z̄′Z̄
N

−1

×

×




1′Nε′√
N

Q

B′ε′√
N

Q

0Kz

+


0

P′ εε
′

√
N

Q−
√
Nσ̂2P′Q

0Kz

+


0

0Kf

√
N
(

Z̄′ε′

N

)
Q




=

 X̂′X̂
N − Λ̂1

X̂′Z̄
N

Z̄′X̂
N

Z̄′Z̄
N

−1

(a1 + a2 + a3) , (OA.66)

where we use the fact that P′Pδ̄f = −P′Q, with Q ≡ 1T−1

(T−1) −Pδ̄f . Now, using Lemmas 1 and 2,

we have

1

N

[
X̂′X̂−NΛ̂1 X̂′Z̄

Z̄′X̂ Z̄′Z̄

]
→p

[
ΣX Σ′ZX

ΣZX J
′ΣZJ

]
≡ L. (OA.67)

Next, consider the term a1. By Assumption OA.6, this term has zero mean with variance

Var[I1] =


Q′ 1

N

∑N
i=1 E[εiε

′
i]Q Q′ 1

N

∑N
i=1 E[εiε

′
i](Q⊗ β′i) 0′Kz

1
N

∑N
i=1(Q′ ⊗ βi)E[εiε

′
i]Q

1
N

∑N
i=1(Q′ ⊗ βi)E[εiε

′
i](Q⊗ β′i) 0Kf×Kz

0Kz 0Kz×Kf
0Kz×Kz

+ o(1)

→

[
σ2Q′QΣX 0(Kf+1)×Kz

0Kz×(Kf+1) 0Kz×Kz

]
=

[
σ2

T−1

[
1 + (T − 1)δ̄′fP

′Pδ̄f

]
ΣX 0(Kf+1)×Kz

0Kz×(Kf+1) 0Kz×Kz

]
.(OA.68)

Consider now term a2. First notice that

P′
1√
N

N∑
i=1

σ2
iQ +

1

T −K − 2
tr

(
1√
N

N∑
i=1

MD̃i
σ2
i

)
P′Pδ̄f = 0Kf

. (OA.69)

Therefore, using the properties of the vec(·) operator and exploiting the result in (OA.65), it follows

that

a2 =

 0
a22

0Kz

+ op(1). (OA.70)
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setting

a22 = (Q′ ⊗P′)vec

(
1√
N

N∑
i=1

(εiε
′
i − σ2

i IT−1)

)
−

tr
(

1√
N

∑N
i=1 MD̃i

(εiε
′
i − σ2

i IT−1)
)

T −K − 2
P′Q.

Under Assumptions OA.5(i) and OA.6(ii), using (OA.69), and recalling V = (Q⊗P)− vec(MD̃)
T−K−2 Q′P,

the variance of a22 equals to

Var(a22) = E
[
a22a

′
22

]
→

[
(Q′ ⊗P′) + P′Pδ̄f

vec(MD̃)′

T −K − 2

]
Uε

[
(Q⊗P) +

vec(MD̃)

T −K − 2
δ̄′fP

′P

]
≡ V′UεV,

implying that

Var(a2) →


0 0′Kf

0′Kz

0Kf
V′UεV 0Kf×Kz

0Kz 0Kz×Kf
0Kz×Kz

 .
Moreover, notice that a1 and a2 are (asymptotically) uncorrelated, therefore Cov(a1,a

′
2)→ 0(K+1)×(K+1).

Consider now the term a3, and notice that

Z̄′ε′

N
Q =

(
Q′ ⊗ J′

) 1

N

N∑
i=1

(εi ⊗ zi) = H
1

N

N∑
i=1

ui,

where we set ui ≡ εi ⊗ zi and H ≡ Q′ ⊗ J′. Under Assumptions OA.6 and OA.7, we have that

Var

(
Z̄′ε′√
N

Q

)
= E

[
Z̄′ε′√
N

QQ′
εZ̄√
N

]
= H

1

N

N∑
i,j=1

Σu,ijH
′ → HΣUH′,

implying that

Var(a3) →


0 0′Kf

0′Kz

0Kf
0Kf×Kf

0Kf×Kz

0Kz 0Kz×Kf
HΣUH′

 .
Finally, let us consider the covariance terms between a2 and a3, and a1 and a3. By Assumption

OA.7(viii), it follows that

Cov

(
a22,Q

′ εZ̄√
N

)
= V′

1

N

N∑
i,j=1

Σuε,ijH
′ → 0Kf×Kz ,
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implying that Cov(a2,a
′
3)→ 0(K+1)×(K+1). Finally, note that

Cov

 1′Nε′√
N

Q

B′ε′√
N

Q

 ,Q′ εZ̄√
N

 =
1

N

N∑
i,j=1

σij

(
Q′ ⊗

[
1
βi

]
E(zj)

′
)

H′ → σ2GH′

setting G ≡
[
Q⊗ µz,T−1, Q⊗ΣZB

]′
, yielding

Cov(a1,a
′
3) →

[
0(Kf+1)×(Kf+1) σ2GH′

0Kz×(Kf+1) 0Kz×Kz

]
.

�

The following theorem shows how to construct asymptotically valid standard errors.

Theorem OA.2 (standard errors of the locally-averaged bias-adjusted CSR OLS estimator). Un-

der Assumptions OA.1—OA.7, Ĉov(Zt−1,γz,t−1) = op(N
−1/2), and the identification condition

κ4 = 0, as N →∞,

L̂−1 Ô L̂−1′ →p L−1 O L−1′ (OA.71)

where

L̂ ≡ 1

N

[
X̂′X̂−NΛ̂1 X̂′Z

Z′X̂ Z′Z

]
, and Ô ≡

[
Û σ̂2ĜĤ′

σ̂2ĤĜ′ ĤΣ̂UĤ′

]
, (OA.72)

with Û ≡ σ̂2

T−1

[
1 + (T − 1)δ̂∗

′
f P′Pδ̂∗f

]
(Σ̂X − Λ̂1) +

[
0 0′Kf

0Kf
V̂′ÛεV̂

]
and where Ûε = Uε(κ4 =

0, σ̂4) is a consistent plug-in estimator of Uε = Uε(κ4, σ
4) obtained by replacing σ4 with

σ̂4 =
1
N

∑N
i=1

∑T−1
t=1 ε̂4it

3 tr
(
M

(2)

D̃

) , with M
(2)

D̃
≡ 1

N

N∑
i=1

(
MD̃i

�MD̃i

)
, (OA.73)

recalling MD̃ = N−1
∑N

i=1MD̃i
, with MD̃i

= IT−1 − D̃i(D̃
′
iD̃i)

−1D̃
′
i, D̃i = (D, Z̃i), with D =

(1T−1,F), Σ̂X = N−1X̂′X̂, Σ̂ZB = N−1Z′B̂, µ̂z,T−1 = N−1Z′1N , and Σ̂U ≡ σ̂2IT−1 ⊗ Z′Z/N ,

with σ̂2 defined in (33), and defining

Ĥ ≡ Q̂′ ⊗ J′, Q̂ ≡ 1T−1

(T − 1)
−Pδ̂∗f ,

V̂ ≡ (Q̂⊗P)−
vec(MD̃)

T −K − 2
Q̂′P,

Ĝ ≡
[
Q̂⊗ µ̂z,T−1, Q̂⊗ Σ̂ZB

]′
.
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Proof. By Lemma 1 and Lemma 2(i) and (ii), it follows that L̂ →p L. By part (i) of Theorem

OA.1, then δ̂∗f →p δ̄f , implying that Q̂ is a consistent estimator of Q. Moreover, as N → ∞,

MD̃ →p MD̃, µ̂T−1,z →p µT−1,z, Σ̂ZB →p ΣZB, and Z′Z/N →p ΣZ. It follows that V̂ →p V,

Ĝ →p G, and Ĥ →p H. Finally, a consistent estimator of Û requires a consistent estimate of the

matrix Uε, which can be obtained using Lemma 1(ix). This concludes the proof of Theorem OA.2.

�

OA.5.3 Anomalies with Time-Varying Premia: Global Misspecification - Asymp-
totics

We first establish the additional biases induced by global misspecification for the CSR OLS estima-

tor, then construct the misspecification-robust bias-adjusted estimator of the premia (53). Finally,

we show how to construct asymptotically-valid standard errors.

Proposition OA.3 (biases of CSR OLS — time-varying estimator with misspecification). Under

Assumptions OA.1–OA.7 and OA.12 (listed in Appendix A.1), as N →∞,

[
Γ̂t−1

γ̂t−1,z

]
→p

[
Γ̃t−1

γ̃t−1,z

]
+ C−1

t−1

− [ Λ1

0Kz×Kf+1

]
Γ̃t−1 +

[
Λt−1,2

0Kz

]
+


0

P′
[
θt−1,m

0T−t+1

]
0Kz


 , (OA.74)

where Ct−1,Λ1, and Λt−1,2 are defined in (OA.54) and (OA.56), respectively, and θt−1,m is defined

in Assumption OA.12.

Proof. Both parts (i) and (ii) follow by the steps adopted to proof Proposition OA.1. For part (i),

one needs to consider the additional term

1

N

[
X̂′

Z′t−1

]
mt−1 =

1

N

 0

(B̂−B)′mt−1

0Kz

 ,
where

1

N
(B̂−B)′mt−1 =

1

N
P′εmt−1 → P′


θt−3,m

θt−4,m
...

θ0,m

0T−t+1

 ≡ P′
[
θt−1,m

0T−t+1

]
,

using the property (X,Zt−1)′mt−1 = 0Kz+Kf+1. For part (ii), the result follows as X̂ →p X as

T →∞, by the assumed conditions P′ε→p 0Kf×N and (X,Zt−1) being full-column rank. QED
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To construct the bias-adjusted estimator, we proceed as follows. A natural estimator for θt−1,m

isN−1ε̂′2,t−1m̂
prelim
t−1 , with m̂prelim

t−1 ≡ Rt−(X̂,Zt−1)(Γ̂prelim′t−1 , γ̂prelim′t−1z )′, setting ε =

[
ε2,t−1

εt,T−1

]
, with ε2,t−1 ≡

(ε2, . . . , εt−1)′, εt,T−1 ≡ (εt, . . . , εT−1)′, and assuming the availability of preliminary consistent es-

timators for the premia parameters (Γ̂prelim′t−1 , γ̂prelim′t−1z ) . Notice that εt,T−1 and mt−1 are mutually

independent, and hence their covariance is zero. Lemma 8 shows that N−1ε̂′2,t−1m̂
prelim
t−1 is biased

but that, by adding a bias-correction term to it, one can construct the valid estimator for θt−1,m,

yielding the overall bias-adjustment term for the CSR OLS estimator, as follows,
0

P′
[
θ̂prelimt−1,m

0T−t+1

]
0Kz

 =

[
Λ̂

(m)
2,t−1

0Kz

]
−

[
Λ̂

(m)
1,t−1

0Kz×Kf+1

]
Γ̂prelimt−1 −

[
Λ̂

(m)
3,t−1

0Kz×Kz

]
γ̂prelimt−1z ,

setting

Λ̂
(m)
1,t−1 ≡

1

N

[
0′Kf+1

P′Ψ̂DX̂

]
, Λ̂

(m)
2,t−1 ≡

1

N

[
0

P′Ψ̂DR − σ̂2P′Ψ̂DD̃

]
, and Λ̂

(m)
3,t−1 ≡

1

N

[
0′Kz

P′Ψ̂DZ

]
,

(OA.75)

with Ψ̂DX̂ ≡

[
M

(−1)
D,t−1ε̂X̂

0(T−t+1)×(Kf+1)

]
, Ψ̂DZ ≡

[
M

(−1)
D,t−1ε̂Zt−1

0(T−t+1)×Kz

]
, Ψ̂DR ≡

[
M

(−1)
D,t−1ε̂Rt

0T−t+1

]
, and

Ψ̂DD̃ ≡

[
M

(−1)
D,t−1MDıt−1,T−1

0T−t+1

]
, setting the (t−2)×(T−1) matrix M

(−1)
D,t−1 ≡M

−1
11 [It−2,0(t−2)×(T−t+1)],

where M11 denotes the (t − 2) × (t − 2) top-left block of MD = IT−1 −D(D′D)−1D′, where we

use the partition MD =

[
M11 M12

M21 M22

]
.

Estimator (53) is then obtained finding the ’fixed-point’ solution to the system of equationsΓ̂
∗(m)
f,t−1

γ̂
∗(m)
z,t−1

 =

[
Γ̂t−1

γ̂t−1,z

]
− Ĉ−1

t−1

− [ Λ̂1

0Kz×Kf+1

]
Γ̂
∗(m)
f,t−1 +

[
Λ̂t−1,2

0Kz

]
+


0

P′
[
θ̂∗t−1,m

0T−t+1

]
0Kz


 ,

that is setting 
0

P′
[
θ̂∗t−1,m

0T−t+1

]
0Kz

 =

[
Λ̂

(m)
2,t−1

0Kz

]
−

[
Λ̂

(m)
1,t−1

0Kz×Kf+1

]
Γ̂
∗(m)
f,t−1 −

[
Λ̂

(m)
3,t−1

0Kz×Kz

]
γ̂
∗(m)
z,t−1,

obtained replacing Γ̂prelimf,t−1 , γ̂prelimz,t−1 with Γ̂
∗(m)
f,t−1, γ̂

∗(m)
z,t−1 into θ̂prelimt−1,m above.

The following theorem shows how to construct asymptotically valid standard errors.10

10We do not report the proof to Theorem OA.3, given that it follows closely the proof to Theorem 2.
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Theorem OA.3 (standard errors of CSR OLS — time-varying estimator robust to misspecifi-

cation). Under Assumptions OA.1–OA.7 and OA.12, and the identification condition κ4 = 0, as

N →∞,

L̂
(m)
t−1 ≡ 1

N

[
X̂′X̂−N(Λ̂1 + Λ̂

(m)
1,t−1) X̂′Zt−1 −NΛ̂

(m)
3,t−1

Z′t−1X̂ Z′t−1Zt−1

]
→p L

(m)
t−1 and

Ω̂
(m)
t−1 ≡ Ω̂1,t−1 + Ω̂2,t−1 + Ω̂3,t−1 + Ω̂′3,t−1 + Ω̂4,t−1 + Ω̂′4,t−1 →p Ω

(m)
t−1,

setting

Ω̂1,t−1 ≡ σ̂2σ̂t−1mm


0 0′Kf 0′Kz

0Kf P′
[
M
−1
11M12

IT−t+1

] [
M
′
12M

−1
11 IT−t+1

]
P 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,

Ω̂2,t−1 ≡

 0 0′Kf 0′Kz
0Kf Ât−1ÛεÂ

′
t−1 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,
Ω̂3,t−1 ≡

0 0′Kf 0′Kz

0Kf −P′
[
M
−1
11M12

IT−t+1

] [
0T−t+1×(t−2)2 (θ̂′t−1,m ⊗ σ̂2IT−1) (σ̂2IT−1 ⊗ θ̂′t−1,m) 0T−t+1×(T−t+1)2

]
V̂t−1 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 , and

Ω̂4,t−1 =
0 0′Kf 0′Kz

0Kf −P′
[
M
−1
11M12

IT−t+1

] [
0T−t+1×(t−2)2 (θ̂′t−1,m ⊗ σ̂2IT−1) (σ̂2IT−1 ⊗ θ̂′t−1,m) 0T−t+1×(T−t+1)2

]
Ât−1′ 0Kf×Kz

0Kz 0Kz×Kf 0Kz×Kz

 ,

setting CHECK IF M̄D̃ or MD in θ̂t−1,m

θ̂t−1,m ≡M
(−1)
D,t−1(

1

N
ε̂′m̂t−1 − σ̂2

MDιt−1,T−1), where m̂t−1 ≡ Rt − (X̂,Zt−1)(Γ̂
∗(m)′
f,t−1 , γ̂

∗(m)′
z,t−1 )′,

(OA.76)

σ̂t−1mm ≡
m̂′t−1m̂t−1

N
− σ̂2Q̂′t−1Q̂t−1 + 2δ̂

∗(m)′
f,t−1 P′

[
θ̂t−1,m

0T−t+1

]
, (OA.77)

and

Ât−1,T−1 = −P′

[(
Q̂′t−1 ⊗M

−1
11 (It−2,0t−2×T−t+1)MD̃

)(
I2
T−1 − vec(IT−1)

vec′(MD̃)
T−Kf−Kz−2

)
0T−t+1×(T−1)2

]
,

where we recall M
(−1)
D,t−1 = M−1

11 [It−2,0(t−2)×(T−t+1)], and all the other quantities are defined in

Theorem 2.

55



OA.6 Two-Pass Methodology and Anomalies: the Conventional Approach -
Asymptotics

This section provides the formal derivations of the main results established in Section 4 of the paper.

Particularly, we derive the limiting behavior of the conventional anomaly premia estimator (see

Fama and French (2008)), which consists of running, for every time period, a CSR OLS regression

of asset returns Rt on the anomaly variables Zt−1, yielding the time-varying estimator in (13). The

T premia estimates are then averaged across time, resulting in the average premia estimator (14).

This approach coincides exactly with the second step of the two-pass Fama and MacBeth (1973)

procedure where, however, one excludes the betas from the model, to avoid EIV-related issues.

In the following, we analyze the limiting behavior of the conventional estimators in (13) and

(14), together with the corresponding conventional t-ratio in (15), under three different sampling

schemes: (i) when T →∞ and N is fixed, (ii) when N →∞ and T is fixed, and (iii) when both N

and T are allowed to diverge. We first present the results in the univariate-regression setting, that

is when one considers only one anomaly at the time (Kz = 1) in the regression model. Extension

to the multivariate case are presented in the final remarks.

Consider the following model

Rt = γ0,t−11N + Zt−1γz,t−1 + Bδf,t−1 + εt, (OA.78)

with the objective of estimating the anomaly premium γz,t−1. Following Fama and French (2008),

at each point in time, we run a cross-sectional OLS regression of (OA.78), using the anomaly Zt−1,

but excluding the betas B from the model. This gives the time-varying OLS estimator

γ̃z,t−1 ≡
Z′t−1M1NRt

Z′t−1M1NZt−1
, (OA.79)

which satisfies

γ̃z,t−1 = γz,t−1 +
Z′t−1M1N (Bδf,t−1 + εt)

Z′t−1M1NZt−1
.

Then, averaging the time-varying estimator across time yields the average OLS estimator

¯̃γz ≡
1

T − 1

T∑
t=2

γ̃z,t−1 =
1

T

T∑
t=1

Z′t−1M1NRt

Z′t−1M1NZt−1
(OA.80)
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which satisfies

¯̃γz = γ̄z +
1

T − 1

T∑
t=2

(
Z′t−1M1N (Bδf,t−1 + εt)

Z′t−1M1NZt−1

)
, (OA.81)

with γ̄z = 1
T−1

∑T
t=2 γz,t−1. and with estimated variance (squared standard error)

V̂ar[¯̃γz] =
1

(T − 1)2

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2 =

Σ̃γz

(T − 1)
, (OA.82)

with Σ̃γz defined in (22) denoting the sample average of the time-varying estimates.

In the following, we want to derive the limiting behaviour of the time-varying estimator (OA.79)

and locally-averaged estimator (OA.80) under the three sampling schemes mentioned above. Before

introducing our results, we state below the set of assumptions required (not necessarily at the same

time) to derive our results.

Assumption OA.14 (Finite-N Orthogonality). For a given fixed N , the βi and Zi,t−1 are cross-

sectionally orthogonal in the sample:

B′M1NZt−1 = 0Kf×Kz .

Assumption OA.15 (Large-N Orthogonality). As N →∞, the βi and Zi,t−1 are asymptotically

cross-sectionally orthogonal:
1

N
B′M1NZt−1 →p 0Kf×Kz .

Assumption OA.16 (Uncorrelatedness of risk factors and asset returns). For every t = 1, ..., T ,

the risk factors ft and the asset returns Rt are uncorrelated:

B = 0N×Kf
.

Assumption OA.17 (Constant anomaly premia). The anomaly premia γz,t−1 are constant over

time

γz,t−1 = γz, for every t = 2, .., T

OA.6.1 The large-T–fixed-N case

Under the large-T–fixed-N sampling scheme, clearly the time-varying OLS estimator in (OA.79) re-

mains unchanged and no meaningful asymptotic property can be established. The results regarding
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the locally-averaged OLS estimator in (OA.80) are summarized in the following theorem.11

Theorem OA.4. (Locally-Averaged OLS Estimator - large T–fixed N) Assume the finite-N or-

thogonality Assumption (OA.14), and the following regularity conditions: E[εt|Zt−1] = 0N , E[εtε
′
t|Zt−1] =

Σ, and 1
T−1

∑T
t=2

(Z′t−1M1N
ΣM1N

Zt−1)

(Z′t−1M1N
Zt−1)2

→p VN ,with 0 < VN <∞. Then, as T →∞ and N is fixed,

(i) Let γ̄0
z = limT→∞ γ̄z, then

¯̃γz →p γ̄
0
z

(ii) When, in addition, 1√
T−1

∑T
t=2 c′t−1εt →d N (0, VN ), setting ct−1 ≡

M1N
Zt−1

(Z′t−1M1N
Zt−1)

, then

√
T (¯̃γz − γ̄z)→d N (0, VN ).

(iii) When, in addition, 1
T−1

∑T
t=2(γz,t−1 − γ̄z)

2 → σ2
γz , then

Σ̃γz =
1

T − 1

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2 →p σ

2
γz + VN .

Proof. Parts (i) and (ii) follow immediately from (OA.81) and the assumptions made above. To

prove part (iii), notice that, using (OA.80) and (OA.81), we have that

γ̃z,t−1 − ¯̃γz = γz,t−1 − γ̄z +
Z′t−1M1N εt

Zt−1M1NZt−1
− 1

T − 1

T∑
s=2

Z′s−1M1N εs

Zs−1M1NZs−1
,

implying that

(γ̃z,t−1 − ¯̃γz)
2

= (γz,t−1 − γ̄z)
2 +

(
Z′t−1M1N εt

Zt−1M1NZt−1

)2

+ op(1).

Therefore, using the definition in (OA.82) and the assumptions above, we get

(T − 1)V̂ar(γ̃z,t−1) =
1

T − 1

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2

=
1

T − 1

T∑
t=2

(γz,t−1 − γ̄z)
2 +

1

T − 1

T∑
t=2

Z′t−1M1N εtε
′
tM1NZt−1

(Zt−1M1NZt−1)2 + op(1)

→p σ2
γz + VN

�
11We continue to define (OA.80) as locally-averaged for consistency with our definition even though, in this case,

we let T →∞.
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Remark OA.20. Unless Assumption OA.17 is satisfied, namely γz,t−1 is constant, the conventional

standard error of the average OLS estimator from the Fama and MacBeth (1973) regression contains

an upward bias given by σ2
γz > 0. This implies that the associated t-ratio would be smaller than

what it should, leading to potential under-rejections.

Remark OA.21. Theorem OA.4 easily extends to the multivariate case of Kz > 1. In this case:

(i) Let γ̄0
z = limT→∞ γ̄z, with γ̄z = 1

T−1

∑T
t=2 γz,t−1, then

¯̃γz →p γ̄
0
z

(ii) Assuming that 1
T−1

∑T
t=2

(
Z′t−1M1NZt−1

)−1
Z′t−1M1NΣM1NZt−1

(
Z′t−1M1NZt−1

)−1 →p VN ,

with VN being a symmetric and positive-definite matrix, and

1√
T−1

∑T
t=2 C′t−1εt →d N (0Kz ,VN ), setting Ct−1 ≡M1NZt−1(Z′t−1M1NZt−1)−1, then

√
T
(
¯̃γz − γ̄z

)
→d N (0Kz ,VN ) .

(iii) When, in addition, 1
T−1

∑T
t=2 (γz,t−1 − γ̄z) (γz,t−1 − γ̄z)

′ →p Σγz , with Σγz being a symmetric

and positive-definite matrix, then

(T − 1)V̂ar
[
¯̃γz

]
=

1

T − 1

T∑
t=2

(
γ̃z,t−1 − ¯̃γz

) (
γ̃z,t−1 − ¯̃γz

)′ →p Σγz + VN

OA.6.2 The fixed-T–large-N case

We now establish the asymptotic properties of the conventional estimators under the fixed-T–large-

N setting. Under this scheme, now the time-varying OLS estimator (OA.79) does change (with N)

and one can study its limiting behaviour. Therefore, in the next theorem, we summarize the main

results regarding both the conventional time-varying and average OLS estimators.

Theorem OA.5. (Locally-Averaged and Time-Varying OLS Estimators - fixed T – large N) As-

sume that the large-N orthogonality condition in Assumption (OA.15) holds. Assume also that the

following regularity conditions are satisfied: E[εt|Zt−1] = 0N , E[εtε
′
t|Zt−1] = Σ, N−1Z′t−1M1NZt−1 →p

at−1 > 0, and N−1(Z′t−1M1NΣM1NZt−1)→p σ
2at−1, with 1′NΣ1N/N → σ2. Then, as N → ∞

and T is fixed,
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(i)

γ̃z,t−1 →p γz,t−1 and ¯̃γz →p γ̄0
z .

(ii) Let Vt−1 = σ2/at−1. When, in addition, Assumption OA.15 is strengthened with 1√
N

B′M1NZt−1 →p

0Kf×Kz , and assuming that 1√
N

Z′t−1M1N εt →d N (0, σ2at−1), then

√
N (γ̃z,t−1 − γz,t−1)→d N (0, Vt−1) and

√
N (¯̃γz − γ̄z)→d N

(
0, V̄

)
with V̄ =

1

(T − 1)2

T∑
t=2

Vt−1.

(iii)

V̂ar[¯̃γz] =
1

(T − 1)2

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2 →p

1

(T − 1)2

T∑
t=2

(γz,t−1 − γ̄z)
2.

Proof. Parts (i) and (ii) follow immediately from (OA.80) and (OA.81), together with the as-

sumptions made above. To prove part (iii), notice that, using (OA.80) and (OA.81), we have

that

γ̃z,t−1 − ¯̃γz = γz,t−1 − γ̄z +
Z′t−1M1N (Bδf,t−1 + εt)

Zt−1M1NZt−1
− 1

T − 1

T∑
s=2

Z′s−1M1N (Bδf,s−1 + εs)

Zs−1M1NZs−1

Then, under the assumptions stated above, as N →∞

1

(T − 1)2

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2

=
1

(T − 1)2

T∑
t=2

(γz,t−1 − γ̄z)
2 + op(1).

�

Remark OA.22. Theorem OA.5 (iii) shows that the sample variance of the time-varying OLS

estimates converges to a positive constant, different from Vt−1 or V̄ . However, one can still obtain

a consistent estimation of the asymptotic variance of both γ̃z,t−1 and ¯̃γz,t−1, by imposing further

orthogonality conditions, as we show below. Assume that Assumption OA.16 holds, so that risk

factors and returns are orthogonal to each other. Let

σ̃2
zt =

ε̃′tε̃t
N −Kz − 1

(OA.83)
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with ε̃t = Rt−1N R̄t− (Zt−1−1N Z̄t−1)γ̃z,t−1. Then, under the above assumptions, σ̃2
zt−σ2 →p 0,

implying that

Ṽt−1 ≡
σ̃2
zt

1
N

(
Z′t−1M1NZt−1

) →p Vt−1 and
1

(T − 1)2

T∑
t=2

Ṽt−1 →p V̄ .

Remark OA.23. Theorem (OA.5) extends to the multivariate case (Kz > 1) as follows.

(i) Let γ̄z ≡ 1
T−1

∑T
t=2 γz,t−1. Then, under the same assumptions of Theorem (OA.5),

γ̃z,t−1 →p γz,t−1 and ¯̃γz →p γ̄
0
z .

(ii) Let Vt−1 = σ2A−1
t−1, with 1

NZ′t−1M1NZt−1 →p At−1 as N → ∞. Then, under the same

assumptions of Theorem (OA.5),

√
N (γ̃z,t−1 − γz,t−1)→d N (0Kz ,Vt−1) and

√
N
(
¯̃γz − γ̄z

)
→d N

(
0Kz , V̄

)
with V̄ =

1

(T − 1)2

T∑
t=2

Vt−1.

(iii)

(T − 1)V̂ar
[
¯̃γz

]
→p

1

T − 1

T∑
t=2

(
γ̃z,t−1 − ¯̃γz

) (
γ̃z,t−1 − ¯̃γz

)′

OA.6.3 The large-T–large-N case

In this section we generalize all the above results to the case of both N,T → ∞. We show below

that the limiting properties of the time-varying OLS estimator γ̃z,t−1 remain the same as the ones

obtained in the fixed-T–large-N case described in Section OA.6.2. Similar results hold also for the

locally-averaged estimator, even though it now benefits from the faster rate of convergence, given

that both N and T are now allowed to diverge jointly. The main results are summarized in the

following theorem.

Theorem OA.6. (Locally-Averaged and Time-Varying OLS Estimators - large-N–large-T ) As-

sume the all the conditions stated in Theorems OA.5 and OA.4 are satisfied. In addition, assume

that (T − 1)−1
∑T

t=2
σ2

at−1
= (T − 1)−1

∑T
t=2 Vt−1 →p V̄. Then, as N,T →∞,
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(i)

γ̃z,t−1 →p γz,t−1 and ¯̃γz →p γ̄
0
z .

(ii)

√
N (γ̃z,t−1 − γz,t−1)→d N (0, Vt−1) and

√
NT (¯̃γz − γ̄z)→d N

(
0, V̄

)
.

(iii)

T V̂ar [¯̃γz] =
1

T − 1

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2 →p Σ2

γz .

Proof. The proof follows immediately by combining all the results obtained in the above theorems.

Remark OA.24. Theorem OA.6 (iii) shows that, even in the case of both N,T →∞, the sample

variance of the time-varying OLS estimates converges to a positive quantity, different from V̄ and,

therefore, it would not be appropriate to use it for inferential conclusions on γ̃z,t−1 or ¯̃γz. However,

it is still possible to obtain a consistent estimation of the asymptotic variance of the estimators.

Let tr(·) denote the trace operator and define, for ε̃ = (ε̃2, · · · , ε̃T )′,

σ̃2 = tr
ε̃ε̃′

(T − 1)(N −Kz − 1)

Then, under the assumptions made above, σ̃2 →p σ
2, implying that

Ṽt−1 ≡
σ̃2

1
N

(
Z′t−1M1NZt−1

) →p Vt−1 and
1

T − 1

T∑
t=2

Ṽt−1 →p V̄.

Remark OA.25. Theorem OA.6 extends to the multivariate case (Kz > 1) as follows.

(i)

γ̃z,t−1 →p γz,t−1 and ¯̃γz →p γ̄
0
z .

(ii) Let σ2

(T−1)

∑T
t=2

(
Z′t−1M1N

Zt−1

N

)−1
→p V̄. Then

√
N (γ̃z,t−1 − γz,t−1)→d N (0Kz ,Vt−1) and

√
NT

(
¯̃γz − γ̄z

)
→d N

(
0Kz , V̄

)
.

(iii)

(T − 1)V̂ar
[
¯̃γz

]
=

1

T − 1

T∑
t=2

(
γ̃z,t−1 − ¯̃γz

) (
γ̃z,t−1 − ¯̃γz

)′ →p Σγz
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OA.7 Monte Carlo Experiments

VALENTINA - to replace-integrate the following.

OA.7.1 Premia Estimators: Finite-Sample Performance

In this section, we undertake a Monte Carlo simulation experiment to study the empirical perfor-

mance of the locally-averaged bias-adjusted estimator (40)

The return-generating process is given by

Rit = γ0 + Z1i,t−1γz1 + Z2i,t−1γz2 + βi(γ1 + ft − E[ft]) + εit. (OA.84)

We consider balanced panels with a time-series dimension of T = 36 and T = 72 observations.

Specifically, ft in (OA.84) is the excess market return (from Kenneth French’s website) from January

2013 to December 2015 for T=36, and from January 2011 to December 2015 for T=72. In addition,

E[ft] in (OA.84) is set equal to the time-series mean of ft over the two sample periods 2013-2015

and 2011-2015, when performing the analysis for T = 36 and T = 72, respectively. To obtain

representative values for γ0, γ1 and βi in (OA.84), we employ a cross-section of 1,000 stocks from

CRSP database in addition to the excess market return. Based on this balanced panel of 1,000

stock returns and the excess market return, for each time-series sample size, we compute the OLS

estimates of βi, γ0, and γ1 and we set them in (OA.84).

For the anomalies Z1i,t−1 and Z2i,t−1 in (OA.84), we first use data on two firms’ characteristics,

namely the book-to-market ratio (Z†1i,t−1) and the asset growth (Z†2i,t−1), over the two (lagged)

sample periods from December 2012 to Novemeber 2015 (for T = 36) and from December 2010

to November 2015 (for T = 72). We then orthogonalize both Z†1i,t−1 and Z†2i,t−1 with the market

factor ft, that is we derive

Z1i = MDZ
†
1i + 1T−1Z̄

†
1i (OA.85)

Z2i = MDZ
†
2i + 1T−1Z̄

†
2i (OA.86)

where Z1i = [Z1i,1, ..., Z1i,T−1]′, Z2i = [Z2i,1, ..., Z2i,T−1]′, MD = IT−1 − D(D′D)−1D′, with

D = (1T−1,f) and where Z̄†ik = 1
T−1

∑T−1
t=1 Z†ki,t, with k = 1, 2. In this way we ensure that
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Cov(Z1i,t−1, ft) = Cov(Z2i,t−1, ft) = 0 and that the sample averages of both Z1i and Z2i match

the ones of the original data. We then use (OA.85) and (OA.86) in the data generating process

in (OA.84). In our simulation design, both the factor and the anomalies realizations are taken as

given and kept fixed throughout.

To set the values of γz1 and γz2 , we consider three different cases. In the first case, we set both

the parameters equal to zero, i.e. γz1 = γz2 = 0. In the second case, we set γz2 = 0, while

we compute the estimate of γz1 using our bias-adjusted estimator in Section ??. The third case

considers γz1 6= γz2 6= 0, where γz1 is the same of the previous case and γz2 has been calibrated

by estimating the regression of the stock returns on the excess market factor and asset growth

anomaly.

The calibration of the error term εit in (OA.84) is a more delicate task and is described in the next

two subsections. In all the simulation experiments, we consider cross-sections of N = 100, 500 and

1, 000 stocks. All the results are based on 3,000 Monte Carlo replications.

Case (i): Zt and εt uncorrelated

We start by considering the simplest case in which we assume that εt ∼ N (0, σ2IT−1) and that it is

also uncorrelated with both Z1i,t−1 and Z2i,t−1. We calibrate the parameter σ2 using the estimator

in (33) applied to our data of stock returns, excess market factor and the two anomalies. Tables

II, III and IV report the percentage bias (Bias %) and root mean squared error (RMSE) of the

bias-adjusted CSR OLS estimator (??) for the three cases γz1 = γz2 = 0 (Table II), γz1 6= 0, γz2 = 0

(Table III), and γz1 6= γz2 6= 0 (Table IV) . Panels A and B are for the cases of T = 36 and T = 72,

respectively.

In Tables V, IX and VII we report the empirical rejection rates of the t-test. The null hypothesis

is that the parameter of interest is equal to its true value. The results are reported for different

levels of significance (10%, 5% and 1%) and for different values of N and T . The t-statistics are

derived using the asymptotic distribution of the bias-adjusted CSR OLS estimator in Theorem ??

and are compared with the critical values of a standard normal distribution.
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Table II: Case 1. γ∗z1 = γ∗z2 = 0. Bias and RMSE

Panel A: T=36

Bias % RMSE

N 100 500 1000 100 500 1000

γ̂∗0 -0.291 -0.061 -0.011 0.343 0.142 0.106
γ̂∗1 0.405 0.066 0.029 0.166 0.067 0.055
γ̂∗z1 0.011 0.000 0.000 0.484 0.230 0.161
γ̂∗z2 0.011 0.000 0.000 1.052 0.509 0.315

Panel A: T=72

Bias % RMSE

N 100 500 1000 100 500 1000

γ̂∗0 -0.095 -0.007 -0.003 0.054 0.022 0.016
γ̂∗1 0.018 0.001 0.013 0.026 0.011 0.009
γ̂∗z1 0.000 0.000 0.000 0.079 0.037 0.013
γ̂∗z2 0.000 0.000 0.000 0.120 0.054 0.037

Table III: Case 2. γ∗z1 6= 0, γ∗z2 = 0. Bias and RMSE

Panel A: T=36

Bias % RMSE

N 100 500 1000 100 500 1000

γ̂∗0 -0.552 -0.061 -0.051 0.172 0.069 0.052
γ̂∗1 0.115 0.025 0.015 0.085 0.035 0.029
γ̂∗z1 0.523 -0.482 0.327 0.251 0.118 0.084
γ̂∗z2 0.003 -0.002 0.000 0.379 0.170 0.118

Panel A: T=72

Bias % RMSE

N 100 500 1000 100 500 1000

γ̂∗0 -0.340 -0.010 -0.005 0.105 0.044 0.032
γ̂∗1 0.062 0.009 0.002 0.049 0.020 0.016
γ̂∗z1 1.249 0.235 0.155 0.150 0.071 0.050
γ̂∗z2 0.002 -0.001 0.000 0.326 0.158 0.098
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Table IV: Case 3. γ∗z1 6= γ∗z2 6= 0. Bias and RMSE

Panel A: T=36

Bias % RMSE

N 100 500 1000 100 500 1000

γ̂∗0 -1.563 -0.613 -0.503 0.579 0.226 0.173
γ̂∗1 1.013 0.201 0.132 0.313 0.126 0.105
γ̂∗z1 -1.875 -1.396 0.480 0.802 0.374 0.265
γ̂∗z2 2.768 -1.496 -0.572 0.921 0.539 0.376

Panel A: T=72

Bias % RMSE

N 100 500 1000 100 500 1000

γ̂∗0 -0.080 0.001 0.001 0.032 0.014 0.010
γ̂∗1 0.013 0.002 0.000 0.015 0.006 0.005
γ̂∗z1 0.904 0.178 0.171 0.047 0.022 0.016
γ̂∗z2 1.026 -0.653 -0.396 0.101 0.049 0.030

Table V: Case 1. γ∗z1 = γ∗z2 = 0. Rejection rates

Panel A: T=36

N=100 N=500 N=1000

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.100 0.056 0.014 0.097 0.049 0.009 0.103 0.050 0.011
γ̂∗1 0.098 0.047 0.013 0.104 0.055 0.011 0.104 0.053 0.010
γ̂∗z1 0.101 0.051 0.011 0.101 0.056 0.010 0.101 0.053 0.010
γ̂∗z2 0.099 0.049 0.011 0.097 0.043 0.009 0.101 0.048 0.008

Panel B: T=72

N=100 N=500 N=1000

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.100 0.053 0.010 0.105 0.053 0.009 0.103 0.052 0.011
γ̂∗1 0.102 0.050 0.012 0.096 0.050 0.009 0.099 0.051 0.009
γ̂∗z1 0.101 0.053 0.009 0.102 0.053 0.010 0.101 0.051 0.013
γ̂∗z2 0.105 0.060 0.011 0.105 0.052 0.010 0.101 0.048 0.010
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Table VI: Case 2. γ∗z1 6= 0, γ∗z2 = 0. Rejection Rates

Panel A: T=36

N=100 N=500 N=1000

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.103 0.055 0.016 0.098 0.050 0.010 0.103 0.051 0.011
γ̂∗1 0.098 0.054 0.013 0.105 0.053 0.010 0.104 0.053 0.008
γ̂∗z1 0.101 0.051 0.011 0.100 0.053 0.011 0.102 0.052 0.010
γ̂∗z2 0.098 0.049 0.011 0.098 0.043 0.009 0.101 0.048 0.009

Panel B: T=72

N=100 N=500 N=1000

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.102 0.051 0.011 0.102 0.053 0.010 0.102 0.052 0.011
γ̂∗1 0.105 0.051 0.010 0.098 0.049 0.008 0.098 0.048 0.008
γ̂∗z1 0.102 0.052 0.009 0.102 0.054 0.010 0.102 0.052 0.010
γ̂∗z2 0.109 0.059 0.012 0.105 0.052 0.010 0.101 0.047 0.010

Table VII: Case 3. γ∗z1 6= γ∗z2 6= 0. Rejection Rates

PANEL A: T=36

N=100 N=500 N=1000

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.106 0.057 0.015 0.098 0.050 0.011 0.100 0.052 0.010
γ̂∗1 0.106 0.053 0.014 0.102 0.056 0.010 0.095 0.052 0.010
γ̂∗z1 0.105 0.047 0.01 0.098 0.054 0.011 0.101 0.055 0.010
γ̂∗z2 0.099 0.054 0.013 0.098 0.044 0.009 0.099 0.048 0.008

Panel A: T=72

N=100 N=500 N=1000

0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.105 0.048 0.011 0.102 0.056 0.009 0.101 0.055 0.011
γ̂∗1 0.104 0.051 0.007 0.092 0.050 0.009 0.098 0.048 0.009
γ̂∗z1 0.105 0.053 0.009 0.102 0.054 0.010 0.101 0.055 0.013
γ̂∗z2 0.109 0.061 0.012 0.104 0.052 0.010 0.101 0.047 0.010
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Case (ii): Zt and εt weakly cross-sectionally correlated

In the second case, we allow the model disturbances to be weakly cross-sectionally correlated with

the anomalies. In particular, we consider the following data-generating process for the error terms:

εit =
σ

τ

(
uit +

1′Kzηit

N δ

)
(OA.87)

where τ = 1+ Kz
N2δ , uit is generated from an i.i.d. standard normal random variable, σ2 is calibrated

as in the uncorrelated case, while the Kz×1 vector ηit is calibrated using the standardized residuals

obtained by fitting a vector autoregressive (VAR) process of order 1 on the two anomalies. The

parameter δ controls the strength of the cross-sectional correlation between the shocks and the

anomalies: the higher the value of δ is, the weaker the cross-sectional correlation is. For our

theoretical results to hold, we require δ ≥ 0.5.

Table VIII reports the percentage bias (Bias %) and root mean squared error (RMSE) of the bias-

adjusted CSR OLS estimator derived in (??) for case γz1 6= 0, γz2 = 0, where we use δ = 0.5

in the data-generating process (OA.87). Panels A and B are for the cases of T = 36 and T =

72, respectively. The empirical rejection rates of the t-test, under the null hypothesis that the

parameters of interest are equal to the true values are reported in Table IX. As before, the results

are reported for the three levels of significance of 10%, 5% and 1% and for different values of N and

T . The t-statistics are derived again using the standard errors the CSR OLS estimator in Theorem

OA.2, and are compared with the critical values of a standard normal distribution.

The empirical distributions of the four parameters γ̂∗0 , γ̂∗1 , γ̂∗z1 , and γ̂∗z2 , for different values of δ (i.e.,

δ = 0.1, 0.25, 0.50, 1) are depicted in Figure 1, where the black solid line represents the standard

normal density. The results are obtained using 3,000 Monte Carlo replications, where we set T = 72

and N = 1000.
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Table VIII: Case 2. γ∗z1 6= 0, γ∗z2 = 0 and δ = 0.5. Bias and RMSE

Panel A: T=36

Bias % RMSE

N 100 500 1000 100 500 1000
γ̂∗0 -0.974 -0.794 -0.529 0.576 0.227 0.174
γ̂∗1 0.934 0.243 0.219 0.305 0.125 0.105
γ̂∗z1 0.144 0.025 0.026 0.799 0.373 0.266
γ̂∗z2 0.004 0.004 0.003 1.190 0.538 0.376

Panel A: T=72

Bias % RMSE

N 100 500 1000 100 500 1000
γ̂∗0 -0.010 -0.008 0.000 0.005 0.002 0.002
γ̂∗1 0.001 0.000 0.000 0.003 0.001 0.001
γ̂∗z1 0.559 0.172 -0.016 0.008 0.004 0.003
γ̂∗z2 -0.001 0.000 0.000 0.017 0.008 0.005

Table IX: Case 2. γ∗z1 6= 0, γ∗z2 = 0 and δ = 0.5. Rejection Rates

Panel A: T=36

N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.106 0.059 0.015 0.101 0.054 0.010 0.100 0.050 0.011
γ̂∗1 0.102 0.052 0.014 0.102 0.056 0.010 0.102 0.051 0.010
γ̂∗z1 0.103 0.049 0.011 0.103 0.052 0.012 0.103 0.054 0.011
γ̂∗z2 0.097 0.048 0.01 0.097 0.046 0.009 0.099 0.048 0.009

Panel B: T=72

N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.097 0.044 0.010 0.106 0.050 0.010 0.102 0.056 0.011
γ̂∗1 0.104 0.048 0.009 0.091 0.049 0.007 0.097 0.049 0.008
γ̂∗z1 0.098 0.049 0.008 0.102 0.053 0.010 0.102 0.052 0.012
γ̂∗z2 0.105 0.058 0.011 0.101 0.051 0.010 0.101 0.048 0.010
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Figure 1: Empirical distribution of γ̂∗0 , γ̂∗1 , γ̂∗z1 , and γ̂∗z2 for different values of δ.
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Case (iii): Zt and εt cross-sectionally correlated with cross-sectionally dependent error terms

As a third experiment, in this Section we consider the more general case in which we allow

also for a weak form of cross-sectional dependence among the model disturbances, besides the

cross-sectional correlation between εit and the anomalies.

Particularly, we generate the disturbances using the following weak factor structure

εit =
σi
τ

(
vit +

1′Kzηit

N δ

)
(OA.88)

where

vit =
1

ωi

(
νt

√
θ

Nκ
ci +
√

1− θ ξit

)
σi, ωi =

√
θ

N2κ
c2
i + (1− θ)

and where νt, ci and ξit are generated from i.i.d. standard normal random variables. The parameter

κ controls the strength of the cross-sectional dependence of the shocks (the bigger κ is, the weaker

the dependence), while 0 ≤ θ ≤ 1 is a shrinkage parameter that controls the weight assigned to the

diagonal end extra-diagonal elements of the covariance matrix Σ. To obtain representative values

for each σi, we first estimate the residual variances from historical data. Then, at each Monte Carlo

iteration, we generate a string of N values from a Uniform distribution, with parameters calibrated

to the 10%-winsorized minimum and maximum value of the series of cross-sectional estimated

variances σ̂2
i . This resampling procedure is used to minimize the impact of an ill-conditioned Σ on

the simulation results. For our theoretical results to hold, we require κ ≥ 0.5. Therefore, in Tables

X and XI, we report the results for the case of θ = κ = δ = 0.5, setting the true values γz1 6= 0 and

γz2 = 0. Panels A and B of Table X report the bias and the RMSE of the parameter estimates for

the case of T = 36 and T = 72, respectively. The empirical rejection rates of the t-test, under the

null hypothesis that the parameters of interest are equal to the true values are reported in Table

XI.

Finally, Figure 2 shows the empirical distributions of the four premia parameters, obtained with

3,000 Monte Carlo replications, with T = 72 and N = 1000. In the figure, we fix the parameters

that regulate the cross-sectional dependence to θ = κ = 0.5 and we show the results for different

values of δ = 0.1, 0.25, 0.50, 1.
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Table X: Case 3. γ∗z1 6= 0, γ∗z2 = 0 and δ = θ = κ = 0.5. Bias and RMSE

Panel A: T=36

Bias % RMSE

N 100 500 1000 100 500 1000
γ̂∗0 -2.041 -1.079 -0.765 0.531 0.216 0.162
γ̂∗1 0.710 0.163 0.210 0.278 0.117 0.097
γ̂∗z1 0.126 0.026 0.020 0.748 0.352 0.249
γ̂∗z2 0.002 0.002 0.001 0.525 0.432 0.357

Panel A: T=72

Bias % RMSE

N 100 500 1000 100 500 1000
γ̂∗0 -0.178 -0.839 0.013 0.320 0.134 0.099
γ̂∗1 0.211 0.075 0.036 0.155 0.065 0.053
γ̂∗z1 -0.997 -0.584 -0.333 0.446 0.211 0.151
γ̂∗z2 -0.002 0.001 -0.001 0.502 0.418 0.220
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Table XI: Case 3. γ∗z1 6= 0, γ∗z2 = 0 and δ = θ = κ = 0.5. Rejection Rates

Panel A: T=36

N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.093 0.049 0.008 0.103 0.053 0.010 0.102 0.051 0.010
γ̂∗1 0.089 0.046 0.011 0.099 0.053 0.011 0.097 0.048 0.010
γ̂∗z1 0.103 0.050 0.009 0.095 0.053 0.009 0.100 0.052 0.009
γ̂∗z2 0.099 0.050 0.011 0.103 0.053 0.010 0.101 0.052 0.009

Panel B: T=72

N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010

γ̂∗0 0.100 0.048 0.009 0.100 0.050 0.012 0.100 0.052 0.012
γ̂∗1 0.106 0.050 0.011 0.103 0.052 0.013 0.101 0.053 0.012
γ̂∗z1 0.099 0.049 0.010 0.093 0.052 0.008 0.100 0.049 0.011
γ̂∗z2 0.103 0.055 0.013 0.103 0.052 0.010 0.100 0.051 0.011
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Figure 2: Empirical distribution of γ̂∗0 , γ̂∗1 , γ̂∗z1 , and γ̂∗z2 for different values of δ, with κ = θ = 0.5.
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OA.7.2 Cross-Sectional R2 Test: Size and Power

In this Section, we investigate the size and power properties of the cross-sectional R2-test, based on

the Tz statistics derived in Theorem 6. Specifically, we generate asset returns using the specification

in (OA.84), with the error disturbances as in (OA.88), using different scenarios for the parameters

δ, θ, κ. To evaluate the size of the test, we generate the returns as in (OA.84) and under the null

hypothesis of no anomalies (γz1 = γz2 = 0). For the evaluation of the power we set (γz1 6= γz2 6= 0),

where γz1 and γz2 have been calibrated using real data as in the previous cases. Then, at each

Monte Carlo simulation we calculate the Tz statistics as in Theorem 6 and compare its empirical

distribution (over the 3,000 Monte Carlo replications) with the linear combination of i.i.d chi-

squared distributions defined in Theorem 6. Tables XII and XIII report the rejection rates for

different levels of significance (10%, 5%, 1%) and for different values of N (100, 500, 1000) when

T = 36 and T = 72, respectively. In both the tables we consider the case of cross-sectional

dependence among Zi and εi, setting δ = 0.5 (Panels A and B) and δ = 0.25 (Panels C and D),

under both the assumptions of Σ diagonal (i.e. θ = 0 and κ = 0.5) and Σ full (where we set

θ = κ = 0.5).

The results in the two tables suggest that the rejection rates of our test under the null of no

anomalies are excellent for the diagonal and the full cases, when δ = 0.5 When simulating with

δ = 0.25, consistently with our theory, the test starts to over-rejects as N increases, especially

for the case of T = 36. The power properties of the test are fairly good when N = 100 and

excellent when N ≥ 500. As expected, power increases when the number of assets becomes large

and the rejection rates are similar across time-series sample sizes. Overall, these simulation results

suggest that our test Tz should be fairly reliable for the time-series and cross-sectional dimensions

encountered in our empirical work.
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Table XII: Size and power of the Tz -test in a one-factor model with two anomalies (T = 36)

SIZE POWER

N 10% 5% 1% 10% 5% 1%

Panel A: Zi and εi cross-sectionally correlated

(δ = 0.5) with Σ diagonal (θ = 0, κ = 0.5)

100 0.104 0.046 0.008 0.996 0.993 0.972
500 0.106 0.054 0.010 1.000 1.000 1.000

1000 0.104 0.050 0.010 1.000 1.000 1.000

Panel B: Zi and εi i cross-sectionally correlated

(δ = 0.5) with Σ full (θ = κ = 0.5)

100 0.105 0.052 0.011 0.944 0.859 0.816
500 0.103 0.053 0.012 1.000 0.985 0.942

1000 0.102 0.052 0.012 1.000 1.000 1.000

Panel C: Zi and εi cross-sectionally correlated

(δ = 0.25) with Σ diagonal (θ = 0, κ = 0.5)

100 0.103 0.042 0.006 1.000 0.998 0.984
500 0.114 0.057 0.012 1.000 1.000 1.000

1000 0.124 0.069 0.012 1.000 1.000 1.000

Panel D: Zi and εi cross-sectionally correlated

(δ = 0.25) with Σ full (θ = κ = 0.5)

100 0.098 0.045 0.006 0.975 0.924 0.895
500 0.115 0.060 0.012 1.000 1.000 1.000

1000 0.122 0.070 0.012 1.000 1.000 1.000

The table presents the size and power properties of the Tz test. The null hypothesis is that there
are no anomalies. The alternative hypothesis is that there is at least one anomaly. The results are
reported for T = 36, for different levels of significance (10%, 5%, and 1%) and for different values of
the number of stocks (N) using 3,000 simulations. The rejection rates are based on the asymptotic
distribution in Theorem 6.
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OA.8 Granularity

The relevance of granularity can be understood from the following result, reported without proof,

which extends Adler and Rosalsky (1991).

Proposition OA.4 (limiting behavior of weighted averages). For an iid sequence Yi with E|Y |2 <

∞, assume the following granularity conditions hold, for some finite constant C,

N∑
i=1

a2
i = o(b2N ),

1

bN

N∑
i=1

ai → C.

(i) Then

1

bN

N∑
i=1

aiYi →p CEY <∞.

(ii) If, in addition, for some finite n < N and some constant 0 < Ci <∞, 1 ≤ i ≤ n,

ai
bN
→ Ci for every 1 ≤ i ≤ n <∞,

then

1

bN

N∑
i=1

ajYi →p CEY +
n∑
i=1

Ci(Yi − EY ).

Case (i) is the granular case, which is implicit in our regularity assumptions, setting ai = wi,t−1

and bN = N , with C = 1, such that wi,t/N = Op(N
−1). Note that only when C = 1, the simple

and weighted average converge to the same limit, namely, EY . Case (ii) is the non-granular case,

which leads to a random limit of the weighted average.

OA.9 No-Arbitrage with Anomalies

We show how the presence of anomalies does not necessarily rule out no-arbitrage with the following

proposition, reported without proof.

Proposition OA.5 (no-arbitrage with anomalies). The asset pricing restriction (4) does not vi-

olate conditional no-arbitrage whenever (6) holds with

sup
N
γ ′t−1,zZ

′
t−1[E(εtε

′
t|It−1,Π)]−1Zt−1γ

′
t−1,z ≤ C <∞ almost surely, (OA.89)

for some constant C, where we set the N ×Kz matrix Zt ≡ (z1,t, · · · , zN,t)′.
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Table XIII: Size and power of the Tz-test in a one-factor model with two anomalies (T = 72)

SIZE POWER

N 10% 5% 1% 10% 5% 1%

Panel A: Zi and εi cross-sectionally correlated

(δ = 0.5) with Σ diagonal (θ = 0, κ = 0.5)

100 0.107 0.051 0.013 1.000 1.000 1.000
500 0.096 0.049 0.012 1.000 1.000 1.000

1000 0.099 0.050 0.010 1.000 1.000 1.000

Panel B: Zi and εi i cross-sectionally correlated

(δ = 0.5) with Σ full (θ = κ = 0.5)

100 0.107 0.049 0.013 1.000 1.000 1.000
500 0.096 0.048 0.012 1.000 1.000 1.000

1000 0.099 0.049 0.011 1.000 1.000 1.000

Panel C: Zi and εi cross-sectionally correlated

(δ = 0.25) with Σ diagonal (θ = 0, κ = 0.5)

100 0.078 0.034 0.005 1.000 1.000 1.000
500 0.086 0.036 0.006 1.000 1.000 1.000

1000 0.100 0.044 0.011 1.000 1.000 1.000

Panel D: Zi and εi cross-sectionally correlated

(δ = 0.25) with Σ full (θ = κ = 0.5)

100 0.082 0.036 0.006 1.000 1.000 1.000
500 0.087 0.037 0.006 1.000 1.000 1.000

1000 0.102 0.043 0.011 1.000 1.000 1.000

The table presents the size and power properties of the Tz test. The null hypothesis is that there
are no anomalies. The alternative hypothesis is that there is at least one anomaly. The results are
reported for T = 72, for different levels of significance (10%, 5%, and 1%) and for different values of
the number of stocks (N) using 3,000 simulations. The rejection rates are based on the asymptotic
distribution in Theorem 6.
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As practical examples when Proposition OA.5 does and does not hold, consider the case

when E(εtε
′
t|It−1,Π)] exhibits a limited degree of cross-dependence of the εt, such as when equal

to σ2IN for some constant scalar σ2. Then, condition (OA.89) is satisfied when either γz =

O(N−
1
2 ) or Z′t−1Zt−1 = O(1). These restrictions are needed because the Zt−1 affect the mean

but not the variances and covariances of the returns. In contrast, when instead E(εtε
′
t|It−1,Π)] =

Zt−1CzZ
′
t−1 + σ2IN , for some Kz × Kz constant non-singular matrix Cz, then (OA.89) is re-

dundant as it imposes no cross-sectional constraint. In fact, by the Sherman-Morrison decom-

position, whenever Z′t−1Zt−1 diverges as N → ∞, one obtains Z′t−1[E(εtε
′
t|It−1,Π)]−1Zt−1 =

Z′t−1Zt−1(σ2C−1
z + Z′t−1Zt−1)−1C−1

z →p C−1
z , that is, bounded even for large N . No restric-

tion arises because the Zt−1 affect the mean, variance, and covariances of the returns in the same

way, making their effect neutral in terms of the risk-return trade-off.

OA.10 Time-Varying Betas

This section establishes that, under Assumption 1, namely

(Bs −B)′(Bs −B)

N
= o(N−

1
2 ), (OA.90)

the whole asymptotic analysis remains unchanged as if the loadings were constant.

Our smoothing assumption is extremely general and accommodates a great variety of time-

varying patterns of the loadings. Important examples include the case when

βi,s = βi + B1igs + B2izis, (OA.91)

for matrices of coefficients β0i (Kf × 1), B1i (Kf ×Kg), and B2 (Kf ×Kz) such that

N∑
i=1

(B1i ⊗B1i) = o(N
1
2 ) and

N∑
i=1

(B2i ⊗B2i)(zis ⊗ zis) = o(N
1
2 ).

In turn, the former conditions are implied when B1i = B∗1i/(N
1
4 log(N)) and B2i = B∗2i/(N

1
4 log(N))

for coefficients B∗1i and B∗2i satisfying N−1
∑N

i=1(B∗1i ⊗B∗1i) = O(1) and N−1
∑N

i=1(B∗2i ⊗B∗2i) =

O(1).

SOME SIMULATIONS/NUMERICAL ILLUSTRATIONS
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We will focus on our main estimator, the CSR OLS-type estimator of Section 5. Consider again

the conditional asset pricing model (see (7))

Rt = Zt−1γz,t−1 + Xt−1Γf,t−1 + εt (OA.92)

setting Xt−1 ≡ (1N ,Bt−1), where Γf,t−1 = (γ0,t−1, δ
′
f,t−1)′, with δf,t−1 defined in (8). Then

Rt = Zt−1γz,t−1 + XΓf,t−1 + εt + (Xt−1 −X)Γf,t−1, (OA.93)

and in the matrix sense

R = γ01′N + ∆z + (IT−1 ⊗ γ ′z)



Z′1

Z′2

...

Z′T−1

+ ∆B + δfB
′ + ε,

setting

∆B ≡



δ′f,1 0′Kf
. . . 0′Kf

0′Kf
δ′f,2 . . . 0′Kf

...
...

. . .
...

0′Kf
0′Kf

. . . δ′f,T−1





(B1 −B)′

(B2 −B)′

...

(BT−1 −B)′

 , ∆z =



γ ′z,1 − γ ′z 0′Kz
. . . 0′Kz

0′Kz
γ ′z,2 − γ ′z . . . 0′Kz

...
...

. . .
...

0′Kz
0′Kz

. . . γ ′z,t−1 − γ ′z





Z′1

Z′2

...

Z′T−1

 , δf ≡

 δ′f,1
...

δ′f,T−1

 ,

with ∆z defined in Assumption OA.1. Then

B̂ = R′M1T−1F(F′M1T−1F)−1 = R′P =
(
1Nγ

′
0 + ∆′z + (Z1,Z2, · · · ,ZT−1)(IT−1 ⊗ γz) + ∆′B + Bδ′f + ε′

)
P

= (ε′ + ∆′B)P + B,

where the last equation follows from Assumption OA.1. The term ∆′BP on the right-hand side of B̂

appears when considering the time-varying loadings but its effect will be shown to be asymptotically

negligible (as N →∞).

We now show that asymptotically one obtains that, for our CSR OLS estimator, the results

of Theorems 1-2 are obtained by replacing Bt−1 with B. The same applies to all our asymptotic

analyses of the CSR WLS estimator, the R2 test, and the misspecification-robust case.12

12Details are available upon request.
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By inspecting our CSR OLS-type estimator, namely[
Γ̂∗f,t−1

γ̂∗z,t−1

]
≡

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]−1 [
X̂′Rt −NΛ̂2,t−1

Z′t−1Rt

]
,

one sees that we need to study the following quantities (and show that are asymptotically equivalent

when the locally-constant case is considered). First, considering the terms in the matrix inverse,

namely

1

N
B̂′B̂ =

1

N
[P′(∆B + ε) + B′][(∆B + ε)′P + B]

=
1

N
[P′ε+ B′][ε′P + B]︸ ︷︷ ︸

(locally-constant term)

+
1

N
P′∆B∆′BP +

1

N
P′∆B(B + ε′P) +

1

N
(B′ + P′ε)∆′BP︸ ︷︷ ︸

(time-varying terms)

.

which requires

1

N
∆B∆′B = o(1),

1

N
∆BB = o(1), and ∆Bε

′ = op(1),

and

1

N
Z′t−1B̂ =

1

N
Z′t−1[B + (∆B + ε)′P]

=
1

N
Z′t−1[B + ε′P]︸ ︷︷ ︸

(locally-constant terms)

+
1

N
Z′t−1∆

′
BP,︸ ︷︷ ︸

(time-varying term)

which requires

1

N
Z′t−1∆

′
B = op(1).

Consider now the terms to the right hand of the matrix inverse. Then,

1

N
R′tB̂ =

1

N
(Zt−1γz,t−1 + XΓf,t−1 + εt + (Xt−1 −X)Γf,t−1)′[B + (∆B + ε)′P]

=
1

N
(Zt−1γz,t−1 + XΓf,t−1 + εt)

′[B + ε′P]︸ ︷︷ ︸
(locally-constant terms)

+
1

N
(Zt−1γz,t−1 + XΓf,t−1 + εt + (Xt−1 −X)Γf,t−1)′∆′BP +

1

N
((Xt−1 −X)Γf,t−1)′[B + ε′P]︸ ︷︷ ︸

(time-varying term)

, and

1

N
Z′t−1B̂ = Z′t−1[B + (∆B + ε)′P] =

1

N
Z′t−1[B + ε′P]︸ ︷︷ ︸

(locally-constant terms)

+
1

N
Z′t−1∆

′
B,︸ ︷︷ ︸

(time-varying term)
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which requires strengthening the above conditions to rate op(N
−1/2), namely

1

N
∆B∆′B = o(N−1/2),

1

N
∆BB = o(N−1/2), and ∆Bε

′ = op(N
−1/2), and

1

N
Z′t−1∆

′
B = op(N

−1/2).

(OA.94)

It turns out that Assumption 1 delivers precisely the required sufficient condition. For example,

for the following quantity

1

N
∆B∆′B =

1

N



δ′f,1 0′Kf
. . . 0′Kf

0′Kf
δ′f,2 . . . 0′Kf

...
...

. . .
...

0′Kf
0′Kf

. . . δ′f,T−1


(B1 −B)′(B1 −B) . . .

...
...

. . . (BT−1 −B)′(BT−1 −B)




δ′f,1 0′Kf
. . . 0′Kf

0′Kf
δ′f,2 . . . 0′Kf

...
...

. . .
...

0′Kf
0′Kf

. . . δ′f,T−1

 ,

to be op(N
− 1

2 ) one needs N−1(Bs − B)′(Bt − B) = o(N−
1
2 ) for every t, s = 1, · · · , T − 1 which,

by Holder’s inequality for matrices, is implied immediately by Assumption 1. Similar arguments

apply to all the other terms in (OA.94).

OA.11 List of Variables
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Table A.1: List of variables. The table shows the list of predictors used in the paper. A detailed
description of the variables can be found in ?. The variables have been grouped following the
ex-ante categorization of Hou et al. (2020)

Variable name Description Category

ResidualMomentum 6 month residual momentum Momentum
AnnouncementReturn Earnings announcement return Momentum
CustomerMomentum Customer momentum Momentum
retConglomerate Conglomerate return Momentum
EarningsSurprise Earnings Surprise Momentum
High52 52 week high Momentum
IndMom Industry Momentum Momentum
AnalystRevision Analysts revision Momentum
EarnSupBig Earnings surprise of big firms Momentum
IndRetBig Industry return of big firms Momentum
RevenueSurprise Revenue Surprise Momentum
Mom12m Momentum (12 month) Momentum
Mom6m Momentum (6 month) Momentum
MomVol Momentum and Volume Momentum
IntMom Intermediate Momentum Momentum

EarningsConsistency Earnings growth for consistent growers Value Versus Growth
SP Sales-to-price Value Versus Growth
EP Earnings-to-Price Ratio Value Versus Growth
NetPayoutYield Net Payout Yield Value Versus Growth
PayoutYield Payout Yield Value Versus Growth
IntanBM Intangible return using BM Value Versus Growth
IntanCFP Intangible return using CFtoP Value Versus Growth
IntanEP Intangible return using EP Value Versus Growth
IntanSP Intangible return using Sale2P Value Versus Growth
LRreversal Long-run reversal Value Versus Growth
MRreversal Momentum-Reversal Value Versus Growth
ShortInterest Short Interest Value Versus Growth
EquityDuration Equity Duration Value Versus Growth
cfp Operating Cash flows to price Value Versus Growth
sfe Earnings Forecast to price Value Versus Growth
AM Total assets to market Value Versus Growth
BMdec Book to market using December ME Value Versus Growth
AnalystValue Analyst Value Value Versus Growth
DivSeason Dividends Value Versus Growth
ShareRepurchase Share repurchases Value Versus Growth
fgr5yrLag Long-term EPS forecast Value Versus Growth
CF Cash flow to market Value Versus Growth
MeanRankRevGrowth Revenue Growth Rank Value Versus Growth
DivYieldST Dividend Yield Value Versus Growth
EntMult Enterprise Multiple Value Versus Growth
BPEBM Leverage component of BM Value Versus Growth
EBM Enterprise componentof BM Value Versus Growth
NetDebtPrice Net debt to price Value Versus Growth
BM Book to market using most recent ME Value Versus Growth
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List of variables (continued)

Variable name Description Category

ChInvIA Change in capital investment Investment
grcapx Change in capex (two years) Investment
grcapx3y Change in capex (three years) Investment
InvGrowth Inventory Growth Investment
NetDebtFinance Net debt financing Investment
NetEquityFinance Net equity financing Investment
XFIN Net external financing Investment
AssetGrowth Asset Growth Investment
CompEquIss Composite equity issuance Investment
ShareIss5Y Share issuance (5 year) Investment
GrLTNOA Growth in Long term net operating assets Investment
PctAcc Percent Operating Accruals Investment
PctTotAcc Percent Total Accruals Investment
NOA Net Operating Assets NOA Investment
dNoa change in net operating assets Investment
CompositeDebtIssuance Composite debtissuance Investment
InvestPPEInv change in ppe and inv/assets Investment
ShareIss1Y Share issuance (1 year) Investment
DelCOA Change in current operating assets Investment
DelCOL Change in currentoperating liabilities Investment
DelEqu Change in equity to assets Investment
DelFINL Change in financial liabilities Investment
DelLTI Change in long-term investment Investment
TotalAccruals Total accruals Investment
Accruals Accruals Investment
DebtIssuance Debt Issuance Investment
ChInv Inventory Growth Investment
ChTax Change in Taxes Investment
Investment Investment to revenue Investment
AbnormalAccruals Abnormal Accruals Investment
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List of variables (continued)

Variable name Description Category

roaq Return on assets including extraordinary income Profitability
CBOperProf Cash-based operating profitability Profitability
OperProfRD Cash-based operating profitability Profitability
CashProd Cash Productivity Profitability
OScore O Score Profitability
BookLeverage Book leverage (annual) Profitability
OperProf operating profits / book equity Profitability
RoE net income / book equity Profitability
VarCF Cash-flow to price variance Profitability
VolumeTrend Volume Trend Profitability
Tax Taxable income to income Profitability
ChEQ Sustainable Growth Profitability
MS Mohanram G-score Profitability
GP gross profits / total assets Profitability
PS Piotroski F-score Profitability
DelDRC Deferred Revenue Profitability
ChAssetTurnover Change in Asset Turnover Profitability
ChNNCOA Change in Net Noncurrent Operating Profitability
ChNWC Change in Net Working Capital Profitability
Mom6mJunk Junk Stock Momentum Profitability
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List of variables (continued)

Variable name Description Category

GrSaleToGrInv Gross Margin growth over sales growth Intangibles
GrSaleToGrOverhead Sales growth over overhead growth Intangibles
OrderBacklogChg Order backlog Intangibles
hire Employment growth Intangibles
BrandInvest Brand capital investment Intangibles
Leverage Market leverage Intangibles
FEPS Failure probability Intangibles
AdExp Advertising Expense Intangibles
RD R&D over market cap Intangibles
RDAbility R&D ability Intangibles
Activism1 Shareholder activism 1 Intangibles
Activism2 Shareholder activism 2 Intangibles
ExclExp Excluded Expenses Intangibles
SurpriseRD Unexpected R&D increase Intangibles
OrgCap Organizational Capital Intangibles
AOP Analyst Optimism Intangibles
PredictedFE Predicted Analyst forecast error Intangibles
FR Pension Funding Status Intangibles
Governance Governance Index Intangibles
tang Tangibility Intangibles
Mom12mOffSeason Returns in not-same month last year Intangibles
MomOffSeason Returns in not-same month Intangibles
MomOffSeason06YrPlus Returns in different months years 6 to 10 Intangibles
MomOffSeason11YrPlus Returns in different months years 11 to 15 Intangibles
MomOffSeason16YrPlus Returns in not-same month years 16 to 20 Intangibles
MomSeason Return seasonality Intangibles
MomSeason06YrPlus Return seasonality years 6 to 10 Intangibles
MomSeason11YrPlus Return seasonality years 11 to 15 Intangibles
MomSeason16YrPlus Return seasonality years 16 to 20 Intangibles
MomSeasonShort Return seasonality last year Intangibles
PriceDelayRsq Price delay r square Intangibles
PriceDelaySlope Price delay coeff Intangibles
PriceDelayTstat Price delay SE adjusted Intangibles
Herf Industry concentration (Herfindahl) sales Intangibles
HerfAsset Industry concentration (Herfindahl) assets Intangibles
HerfBE Industry concentration (Herfindahl) book Intangibles
RDcap R&D capital-to-assets Intangibles
EarningsStreak Earnings streak indicator Intangibles
NumEarnIncrease Number of consecutive earnings increases Intangibles
GrAdExp Growth in advertising expenses Intangibles
RIO Disp Institutional Own and Forecast Dispersion Intangibles
RIO MB Institutional Own and BM Intangibles
RIO Turnover Institutional Own and Turnover Intangibles
RIO Volatility Institutional Own and Idio Vol Intangibles86



List of variables (continued)

Variable name Description Category

OPLeverage Operating Leverage Intangibles
Cash Cash to assets Intangibles
OrderBacklog Order backlog Intangibles
realestate Real estate holdings Intangibles
ConvDebt Convertible debt indicator Intangibles

IdioVolAHT Idiosyncratic risk Trading Frictions
Illiquidity Amihud (2002) illiquidity Trading Frictions
BidAskSpread Bid-ask spread Trading Frictions
betaVIX Systematic volatility Trading Frictions
IdioRisk Idiosyncratic risk Trading Frictions
IdioVol3F Idiosyncratic risk (3 factor) Trading Frictions
CoskewACX Coskewness Trading Frictions
MaxRet Maximum return over month Trading Frictions
ReturnSkew Skewness of daily returns Trading Frictions
ReturnSkew3F Skewness of daily idiosyncratic returns (3F) Trading Frictions
DolVol Past trading volume Trading Frictions
std turn Share turnover volatility Trading Frictions
VolSD Volume Variance Trading Frictions
ProbInformedTrading Probability of Informed Trading Trading Frictions
Beta CAPM beta Trading Frictions
BetaFP Frazzini-Pedersen Beta Trading Frictions
Coskewness Coskewness Trading Frictions
VolMkt Volume to market equity Trading Frictions
OptionVolume1 Option Volume to Stock Volume Trading Frictions
OptionVolume2 Option Volume relative to recent average Trading Frictions
BetaTailRisk Tail risk beta Trading Frictions
zerotrade Days with zero trades Trading Frictions
zerotradeAlt1 Days with zero trades Trading Frictions
zerotradeAlt12 Days with zero trades Trading Frictions
BetaLiquidityPS Pastor-Stambaugh liquidity beta Trading Frictions
skew1 Volatility smirk near the money Trading Frictions
SmileSlope Put volatility minus call volatility Trading Frictions
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Comments

1. I have removed the section on the notation and explained everything in the text. Double

check if everything is properly defined.

2. Regarding assumptions: should we leave the regularity conditions in the Appendix and move

the main ones in the text? For example assumption 7 on smooth time variation and Assump-

tion 8 on granularity should be moved in the text?

3. The Appendix on Uε is now a remark (See Remark OA.6). Does it work?

4. Do we really want to keep the misspecification section? It is really hard to write and follow.
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