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1 Preliminary notation and main definitions

To facilitate the reading, this section presents the notation and the main definitions that we use

throughout the paper.

We use the bold font to denote vectors (in lower-case) and matrices (in upper-cases). The
notation I, is used to define the identity matrix of dimension a x a, while 1, denotes an a x 1 vector of
ones. The s-th coulumn (or row) of I, is denoted by the a x 1 vector 2, ,. Similarly, let 0, and 0,4xp
be the a x 1 vector of zeros and the zero matrix of dimension a x b, respectively. For any full-column-
rank matrix A of dimension a x b, we define the a x a matrix M4 = I, — A(A’A)" 1A' =1, — P4,
with P4 = A(A’A)"1A’. We also write A > 0 and A > 0 whenever the matrix A is positive
definite and semi-positive definite, respectively. We use 1y, to denote the indicator function,
while E[-] and E[-|A] identify the the unconditional and conditional (on the event A) expectations,
respectively. Finally, ®, vec(-), vec™!(-) denote the Kronecker product, the vec operator, and the
inverse vec operator, respectively.! The quantity A2 = (A ® A), where the symbol ® indicates
the Hadamard product. Convergence in distribution and in probability are denoted by —4 and

—p, respectively. Finally, N (-, -) denotes a Normally-distributed random vector.

All the moments throughout the Online Appendix are assumed to hold conditionally on the

factors F, even if not written explicitly, and all the limits below hold as N — oc.

DA FARE TIMEVARYING BETAS SECTION

OA.1 Notation for Anomalies

Dealing with anomalies also involves some specific notation, because such variables are both time-
and asset-specific. In fact, assuming that we have K, anomaly variables, it requires dealing with
an array of dimension N x T'— 1 x K,. We emphasize the suffix T" — 1 to remind that our data
sample is of size T'— 1, due to the presence of the lagged anomaly variables. In particular we set

t = 2, ..., T whenever we refer to asset returns, while we use t = 1...,T — 1 to index the anomalies.

IThe inverse vec operator reconstructs a matrix from a column vector. However, it necessarily requires defining
the desired number of rows and columns of the resultant matrix. In this paper we will only use this operator to
reconstruct matrices of dimension (T'— 1)K, x (T —1). Thus, the inverse vec operator can be unambiguously defined
as vec ' (a) = (vec(Iir—1)k,) ® Ir—1)(Ir_1)k, ® a) for every vector a of length (T — 1)K, x 1.



We define the overall N x K,(T — 1) matrix of anomalies as
Z=(z1,...,zn)

where we use the (lower case) notation z; to define the K,(T" — 1) x 1 vector

(. (1) (K.) ORY
Z; = (Zz',lf" VB T—10 " 0% 0 ATl

The N x K, matrix of anomalies at time ¢ — 1 is defined as Z;—1 = (z1¢—1,- - ,Zny—1)", while the

T x K, matrix of anomalies specific for the i-th asset is Z; = (z; 1, ,z;7—1)’, where z; ;1 denotes

/
the K, x1 vector z; ;1 = (zﬁ)_l, cee zl(f_z)1> . Taking the time-series average of the anomalies leads

to the N x K, matrix of sample averages Z = ﬁ 3:11 Z:.

Finally, we define the following K,(7T — 1) x K, matrix of constants

171 Op_q1 ... Op_
1 |Or—1 171 ... Op 1r_4 1 =
J=— = (I = J OA.1
T_1 <Kz®(T1)> TlSZ:; s ( )
Or—y Op—1 ... 174
with
tst—1 Or—1 ... Op
Or—1 tsp—1 ... Op
= . T | =k, ®eeroy) for1<s<T-—1 (OA.2)
Or—1 Op—1 ... tg7—1

The matrix J applied to Z generates the time averages of the K, anomaly variables, i.e. ZJ = Z,
while Jg allows to select the s-th time-series element of each of the N assets and for all the K,

anomalies. Notice also that z;-’NZ.]]s =z ,forevery 1<i< Nand1<s<T —1.

OA.2 Assumptions

In this section, we recall all the assumptions required for the validity of our large-N asymptotic
theory, together with some comments. All the moments below are assumed to hold conditionally
on the factors F, even if not written explicitly, and all the limits below hold as N — oo.

It is useful to recall the N x K,(T — 1) matrix of anomalies Z = (21, ..., zx')’, where z; defines

/
the K,(T — 1) x 1 vector z; = <zi(11),-~- ,zZ.(I%_l,~-- Z(Ifz),-~~ ,ZZ(I;Z_)J . The N x K, matrix of

) 1,

anomalies at time ¢t — 1 is defined as Z;—1 = (z1¢—1,- - ,2ZNy—1)’, while the (T'— 1) x K, matrix of
/
anomalies specific for the i-th asset is Z; = (z;1,--- ,2z;,7—1)’, setting z; 1 = (zi(?_l, e ,zi(i(_z)l) .



Assumption OA.1 (smoothness of the premia parameters). The following hold:
P/'-YO = 0Kf7 P,sf = 0Kf><Kf7 and P/AZ = 0Kf><N7

setting the (T — 1) x Ky matriz & = (5f71,-~ ,Sf’t,l)/, with Sf’t,I = 01 — fr = Yri-1 —
E(f;|I;—1,II), and the (T — 1) x N matriz

.,/ ! / / 7 B /7]
Y1~ Vz K, o K, Z
/ / / / !
K, 72,2 — Yz - K, Zl
A, = ;
/ / / / /
Ok, K, co Vg1 — Yol LDy

for some constant K, x 1 vector ~, satisfying N~ Zf\;l(z;zi)—lz;Ri —p Y-

Remark OA.1. When the risk factors are traded, 5“_1 = —’)/Ol'Kf for every t, and Assump-
tion OA.1 only concerns the zero-beta rate. In the special case of constant premia parameters,
when both the test assets and the risk factors are expressed as excess returns, and assuming that a

risk-free asset is also traded, then Assumption OA.1 is always satisfied.

One can avoid imposing the smoothness conditions of Assumption OA.1, and thus allowing
for time-series dependence between the time-varying premia and the risk factors, but at the cost
of more complicate expressions. In particular, (7) can be expressed as a panel data model with
interactive-fized effects:

R = a+Zi 17, + Bfy +uy,

where the error term satisfies wy = & + Agy for an asset-specific error & and a vector of zero-mean
latent factors g possibly correlated with the observed risk factors f;, with loadings A, and where
Y, =T7! Z;‘FZI Yi—1,.- Assumption OA.1 implies orthogonality between f; and g, resurrecting the
OLS estimator B. However, an alternative estimator for B exists that avoids Assumption OA.1
but leads to a more involved analysis of the CSR in the second pass. Details are available upon

request.

Assumption OA.2 (risk factors and anomalies). Set Z; = My, ,Z;, and D = (17_1,F). Then,
for every T, the (T — 1) x (K + 1) matrix D; = (D, Z;) satisfies

f);f)z >0 foreveryi=1,...,N.



Assumption OA.3 (loadings).

N N

1 1

Nzﬁl — [ L %] and NZB,,@; — 25,
i=1 i=1

such that the matrix

Remark OA.2. Assumption OA.3 states that the limiting cross-sectional averages of the betas,
and of the squared betas, exist. The second part of Assumption OA.3 rules out the possibility of
spurious and weak factors and situations in which at least one of the elements of B; is cross-
sectionally constant. It implies that X = (1x,B) has full (column) rank for N sufficiently large.

To simplify the exposition, we assume that the B; are non-random.?

Assumption OA.4 (asset-specific components). The N x1 vector of error terms €, is independently

and identically distributed (i.i.d.) over time with
Ele:] = 0n (OA.3)

and with the N x N variance-covariance matrix satisfying

o} o012 -+ OWN
2
021 03 02N
Var [¢] = . . . =3 >0, (OA.4)
2
ON1 ON2 -+ Ox
where 7;; denotes the (i, j)-th element of X, for every i,j = 1,..., N, and with 02 = 0y;.

Remark OA.3. The i.i.d. assumption over time is common to many studies, including 7 and
Raponi, Robotti, and Zaffaroni (2020). Nonetheless, in principle, our large-N asymptotic theory
allows the €;; to be arbitrarily correlated over time, at the cost of more complicated expressions and
derivations for the limiting distributions of the estimators. Condition (OA.4) is not imposing any
specific structure on the elements of 3 beyond non-singularity. In particular, we are not assuming
that the returns’ innovations are uncorrelated across assets or exhibit the same variance. However,
our large-N asymptotic theory needs to discipline the degree (as N increases) of cross-correlation

among the €, as indicated in Assumption OA.5 below.

2See 7 and Raponi, Robotti, and Zaffaroni (2020) for the analysis of asset pricing models with random betas.



Assumption OA.5 (cross-sectional moments of asset-specific components). (i)

L ‘N (02— 0?) =0 (\/1N> (OA.5)

for some 0 < 02 < 0.
(ii)
N
Z | 0ij | Tgizjy = 0(N) . (OA.6)

ij—=1
(ii)
1 N
N Z [hai = Jhd, (OA.7)
=1

for some 0 < pq < 00, where puy; = Ele} ].

(iv)

N
1
I Z ol — o4, (OA.8)
i=1
for some 0 < 04 < o0.
(v)
sup pa; < C' < 00, (OA.9)
for a generic constant C.
(vi)
Ele},] = 0. (0OA.10)
(vii)
L N
N Z K4, iiii = K4, (OA.11)
i=1

for some 0 < |k4| < 00, where K4 jiii = Kal€it, €it, €it, €] denotes the fourth-order cumulant of

the asset-specific component {€;+, €+, €; ¢, € ¢}

(viii) For every 3 < h < 8, all the following mixed cumulants of order h satisfy

N
Sup Y |nigig.in| = 0 (N) (OA.12)
i1

12,0t =1
for at least one i; (2 < j < h) different from i, where kp, j,. 4, is the mixed cumulant in

the {€i, s, €ip,5, - , €, Of order h.



Remark OA.4. Assumption OA.5 describes the cross-sectional behavior of the asset-specific com-
ponents. Specifically, Assumption OA.5(i) limits the cross-sectional heterogeneity of the returns’
conditional variance, while Assumption OA.5(ii) sets the maximum degree of (conditional) cross-
correlation among asset returns allowed by our theory. These assumptions are not very restrictive

and allow for several forms of strong cross-sectional dependence among the €;’s, such as, for ex-

ample, a factor structure of the following form:
€it = Nitg + Nt (OA.13)

where uy ~ 4.3.d.(0,1) and n; 4 ~ i.i.d.(0, Jg) over time and across units, and where uy and 1; s are
mutually independent for every i,s and t. The coefficient \; is such that Zfil I\i| = O(N?), 0<
§ < 1/4, and \p + -+ + Ag ~ CN?, for some fized ¢ < N and some constant C. Although

2 notice that

Assumptions OA.5(i) and OA.5(ii) are easily satisfied in the special case of 0? = o

the mazimum eigenvalue of X is now unbounded as N — 00.3 This is in contrast with the standard
Asset Pricing Theory (APT), where instead boundedness of the mazimum eigenvalue is the most
common assumption (see, e.g., the generalization of the APT by ?). Therefore, our assumptions
are milder than the ones postulated by the APT and thus more likely to be verified by the data.*
Other special cases nested in Assumption OA.5 (for which the cross-covariances o;; are non-zero)
are network and spatial measures of cross-dependence and a suitably modified version of the block-

dependence structure of 7.

SECONDO ME MEGLIO RIPETERLA, NON HA SENSO RIMANDARE A RRZ.
ANZI METTIAMO UNA VERSIONE RIDOTTA DI TABELLA RRZ? Qui c’e’
tutta la parte di cross-sectional dependence spiegata con la tabella della Monte Carlo
stmulaton, che pero’ e’ IDENTICA a quella di Raponi, Robotti, and Zaffaroni (2020).

dobbiamo ripeterla o basta citarla? See my footnote in red above

Assumption OA.5(iii) simply posits the existence of the limit of the conditional fourth moment,

3The maximum eigenvalue of 3 is given by SUPcs ¢ |lc)|=1 c'ec.
4Specifically, Assumption OA.5 allows for the maximum eigenvalue of ¥ to diverge at rate 0(\/N ) (see

Raponi, Robotti, and Zaffaroni (2020), Proposition 3). This implies that the row-column norm of 3, namely
SUP; << N Z;V:1 |oij|, can now diverge as N — oco. ? allow for an even faster rate of divergence, equal to o(N),
but in their setting both 7" and N tend to infinity jointly.

5 Assumption BD.2 of ? on block sizes and block numbers requires that the largest block size shrinks with N
and that there are not too many large blocks; that is, the partition in independent blocks is sufficiently fine-grained
asymptotically. They show formally that such block-dependence structure is compatible with the unboundedness of
the maximum eigenvalue of X.



averaged across assets. In Assumption OA.5(iv), the magnitude of o4 reflects the degree of cross-
sectional heterogeneity of the conditional variance of the asset returns. Assumption OA.5(v) is a
bounded fourth-moment condition, uniform across assets, which implies that sup, 012 < C < 0.
Assumption OA.5(vi) is a convenient symmetry assumption, but it is not strictly necessary for
our results. Indeed, this assumption could be relaxed, even though the derivation of the asymptotic
distribution would be more cumbersome, due to the presence of several extra terms involving the
third moment of the disturbance. Assumptions OA.5(vii)-(viii) allow for non-Gaussianity of the
asset returns whenever k4 > 0. For example, Assumptions OA.5(vii)-(viii) are satisfied when the
marginal distribution of asset returns is a Student-t with more than 4 degrees of freedom. However,
when estimating the asymptotic covariance matriz of our bias-adjusted estimators, one needs to set
k4 = 0 merely for identification purposes. That said, higher-order cumulants are not constrained
to be zero, implying that, even when k4 = 0, the distribution is not necessarily equivalent to the

Gaussian one.

Assumption OA.6 (CLT of asset-specific component). (i)

N
1
— €i—d N (OT—17 O'ZIT_l) . (OA14)
VN
(i)
1 N
Vi Zvec (ei€; — o7Ip_1) =g N (0712, Ue) , (OA.15)
i=1

— T3 L N / 2 / 2 /
where Uc =lim 5 >, B [vec(eiei —o;lr_1)vec(ej€; — o3lr_1) } .

(iii) For any T x 1 vector c,

\/% g; (c’ ® <Bl>) €i—d N (0x,11, (c'c)o?Ex) . (OA.16)

Remark OA.5. From (OA.16), it follows that N—2 vazl (@ Bi) €& —a N(Ok,, (c'c)o?Ep).
Primitive conditions for Assumption OA.6 can be derived, but at the cost of raising the level of

complexity of our proofs.®

SFor instance, when (OA.13) holds and all the above assumptions are satisfied, then (OA.14) follows by Theorem
2 of 7 when 7, satisfy their martingale difference assumptions (see their Assumptions 1 and 2.) This result extends
easily to (OA.15)—(OA.16) under suitable additional assumptions. Details are available upon request.



Remark OA.6. The expression for U, in (OA.15) can be derived in closed form. In particular,
Raponi, Robotti, and Zaffaroni (2020) established that the T? x T? matriz U, has the following

form
Un - Ut Uir
U, = ‘ ;
Un - U Uir
LUr1 Urt Urr |

Each block of Ue is a T x T matriz. The blocks along the main diagonal, denoted by Uy, t =
1,2,...,T, are themselves diagonal matrizes with (k4 + 204) in the (t,t)-th position and o4 in
the (s,s) position for every s # t. The blocks outside the main diagonal, denoted by Uy, s,t =
1,2,...,T with s # t, are all made of zeros except for the (s,t)-th position that contains oy4; that

18,
3 1
t-th column t-th column
(04 -+ O A (N o .- 0 -+ o .. 0]
0 - oy 0 e e 0 0O --- 0 0 - -0
Ug=— [0 - 0 (ka4+204) O - 0], Us=— |0 -+ 0 04 0 --- 0
tio}&) 0 -0 ... 0 o4 - 0 37%}& 0 -+ - 0 0 - 0
| 0 0 o4 10 0 0]

Assumption OA.7 (moments and CLT of anomalies). Define the K,(T—1)?>x1 vector u; = €;2%;.

(i)

Z'1y
N

—p (M @ 171) = pyr1

/
for a finite K, x 1 vector u, = (,ugl), e M;KZ)) = limpy_eo % Zf\il W, setting p,, = Elz; .

10



7'7

N —>p Ez,

for a finite K,(T—1)x K,(T —1) matrix Xy, such that J’'3;J >0 and J,_;2zJ; 1 >0
for every 2 <t < T.
(i)

7Z'B
N
for a finite K,(T —1) x K¢ matrix Xyzp.

—p 27B,

(iv) Setting po, = E[u,],

Vi ()

(v) Setting 3,5 = Cov]u;, uy], fori,j=1,..,N,

722u22_>2U_(0' IT 1®EZ and ZZW z;é]—O(N)

1,5=1

(vi) For any i,j =1,...,N,

Cov [zi, €; ® €)] = Ok, x(T-1)25 Cov | €, €; @ (u;

E[“J]” =07 1xK,(T-1)3-

(vii)

N
Z — pru;) = N (Og,(p-1y2, Zv) -

=1

=l

(viil) Setting Xye,ij = Cov [e,- ® €, u;]

N N
1
N Z Yueii = Ve = O(r_1)2xK,(7—1)2 and N Z ueij = O(r—1)2xK,(T-1)
i=1 =1
(ix)

W Z Cov [uz X ui,u;- ® u;] — OKZQ(T71)4><K2(T 1)
ig—1

11



(x) LetPy = Z:(ZZ;)~'Z!, with its generic (t,s) element denoted by p; s, fort,s =1,..,T—1,
where Z; = M, _,Z;. Then, for every 1 <t+1,5s4+1,vq,uq < (T —1), witha =1, ...,4, the
following hold:

(z.1) ZIP —p P, for a finite matrix IP
| X
(x.2) N Z(IPZ OP;) = IP(Z?), for a finite matrix IP(Z~2)7
i=1
1 & 1 & 1
(.3) N ; IPZi(eZ-e; — 0y = IPZN ;(ele; —02Ir_1) + o <\/N> )
1N M4 4 4 4
(z.4) 2 Z K4 H Pi,t—1uas H Pj,s—1vg H €ijuq+1 H Ej,vaJrl] = o(1),
4,j=1 La=1 a=1 a=1 a=1
;N M4 4 4
(@5) 73 o ms I pit—tue [ Pis—10as [ ] evz,ua+1] =o(1),
1,7=1 La=1 a=1 a=1
;N M4 4 4
CUN S 901 | EYRIN OO | ] _ o),
ij=1 = a=1 a=1
| X 4
(337) N2 H Pit—1ug > H ej,va—i—l] = 0(1)7
4,j=1 a=1
1 X
(:U.8) N2 Z Cov [ijﬁmIPi,tUN6i,t+16j78+16im+1Ejv1+1] = 0(1)7
ij:l
1 4 4
(@9) Z Cov [H Pit—tuas | | Gi,va+1] =o(1).
=1 a=1 a=1
where k3, -, ] and k4[-, -, -, | denote the mixed cumulants of order 3 and 4, respectively.
(xi) For every 3 < h < 8, all the following mixed cumulants of order h satisfy
sup Z h7i1i2mih| =o(N), (OA.17)

12,..,0p=1

for at least one i; (2 < j < h) different from ¢;, where Ii]}? i igin is the mixed cumulant in the

{Pi1 t1—1u1> Pist—aluss - - s Piptn—1uy, y of order h, for every 2 <ty,--- tp,u, - ,up < T.

Remark OA.7. By Assumption OA.7 (i),

Z'€e
w P 3 ze = O, (T—1)x(T-1)-

12



Moreover, Assumption OA.7 (vii) implies

Z'€e 1 &
\/NVGC ( N ) = \/N (N Zl(él & ZZ)> —a N (OKZ(T71)27 EU) .

Remark OA.8. Notice that, using our assumptions, ~Z'ly = +U'Z'ly —, p,, and also
%.]IQ_IZ’lN —p Mz Clearly the two estimators have the same limiting behavior, with the former

being be a more efficient estimator for p,.

Remark OA.9. Assumption OA.7 imposes some basic regularity conditions on the behavior of the
matriz Z, and controls for the degree of cross-sectional dependence between anomalies and excess

returns, which slowly dissipates as N increases.

To get a sense of the degree of cross-sectional dependence allowed by our theory, we use a Monte
Carlo experiment, where we consider the same data generating process described in the simulation
study in Section OA.7, with the error term following the process in (OA.87). We consider the
simplest case of one anomaly (K, = 1) and report the sample cross-sectional correlation (both
in levels and in absolute terms) between returns’ innovation (€;;) and anomaly’ innovation (n;),
averaged across the time-series dimension (either T = 36 and T = 72), for different values of
the parameter § in (OA.87) - which controls the strength of the cross-sectional correlation between
shocks and anomalies. Specifically, we consider the following two measures of (average) sample
correlation between anomalies and asset returns:

_1¢ SO eunit _ 1 SO eunit
p(6,N) = Z i T and T(5,N):TZ o |5
=1 <Zz]\;1 5?1:) ’ <ZiV=1 77i2t> ’ =1 <Zz]\;1 61%&) ’ <ZiV=1 77i2t> ’
(OA.18)

and report the results in Table I, for § = {0,0.10,0.25,0.50,0.75,1.00}, and for T = 36 (panel
A) and T = 72 (panel B). Remember that, by (OA.87), the degree of cross-correlation is inversely
related to §, where our theory requires § > 0 for consistency of the premia estimators, and 6 > 0.5
for their asymptotic normality. Table I confirms that our setup admits a sizable cross-sectional
dependence between anomalies and returns. For example, when 6 = 0.50, then both p and T are
0.67 when N=100 and 0.37 when N=500, which represents a significant degree of correlation even
when N is sufficiently large. As expected, the strength of the correlation vanishes when both N and

4 increases.

13



Table I: Conditional average cross-correlations between anomalies and asset returns.

Panel A: T = 36

p(d,N) (0, N)
1) 0.00 0.10 0.25 0.50 0.75 1.0 0.00 0.10 0.25 0.50 0.75 1.00
N
10 0.993 0.990 0.980 0.941 0.835 0.631 0.993 0.990 0.980 0.941 0.835 0.642
100  0.993 0.984 0.942 0.669 0.279 0.097 0.993 0.984 0.942 0.669 0.279 0.121
500 0.993 0.978 0.883 0.369 0.083 0.017 0.993 0.978 0.883 0.369 0.085 0.041
1000 0.993 0.976 0.848 0.282 0.060 0.019 0.993 0.976 0.848 0.282 0.060 0.028

Panel B: T'= 72

p(6,N) (6, N)
1) 0.00 0.10 0.25 0.50 0.75 1.00 0.00 0.10 0.25 0.50 0.75 1.00
N
10 0.993 0.989 0.979 0.939 0.838 0.656 0.993 0.989 0.979 0.939 0.838 0.656
100 0.993 0.984 0.942 0.663 0.266 0.082 0.993 0.984 0.942 0.663 0.266 0.102
500 0.993 0.979 0.885 0.372 0.083 0.016 0.993 0.979 0.885 0.372 0.084 0.036
1000 0.994 0.976 0.849 0.273 0.046 0.007 0.994 0.976 0.849 0.273 0.052 0.029

14



Remark OA.10. Primitive conditions for Assumption OA.7 can be readily obtained. For instance,

one can assume that the K, X 1 vector of anomalies (z;) follow a linear process, such as:

oo
Zit = Miz + Z Ak t—ks (OA.19)
k=0
with innovations 1,3 ~ (Ok,,%,) i.i.d. across time, and such that N1 Zij\il(Zf:O I A ||) <

C <o00,Ajp =1k, N71 Zfil | iz |< C < 00 and E(n; t€;,) # O, xn for every 1 <i < N.

The specification in (OA.19) represents a common assumption in time-series econometrics, in
which case the matrices Xzz and Xyzp will be constant, with their (a,b) entries being a general
function of (a —b).” Moreover, one can also easily allow for cyclical and trending behaviors (either
deterministic or stochastic) for the zy in (OA.19). This could be relevant, for instance, when
considering firms’ characteristics such as value and size, which typically display significant time-
variation. In this case, the limit of the cross-sectional averages involving the anomaly variables
might not be constant across time, a situation that our methodology can handle but at the cost of a

much heavier notation and formalism.

OA.2.1 Additional assumptions required for the WLS estimation

In this Section, we introduce additional assumptions that are required for the validity of the WLS
estimation described in Section 6. Before stating the main assumptions, it is useful to introduce
some preliminary notation. In the following, we denote by w; = (w; 1, ,w;7—1) the (T'—1) x 1
vector of weights specific for the i-th asset, and by w1 = (wi¢—1, - ,wny—1)" the N x 1 vector

of weights at time (¢t — 1), for every 2 < ¢ < T, with the N x T matrix W = (w1, -+ ,wyp_1) =

(Wi, wiy).

Assumption OA.8. (CSR WLS weights)

"One can further generalize (OA.19), allowing for a (dynamic) factor structure such as zi; = piz+Y oo AikMi,—k+
> oreo A;’km_k, for an i.i.d sequence m: = (0, - ,n~?) ~ (Ok,,X,i) of common shocks. However, in this case,
the matrices 37z and Xzp could have a random component because they depend on terms like nfnf/, for every
k,kK'=1,.,K,and t,s = 1,....,T — 1, with their generic (¢, s) element not being a function of (¢ — s) only. However,
despite this lack of stationarity, our results continue to hold (conditionally on the ;) thanks to the fixed T" assumption.
The asymptotic distribution of the estimators will be mixed-normal, implying that the test statistics will possess the
conventional chi-square distribution and all the testing procedures will still be feasible. Details are available upon
request.
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1 "W;_11
NN

(ii) For any real number h > 1 then,

1QVWZL711N h
N —p Bw,t—1

(iii)
1 N
N Z Wi W, —p Sw.

1=1

Remark OA.11. By Assumption OA.8, granularity follows since N_ll’NWt,llN —p 1 by As-
sumption OA.8(i) and N721\\W?_ 1y = O(N~1) = o(1) by Assumption OA.8(ii).

Remark OA.12. An important example of commonly-used weights satisfying Assumption OA.8 is

when
NW?t
Wi,t = N77$’ (OA20)
Zj:l Wit
where Wit represents the dollar-value of the market capitalization of stock i at time t. Notice that

the multiplication by N in the numerator of (OA.20) is just a normalization factor implied by
Assumption OA.8(i), which requires that the sample average of the weights goes to 1 as N goes to
nfinity.

Assumption OA.9. (Weighted loadings) Let W,_; satisfy Assumption OA.8 and let the loadings

Bi be a non-random sequence. As N — oo, then

1 1
NB/Wt—llN —p M3 and NB/Wt—lB —p 25, (OAQl)
such that .
I p
Sy = 7l so. (OA.22)
ps X

Remark OA.13. Assumption OA.9 generalizes Assumption OA.3 to weighted averages. Notice
that, due to the granularity assumption, the weighted averages in (OA.21) achieve the same limits

of un-weighted counterparts in Assumption OA.S.

16



Assumption OA.10. (Weighted cross-sectional moments of returns’ innovations) As N — oo,

(i)

(iii)

(iv)

(vii)

Let 0 < 02 < 00.Then, for every 2 <t < T

N

1 1

N E Wit—1 (0'12 — 0'2) = 0Op (\/N) s (OA23)
=1

N
Z Wit—1 | 04 | :H-{i;éj} =0, (N). (OA.24)
ij=1

Let 0 < pug < 00, and let py; = E[eft]. Then, for every 2 <t < T:

N

1

N E Wit—1/44i —>p 4, (OA.25)
i=1

Let 0 < 04 < 0o0. Then, for every 2 <t <T:

N
ZWz‘,t—N? —rp 04, (OA.26)

i=1

1
N

Let k3(a, b, c) denote the third-order cumulant of the random variables a,b, and c¢. Then,

k3l€its €56, Win] =0, and K3l€ir, €js,25n] = Ok,. (OA.27)

Let Kaiisi = Kal€it, €, €it, €it) denote the fourth-order cumulant of the asset-specific error
{€it,€it, €t €. Then, for some 0 < |k4| < 0o and for every 2 <t < T

N
1
N Z Wi t—1Kdiiii —p K4- (OA.28)

i=1

For every 3 < h < 8, all the following mixed cumulants of order h satisfy

N
sup Z K, 4 vinein] = 0 (N), (OA.29)
"dg,ip=1
and N
Sup Z |K/hwi1ytflvziz,rviiiu-ih‘ =0 (N) ) (OA30)
gy ip=1

for at least one i; (2 < j < h) different from 7, where Kh,wi, o 1ig...in is the mixed cumulant in

the {w;, +—1,€iys, - , €, s} of order h, and Khywi, 11, is the mixed cumulant in the

Zi2’r,i3...’ih

{Wil,t—la Zijy,ry€ig,sy " 76’ih75} of order h.
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Remark OA.14. Assumption OA.10 extends Assumption OA.5 to the case of weighted averages.
Notice that, due to the granularity assumption in Assumption OA.S8, all the weighted averages in

(OA.23)—(OA.30) the same limits of the corresponding un-weighted averages in Assumption OA.5.

Assumption OA.11. (Weighted moments and CLT of anomalies) We define the (T —1)? x 1
vector v; = (e; @ w;) and the corresponding N x (T — 1)? matrizx V. = (v1,--- ,vn)', such that

E[vi] = pv, < 00, and Xy ;; = Cov [v4, vj].

(i)

e(W,_1 —E[W,_{]) €
Wi N[ 1) —=p O(r—1)%(1-1)-

Z, W, 11y Z, W 174

N —p  Mzt—1 and N —p EZ,t—l'

(iii) Let Xzw be a finite K,(T — 1) x (T' — 1) matriz. Then,

7Z'W
T —>p EZW.

1
N (Zt—1 — E[Z4—1]) (Wi—1 — E[W_1]) € —, Ok, x(T-1)-

(vii)

N N

1

N E Ev,ii — Dy = U2IT_1 ® Xw, and E Ev,ijﬂi;ﬁj = O(N)
=1 =1

18



(viii)

N N
1 1 1
i Mv;) — N (Op_ ,2 and — v, = N 2.
\/NiEI: (Vi = pv,) =a N (0712, Bv)  an N;“ 0( )
(iz)
N 1
E : — H2,) —=a N(Og (7-1), Xzz) and E (pz; — =o(N"2).

Remark OA.15. Assumption OA.11 states the limit of several sample moments that involve the
anomalies, the weighs and the asset-specific errors, together with their mutual correlation across
time. Specifically, we assume that each asset-specific error is uncorrelated with past values of both
anomaly variables and weights, but each €5 could be potentially correlated with contemporary or
future values of Zy and W, whenever s <t or s < v. This implies that, despite the granularity
assumption, the limit of certain quantities will depend on the weights, as they are allowed to be

correlated with both anomalies and error-specific components.

Remark OA.16. To simplify the analysis, we also impose zero mized third-moment conditions.
This sometimes involves de-meaning the anomaly variables which, in general, could not have zero

mean. The main moment conditions are summarized in the following assumption.

Remark OA.17. Assumption (iz) is a strengthening of our previous assumptions required by the

added difficulties associated with the weighted estimator.

OA.2.2 Additional assumptions required for estimation under model misspecification

Assumption OA.12. (mized-moments of pricing errors)

(i)
1
Nemt_]_ —>p |:

with 6,1 = (04—3.m,0t—a.m, - .., 00m) , defined as, for every 2 < s,¢t < T,

gt—l,m :|
O7r—_t41

1
N Z €i,sMit—1 —p Ot—1—sm, such that 0, = 0 for u < 0.
i=1

/
m;_ 1mi_1 —p Ot—1lmm-

N
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(iii)

N

1
N E PDieimiﬂf*l —p OT,1.
i=1

Remark OA.18. Assumption (OA.12)-(i) is very mild, as the zeros arise only as a consequence
of the temporal iid-ness of the €4, and (OA.12)-(ii) is ruling out explosive limiting behaviour of
the average of the squared pricing errors. Finally, (OA.12)-(iii) simplifies the formulae and is
strengthening the notion that the loadings to the omitted risk factors and the omitted anomalies are
cross-sectionally unrelated to the anomalies and to the loadings of the risk factors of the candidate

model.

OA.2.3 Additional assumptions required for the cross-sectional R-squared test

In this Section we introduce additional assumptions that are required to derive the R-squared test

described in Section 8.

Assumption OA.13. (i)
1Y 1 1L 1
N;Bi—u5:0<N 2) and N;giﬁi—zﬁzo@v 2).
(ii)
N
Z ((zi ® ;) — vec(3z)) =4 N(0g2,Uz),  with

1

N N
Z E[(z; ® z;) — vec(Xz)] = o <N_§> , %Z E[(z; ® z;) — vec(X7)] [(z; @ 2;) — vec(2z)] — Uy,
i =1

N N
1
Z E[(z; ® z;) — vec(E72)] [(z; ® 2;) — vec(Ez)] = o(N), and ¥ Z Cov [(zi ® 2:), 2] = Zyes.
ij=1 3,5=1
(i)
Z'1y /
VN N Har-1) N (0k,(7-1), Bz — o 7—1 M7 1) -
(iv)

N

1

N > Cov((zi @ 2), (€ ® €)) = Dzge = Or_1)xy2x(7—1)2-
ij=1
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N

1

N > Cov ((zi ®2:), ;) = 20 = O(r_ 1) 2 (r-1)2 K. -
=1

OA.3 Preliminary Lemmas

In this section, we establish several results which are required to derive the asymptotic results of

the new CSR OLS estimators. All the results below hold as N — oo.

Lemma 1 ( Raponi, Robotti, and Zaffaroni (2020)).  Under Assumptions OA.1-OA.7,

(i)
) 1
02—02:Op <\/N>
(i)
X'X = O,(N)
(i)
ﬁ]X —p 2x + Aq.
(iv) A )
(X—X)]’V( ~ X) A
(v)
X'e, =0, (VN), X'e=0,(VN)
(vi)
(X — X)'XTy, = O, (\/ﬁ) . (X - X)Xy =0, (\/N)
(vii)
(X - X)e=0, (VN)
(vii)

K-xpe=[_ope ] +0,(VH).

2P/
0Py 171
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(ix) When the identification assumption x4 = 0 holds, then
64 —p 04.
where ¢4 is defined in Theorem 2.

Proof. All these results are already established - or are immediate extensions - of Lemmas 1-7 in

Raponi, Robotti, and Zaffaroni (2020). [

Lemma 2. Under Assumptions OA.1-OA.7,

(i) - /
77 77
e L > )

(i)

7Z'X
N P (17, 3" Ez8] = Tzx.
(iii)
7, | Zy 7'Z
% SRR TR (I 72 Pt
(iv)
7, X

N P (17, T;_1278] = Bzx -1
Proof. Part (i) follows immediately from Assumption OA.7(ii), once one recognizes that ZJ = Z.

To prove part (ii), first notice that the first column of the matrix Z/TX coincides with Z/%, which

converges to p, 71, by Assumption OA.7(i). The remaining K¢ columns of the matrix satisfy:

ZB Z'B Z'¢
N = N + NP—>p.]]/2ZB,

by Assumptions OA.7(iii) and OA.6(i). Parts (iii) and (iv) follow precisely from parts (i) and (ii),
by replacing I with J;_1. |

Lemma 3. Under Assumptions OA.1-0OA.7, (i)
1o,/ . _
=X (e F(X - X)rf) —p — ATy (OA.31)
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(ii)

1.,/ o
2 (e (X X)rf) —, O (OA.32)
(iii)
1 )
=X (e + (X =X)Prp1) = —AiTeu + Ay, (OA.33)
(iv)
1,, i
. (Gt + (X - X)Ff,t—l) —p Ok, (OA.34)

Proof. Parts (i) and (iii) follow immediately by Lemma 1, where in part (iii) we set Ao =

0
. [ |
|:_02P/zt—1,T—1:|

OA.3.1 Additional Lemmas required for WLS Estimation

This section establishes several preliminary results which are needed to derive the asymptotic results

of the WLS OLS estimator described in Section 6. All the results below hold as N — oc.

Lemma 4. Under Assumptions OA.1-OA.7 and OA.8-OA.11,

(i)
eW;_ 11y
(i)
€Wt_1B
N Or—1)xK;
(iii)
B'W,_,B
Ttl —p Xg + 0’P'P.
(iv)
W _ /
76 ]t\], 1€ —p O'QIT_l.
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Proof. The results in parts (i) and (ii) follow from Assumptions OA.8-OA.11, since

eWialy lie.w. _
N - iWit—1 =

N
1
N (Wit—1 — E[wi—1]) NZ [Wit—1] + 0p(1) =p Op_1,

||Mz

and, by independence between €; and 3;,

N
eW;_1B 1
tTl = N Z Gz‘Wz‘,t—lﬁz{

= 7Z€zwzt 157 Z/@z+0p O(r—1)x K-
To prove part (iii), notice that
B'W,_1B=B'W,_ B+ (B-—B)W,_;(B-B)+ (B—B)W,_;B+BW,_;(B-B).
By Assumption OA.9, N"1B'W;_1B —, X3 and, using part (i) and (ii),

(B-B)W; 1B _
- -

N
! 1 /
P N g Wit—1€0; —p Ok xK;-
i—1

Finally, using the same arguments

(B—-B)W,_;(B—B)
N

N
1
=P > Wit 1€i€/P =, o*P'P.
=1

Lemma 5. Under Assumptions OA.1-OA.7 and OA.8-OA.11,

Zi \W:1B /
- N —p Mz t—1H3-
(ii)
/
(ii)
/ /
% —p Ok, x(T-1)-
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Proof. Part (i) follows immediately by taking into account the non-randomness of the 3;

Z,_ W;_1B 1 N 1 al 1 a
% = N Z Zi,tflwi,tflﬂl/‘ = N Z Wi,tflzi,tflﬁ Z B; + Op(]-)
i=1 i=1 i=1
—p H'Z,tfll-l’/ﬁa

by Assumptions OA.9 and OA.11. Using the same arguments and by Lemma 4, part (ii) follows

since

Z, W, 1€ 1 & 1 Y 1 L,
T = N Z Zit—1W;t—1€; = N Z Zi,t—lwi,t—lﬁ Z €+ Op(l) —p OKZ-
i=1 i=1 i=1

For part (iii), notice that, by Assumption OA.11,

Z, Wi i€ 1 &
% = N ;Wz‘,t—lzi,t—lﬁg
1 N
= ¥ Z (Wig—1 — Elwis1] + E[wi 1)) (Zi4—1 — E[zi¢—1] + E[zi1]) €
=1
1 & 1 &
= 3 2 BBz a]e + > (wir1 — E[wig 1)) Elziga]e]
=1 i=1

=

N
1
+ > Elwir] (zi-1 — Elzig1]) € +

i=1 7

(Wit—1 — E[wis—1]) (zig—1 — Blzie1]) €
1

=

N
1
= W D (Wit = E[wi 1)) Elzis1]e] + Elwi 1] (2i4—1 — Elzit-1]) € + 0p(1)

.
Il
—
.
Il
—

Lemma 6. Under Assumptions OA.1-OA.7 and OA.8-OA.11,

X’Wt_let _ 0_2 0
N p P/lt,T—l '

Proof. Let us rewrite

X/Wt_ltit _ X/Wt_lét + (X - X),Wt_let
N N N ’
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Now, by Lemma 4, N"'X'W;_1€&; —, Ox,+1. Moreover,

X -X)Wi1e, _ (X —=X)' (W1 — E[W,1] + EW,1]) &
N N
(X - X)E[W;_1]e o[ 0
= N +op(1) =p o Phyr |

Lemma 7. Under Assumptions OA.1-OA.7 and OA.8-OA.11, when kg4 = 0, for every 2 <t < T,

~2(w) 2 ~ (W)
0,1 —pO and 0441 —rp 04,

L a(w _ . ——=(2
setting Uz(L,t)fl =N"1! ZSTZQ Zf\il W@t,leﬁs/(?)tr (M]%))),

Proof. The result can be easily obtained by following the corresponding results in Raponi, Robotti,
and Zaffaroni (2020) (see their Lemmas 1 and 6), by replacing simple averages (e.g. €€’) with the
corresponding weighted averages (e.g., eW;_1€’) and using the Assumptions OA.8-OA.11 |

OA.3.2 Additional Lemmas required for OLS Estimation under model misspecifica-
tion

Lemma 8. Under Assumptions OA.1-OA.7 and OA.12,

. 1,
_ A .2
O 1m = Stfl(Ne my_ 1 — 6“"Mpti—1.7-1) —p Oi—1,m;

setting m; 1 = Rt—(X, Zt_l)(f‘;ﬁ){,&:ﬁ@{)’ and recalling Mgtlzl = Ml_l1 (Li—2,0¢—ox7—t+1) where

M is the top-left block of size (t —2) x (t — 2) of the matriz Mp.
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Proof. For every 2 < s <t —1,
1 N
N Z €isTi—1

N
1
= 2t My €i(mig-1 + (= XDt + K Treo = T1) 4 24 (Faeet = 5000 + i)

2 \

N N
1 _
=N Z ng_l,T_ﬂMDiGz‘ (mi,t—l + 6i,t> + Op( Z 17—1(Mp =Pz )e; (mz‘,t—l + Ei,t> + Op(N

/N

N
1 _1
= NLS—LT—l]MDG(mtA + Gt) N E b1 1Pz € mig—1+ ei,t) + Op(N™2)
i—1

0,_
—p s 11 (Mp {O;It:] +0®Mpti—1.7-1),
as N1 Zf\il MDiEZ’(X; - x4y = OID(N*%)7 given Mp P = Or_1xk;,, recalling that Mp =

Mp — PZZ»’ implying N1 Zf\il ]l\/IDieimi,t,l = ]1\/ID(N_1 Zf\il €im;¢—1) + op(1). Therefore, re-

calling Mp = [M,H Mlﬂ , where Mj1ist —2 x t — 2,
12 Mz

1 N . .

N Doi1 €211

1 SN .

N Zizl €i,3M t—1 9
. —p=M110;—1m + 0" (Li—2,0;—2x7—1+1)Mpti—17-1).

1 N . .
N Zizl €it—1Tt—1
Reorganizing terms, assuming without loss of generality that Mj; is nonsingular, as D is full rank
(for t <T — Ky), yields
1N - -
N Zi:l €;2M t—1
1N -
. et [ | v 2im Eisriig .9
0i_1.m =M [( . — 6°(Li—2,0¢—2x7—t+1)Mpti—17-1
1N . 5
N Zizl € t—1M4t—1

. 2
= St—l(ﬁemt—l —0°Mpti—1,7-1) —p Ot—1,m-

QED

Lemma 9. Under Assumptions OA.1-OA.7 and OA.12,

1/ my
NHE—1
—— =, 0
N P
/\/ A
m my;
. L T m)ipny | 01
Ut—l,mm:T Qt 1Qt 1+25f§ )1P |:0T t-:nl —p Ot—1,mm-
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Proof. Let us first establish the second statement. Consider

) ny_y =m} my; + e+ T, (X —X) (X = X)Tyg + (Treg — f;s:rﬂ)/xlx(f‘ﬂt—l - f‘?,ssrf)l)
F Aot = A Ly L1 (Vag—1 — A0) +2my g€+ 2my_; (X — X)Tyoy + 2m)_ X (Ty_y — T7™)

m)

+2m) 3 Ze 1 (Rt —Ap00) + 264X — X)Fpeoy + 26X (Fpeoq — I (m)

D+ 26,21 (Va1—1 — '?;,t—l
+2T (X — X)X (Tpyo1 — f‘;(ﬁ)ﬁ + 20,1 (X = X)'Z—1 (Fapm1 — ;7;('3)1)
TR 1 CACARER ALY

~ A~ A ~ A~ ~ A ~ 1
=m;_ym; g +ee + Ty (X = X) (X = X)T; 1 4 2my 4 (X = X)Tpyq +2€6,(X = X)Tg; 1 + Op(N2).

The result then follows, noticing that

N P 0,
A2 &x(m ax(m X—A,X—A ~
UQ(Sf,E&—)l/P/P(sf,ES—)l - é,tfl( )]\/E )Ff,t—l —p 0,
A m; (X — X

f‘f’t_l —p 0 and
)b
fit—1 _>p 07

and collecting terms, recognizing that Qg_th,l =14 nglf)l,P’PS;‘gT)l — 2L£_17T_1P5;$1)1.

The first statement easily follows from 1\m;_ = 1\ym;_ + 1ye + 1(X — X)f‘fﬂf_l +
et K ~ ~ 1
U X(Teor — D) + Uy Zeot (Tt — 4,07) = Tymy_1 + O,(N7). QED
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OA.4 Proofs of theorems

Proof of Theorem 1. First, let us define the quantities that make the asymptotic covariance

matrix of the estimator:

/ 2 /
Xx EZX,tfl Ui -G Hy

Lt—l =

, and Ot_lE[ ], (OA.35)

Suxi—1 12704

with L;_; is assumed to be positive definite, U;_1 = 02Q}_;Qi_1Xx +

0 0, ]
O, Vi UV,
NIV, Mp —p Mp, Zi X/N =, Szxi1, Vie1 = (Q1®P)—(vee(Mp) /(T — 2 - K)) Q}_, P,

Gio1 = [Qio1 @ o1, Qo1 ® EZB],, and Hy_1 = Q) ®J}_, with Q1 = 4171 —Prs1,
and where ¥x, U, ¥zp, 37, ¥y and p, 77— are defined in Assumptions OA.3, OA.6, and OA.7.

Starting from (31), we rewrite

-1

f‘* Ff t—1 X,X - NAl X/thl
R - ’ y
Va1 Vat-1 7 X 77
NA, X' ) NAgy
x Ty + (e + (X =X)Tps 1) - (OA.36)
Ok, x (K¢+1) t—1 Og,
By Lemmas 1-3
AT +1X’( +(X-X)T ) A o<1> and that
_ -— € — _ — 1 = ——1 I
Wi+ t t—1 2.1 Wi

1 X
N b1 (Et + (X — X)Ff,t—l) —p Ok,

X'X—NA, X'Z, ]

Moreover, by Lemmas 1 and 2, N1 [ = Op(1).

Z X 7%

To prove part (ii), noticing that €, = €41 7_1, we get that
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1 . . R .
TN (NAlrf,t—l + X/ <€t + (X - X)Ff,t—1> - NAZ,tfl) =
1/ ! r

\ﬁQt 1 0
B”Qt 1] 77'66 Qi—1 +VN&?P'PS; 4

0

(OA.37)
62P' 171

Q| 0
B”Qtl Pleth 1 — VN&*P'Q;_4

I
_l_

Moreover, we have that

L
VN

Therefore, using (OA.37) and (OA.38) in (OA.36), it follows that

/ 5 Z, €
Zy 4 <€t + (X - X)Ff,t—l) = UN Qi1 (OA.38)

0 [X'X _ A X'Z—1
Iy 1 =T XF-A :
\/N f,t—1 _ N A N o
Voi—1 — Yz i1 I ZiNlX Zi_ﬁt—l
0 0
B’ / + P/ ee’ _ f 2P + OKZ
Qt 1 Qt 1 NP’ Qi1
Ok, Ok,
XX A XZe -1
N N
= . (I + I+ I3). (OA.39)
Zfﬁ IX Z:g_lztfl
N N
Now, by Lemmas 1(iv) and 2, we have that
1 X/X - NAl X,Zt,1
N . —p L1 (OA.40)
Z; X Zy \Zi
Regarding the variances of the terms I; and I5, under Assumption OA.6, we get
l’Ne’Q
t—1
Var ]\3//N/ —p 0°Q;_1 Qi1 Zx, and (OA.41)
\/%th

30



/
Var (P’\E/ENQt_l - \/N&2P’Qt_1> =, V,_ UV, 1. (OA.42)

Notice also that, under Assumption OA.5, the two terms I; and I are uncorrelated. Consider now
the term I3, and notice that z;; = .]];Z’zi,N. Then, using the properties of the vec(-) operator,

recalling that u; = ¢; ®z; and H;_ 1 =Q;,_, @ J i_1, it follows that
7, € 1 & 1 O
—F= Q1 = = Zzz‘,t—w;Qt—l =——> T, Z'% neiQu
VN VN & VN &
N
= T Z (Q;_1 ® Tj_y) vec (Z'1; n€])
v
= WZ (Qi1 © Ti_4) (€ @ 2i)
1
- 7% Z H; ju;. (OA.43)
i=1

Therefore, using (OA.43), and under Assumption OA.7(v), one obtains

Z/ / 1 N
Var [ Z=L8 Qi1 )| =Hi1 T i = H Bl (0A.44)
VN N

ij=1

Finally, let us consider the covariance terms of I3 with both I; and I5. To derive the covariance

between I3 and I, we establish

/ Z 1
Cov (P'£.Q, 1 — VN&2P'Q;_1, Q) “) -
\ < \/NQt 1 Qt 1 Qt 1 \/N

vee(Mp) 15 L Vo H
= E||(Q-1®P)— WQI‘/ P ¥ Zvec (ei€; — o7Ip_1) wjH_; | + o(1)
ij=1

Vi 1N Z SueijHi_1 = Ok, xK,
i,7=1

by Assumption OA.7(viii). Finally, to derive the Cov(Iy, I3), we need to calculate

1 / !
o

1N€ Q N
-1 (/] 1 /
Cov ' L Qi1 = ¥ Z Tij <Qt1 ®E
BeQi VN N

ij=1
2 !
—> o Gt—lHt—l
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by Assumption OA.7 and where we set G¢_1 = [Qt_l @ pr7-1, Qi—1® EZB}/ [Qt_l ® pyr-1, Qi1 ® ZZB]/.

Therefore, putting all the above results together, and recalling that U;_; = Jng_th_lEx =+
0 O’Kf
Ok, V,;_ UV,

, yield O¢_1, concluding the proof. |

Proof of Theorem 2. By Lemma 1 and Lemma 2(iii) and (iv), it follows that L;_1 —, L;_1.
By part (i) of Theorem 1, then 3;1:—1 —p Of4—1, implying that Q;_1 is a consistent estimator of
Q:_1. Moreover, as N — oo, Mf) —p Mp, fi7—1,2 —p BT—1.2, s —p XzB, and Z'Z/N —, X7.
It follows that Vt_l —p Vi1, Gt_l —p G¢—1, and ﬂt_l —p Hi_1. Finally, a consistent estimator
of U,_1 requires a consistent estimate of the matrix U,, which can be obtained using Lemma 1(ix).

This concludes the proof of Theorem 2. |

Proof of Theorem 3. First, let us define the quantities that make the asymptotic covari-
ance matrix of the estimator. Let p, = limy .o % ZZ]L E[zi.], and py = (1’“,/8)/' Set i1 =

Yé—]_EVYt—17 with Y; 1 =Q:1® 1t-1,7-1 and define S;_1 = /J,ZYé_l(OEIT_l &® Z’ZW)H;_l.Then,

set
Pl Bk,
oM =, / / M) (OA.45)
Kzt Hz [y
with
0 O’Kf 0%,
MEV,V%E Or, Vi, UV, Ox;xK,

Ok, Ok, xK; H, 3yH, ;+S;-1+ S,

where Q;—1, Vi—1, and H;_; are defined in the proof to Theorem 1, ¥zw, 371, Xv, and p, 1
are defined in Assumption OA.11, and Xy, U, and Xy are defined in Assumptions OA.3, OA.6,
and OA.7.

Next, let us start the proof from the definition in (42) and rewrite
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. . . . . -1
&1 [T X'W, X -~ NAY | X'W, 17,

— pu— X
»-Ay;(tvi)l Yz,t—1 nglwt—lx Z;flwt_lzt_l
NA(Y, X'Wis A NAYL,
X Feiq+ (€ + (X — X)Ff,t—l) -
OK+1 Z, Wi O,

(OA.46)

To shorten the proof, let us establish first part (ii) of the theorem and derive the asymptotic

distribution of the above expression, since its v/ IN-rate of convergence will then immediately follow.

First notice that, by Assumptions OA.8, OA.9 and OA.11,

L [XWeX - NASY XIWZe
N R _>p Lt—17
Z, 'W;1X Z, W 17,

M
where we set ux = .
Hp

Now consider the next term in (OA.46) and notice that:

X'Wi_te+ X'Wi (X~ X)Tpeoq — NAS) | + NAT) T,

0
= X'Wi e+ 2(w)
P/EWtflet — NOA't_V; P/’Lt—l,T—l

— X/Wt,1€/P5f7t_1 +

0
—P'eW,_1€'Pd;;_1 + Nﬁ?(v{)P/P&,t—l]
0
= X'Wii€uy_17-1—-X'W,_1€Pds; 1 + 9(w)
P’ <6Wt,16, — Na—t—l IT—l) Qtfl
0
= X'W;_1€Qu1 + ~2(w)
P’ (eWt,le’ — Na&, IT71> Qi1

= aj] +ajo,
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0

tti =X'W,;_1€Q;_ d =
SETHRE an t-1€ Q-1 and ay P’ <€Wt—1€/ - N6t2£VI)IT—1) Qi1

] . Moreover,

Z, Wi e+ Z_ W, (X —X)Tgy1 = Zj_ W, 1€Q
= (E[Z—1)Wi—1€ + (Z—1 — E[Z;1]) Wi_1€) Qi1
= E[Z; 1]W; 1€Qi_ 1+ (Zi_1 — E[Zi 1)) W 1€Qs_1

= ag] + agy,

setting as1 = E[Z;—1]'W;_1€/Qu_1 and ax = (Z;—1 — E[Z;—1]) W;_1€/Q;1.

Let us start with the term aj;. Using Assumption OA.11, and noticing that W;_11xy = W1,y 71,

we can write that

151 151
—=X'W,_1€Q1 = <X,Wt1€/ - X' =AW, g€+ X,TNWt—lel Qi1

JN N

-5~

X1yl W€
< A >Qt1+op<1)

/ / /
_ Xy 1NW75\;]1V€ Qi1 +op(1)
X1y 2% 17 1 WeEQi—1
N VN
X1y , ., ) 1 &
= =5 Q1 ®%_17.1) ﬁzei @ w; 4 0p(1)

=1

=

+ op(1)

—q N (Oxp41, M—1px )

recalling pux = (1,;{’8)’, M1 =Y, ZyY, g, with Yy = (Qi—1 ® 44—17—1) and Xy defined in
Assumption OA.11.

Consider now the term in a;s and notice that, by Assumptions OA.10 and OA.11, and following
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the same steps adopted for (OA.42),

Y Cara2(w)
P (ewt 1€ = No YT ) Qi

= VNP’ (6 (Wi — B[W,4]) € + eE[W,1]¢ t(l Ir_ 1) Qi1

— VNP’ <€E[Vvt—1]€,
- v@V(QL4@§PU\@c(

= Vt 1Hhwit—1—"—

N N
A2 W
~ — 620 )IT 1> Qi1+ 0p(1)
EE[W _1]6/ A2 W
Tt— Ly ) + 0p(1)

Zvec €€, O'Z-QIT_l) + 0p(1)

—d N (OKf, Vt_ervt_l)

where [ty —1 —p 1 by Assumption OA.8, with U, defined in Assumption OA.6.

For the term as;, using Assumption OA.6 and following the same steps for a1, we get

—E[Z; 1] W 1€Q1 =

\/1N <E[Zt—ﬂ/ (IN - 11\; > Wi 1€ Qi1 + E[Z;—]

\/1N (E[Zt 1) 1N1NWt 1€Qs 1) + op(1)

E[Z; 1]~

An 1

N VN
E[Z;- 1] (Qt 1 ®Y_ 171 \/—Zez@’wz"‘%(l)

——=1yW; 1€ Qi1 +0,(1)

—d N(OKZJ\t—leHZ)-

Finally, for the term ago, the following holds

We can now derive the asymptotic distribution of the estimator.

N

Jv ((zt_l - E[Zt_ﬁ]’Wt—lf’) Qi —

N

o (BB g
—d N(OKZ, HtfleH;_l).
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Indeed, using all the results



derived above, we have

NAM | X'W;_4 . NASY
Wi 7 Teeq + / (€ + (X =X)Tgp1) — ’
Ox1 Zt—lwt—l Ok,
[ g 0
= (B;N) BVl gy |+ | Py (eWinie = Not VT ) Qi
i OKZ Ok,
i 0 0
N Ox, N O,
_ (E[Ztyvl]’lN) (1 NWi_1€e > Q. (Zt_l—E[Z\t/_ﬁl])'Wt_m’Qtil

= a; +ag +ag+ ay,

L Wt e s val VS | 0
setting a; = (BAl/N) 1) Wt 1€’ Q. |» a2 = P’ﬁ (eWt 1€ —NO't(W)IT 1) Q1 |, a3 =
OKZ Ok,
0 0
Ok; ,and a4 = Ok,
<E[thvl]’1N> <1 NWi_1€ ) Q. ; (zt,rE[z\t/,Nl])’wt,le/Qt_l

Notice that all the terms have zero mean. Therefore, using the results above:

/ 0 0, 0.
pxpx  O(ki+1)xk,

Var[aﬂ—))\t_l s Var[ag]—> OKf nglUth_l OKfXKZ s

Ok, x(re+1) Ok, xkK,

Ok, Ok, x K; Ok, xK,
0 O’Kf O’KZ 0 O’Kf O/KZ
Var[ag] — )\t—l OKf OKf x K¢ OKf xK, | » and Var[a4] — OKf OKf x K OKf x K,
Or. Or.xk; Halt, Ok, Or,xx, Hi1XZvH,_;

It remains to evaluate the covariances terms. Under Assumption OA.5, then Cov[aj,a)] —

0(K+1)><(K+1)7 and Cov[al,aﬁl] — 0(K+1)><(K+1)’ while

O(ko+1)x (K1) Mx,
Cov[al, ag] — )\t,1 (KetD)x(Ke+D) ‘
Ok, x(rxi+1)  Ok.xk,
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Regarding ag, notice that, Assumption OA.5, Covlag,a3] — O(xi1)x(k+1) and Cov(ag,a)) —
O(k+1)x(k+1)- Finally,

/ /
0 O O,
!/
Covlas,ay] = |0k, Or;xx; Ok;xk,

Or, Or,xr; St-1
setting Sy_1 = p, Y, (0?11 ® 3w Hi_;. In fact,

N
Z wj,tflvecl(zjeg)(Qtfl ®@J—1)

N

1 1

Covlas, a)] =E |2 17 1— E wi€Qi1—
N = N j=1

2=
1=

@
Il
MR

N
1
= Qi1 ® 117 1)E (€ ® Wi.)ﬁ E wji—1(€; ®2) | (Qe—1 ® Ty—1)
j=1

=

1
wit—1(€i€; ® Wﬂ;)) (Qt-1® J¢—1) +0(1).

— ” / !/ E 7
M ( Qi1 ® %y 1) (N -

Collecting terms concludes the proof.

Proof of Theorem 5. Rewrite the premia estimator as

XX~ N(A+ A ) X'Z, — NASY,
T+
LYzt —1] Z:%IX Z:gflzt—l
7/

Alm) | X o\ T
3’t_1] Ya,t—1 + [Z’ } (my—1 + e+ (X = X)Tpq) — [
t—1

K. xK,

N(Ay+A{Y)
Ok, xK +1

f‘f,t—l +

Concerning the bias terms, the proof follows the corresponding part of the proof to Theorem 1,
(I,Itl)—l + Agrft‘) Te1+ A;(;rftl)_l’?z,t_h equal

except for the additional terms arising from %X’ m;_q— AQ o
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Ok,

)

-1

)
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to (excluding the zero elements of the first row)

M ((It 2, 0t—axT—t41) % (—:Rt)

l(B—B),mtf]_ _P/ +P/ M ((It 270t 2xT— t+1) X) Fft 1
N O7r—i41 Or—t1xK +1
Y Mll ((It 2, 0t—ox1— t+1)N€Zt 1) 0 1—|—P/ Mﬁl ((32(1,5,2,Otfng,t+1)MDLt,LT,1>
07— t11xK, ’ O7—¢41
_ i(B _B)Ym;_ - P My, ((It 2,0¢ 2T t41) 7 €My 1)
N Or—¢41
—|—P’ (It 2, 0i—oxT—141) % €X> et — P Ml_ll((It—270t72><T7t+1)%éX) Tros
Or—i+1xK;+1 Or—i+1xK;+1
+P' (It 2, Op—oxT—t41) 5 €Zy— 1) 3 — P M} <(It—2,0t—2xT—t+1)%ézt—1) i
Or—i1r1xK, 7 Or_i111xK, 7
—|—P’ ( (Li—2, 0t —2x7—t+1) MpLs—_1,7- 1) _p Mﬁl((It—2,0t—2xT—t+1)%é€t)
07 411 O7—t41

M ((It727 0i—oxr—t41)(% >N MDiGiGQ)P>

Of 1
Or—1r1xK;

= 1
— _P/ |:M11 M12:| ietnylmt_l _|_ P/

Ir—4y1 | N

4P Mﬁl((It—2,0t72fot+1)(f52MD— Zz 1 Mp €i€)e—1,r— 1)]

O7r_¢41

M7 'M;5] 1
=P [ I;’l t+112:| e = P

M} ((It—Q, 01—2x7—14+1) (% PR Mp, €€; — 52]MD)Qt1,T1)]
N

O7r_¢41

1

= Op(N7§)a

recalling that (B—B)'my_1 = B'my_1, N"' 30, Mp eimi—1 = Mp(N"' SN | eimii—1)+0p(1),

and € = [EQ’t_l] , with €2, 1 = (€2,...,€-1),€,7—1 = (€,...,€r_1)’. Notice that the bias
t,T—1

adjustment corresponding to the anomalies Z; 1 cancels out for every finite N.

Regarding part (ii), the limiting distribution of f‘;k (tn_1)1 and 'S/;S:f)l, and their (joint) asymptotic
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covariance matrix, follow by

f‘}k(f)l — f‘f,tq LNX (Al +
\/N A;f(m) e = Zé_lx
Z,t—l Z7t_1 N
I 0
+ P/%Qt—l—\/ﬁfsz/Qt 1|+
Ok,
i 0
M; ‘M
+ |[—P’ [ 1;1 Hlu} \/%ﬁt,T—ﬂntq +
L Ok,
X'X (A +A(m) ) X'Zy_1 _A(m)
N 1T 211 N 3,t—1
Z;—IX Z£—1Zt71
N N

1/N6/

—1
A X'Zy A Qi1
RV . o B O
Z, | Zy \/ﬁQt—l
N Ox.
0
OKf
Z/ !
\/N( tjvle ) Q-1
[ 0
_p M} ((It72a 0—ox7—t+1)VN(% Zi]\il Mp, €i€; — 5'2MD)Qt71,T71)
O7r_t41
Ok,

-1

(a1 +az+az+a;+as).

We follow the corresponding part of the proof to Theorem 1, and use their results, to which we

need to add the derivation of Var[ay], Var[as], and of the covariances of ay and a; with a;, as, a3,
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obtaining

0 1 0, 0.
MM _
Var[a4] = Uzgt—lmm OKf P/ 1 12 [M/IQMIII IT—t—i—l] P OfoKz ;
It 411
Oxk. Ok, xK; Or.xK.
0 O’Kf 0.
Var[as] = |0k, A 1UA} | Ok, xk. |
Ok, Ok, xK; Or.xK.
Covlay, a]] = 0K+ Ky +1x K.+ K41,
Covlay,a)] =
O/Kf O,
/ MilMl? / 2 2 /
-P IT 1 [OT—t—‘rlX(t—Q)? (et—l,m X o IT—l) (0' ITfl & gt—l,m) 0T—t+1><(T—t+1)2] Vt—l OKfXKz ,
Ok. xK; Or.xK.
Cov(ay, a}] = OK, 4 K+ 1x K.+ K415
Covlay, aj] =
O'Kf 0.
1 Mf11M12 / 2 2 /
-P I oy 07 ii1x@—22 (01, ®@0%Ir1) (0’ Ir1®67 1,,) Or_ii1xm—i11)2] Amr Ok, xk. |
Ok, xK; Or.xK.
Covlas,a)] = Ok, 1K 41xK.+K 41,
0 0, 0.
Covlas,a3] = |0k, A, 1UViq Og,xk.| and
Ok, Ok, xK; Or.xK.
Cov[a57a/3] _>p OKf+Kz+1><Kf+KZ+17
recalling that mj_;1y = 0 by construction and % —p Ot—1,mm Dy our assumptions, and we
set
/ M (I, 5,0 Mp)(Iip_1y2 — vee(Ip_y) pectMb)
A = _p (Qt—l,T—l ®@ My (L2, 0t—2x7—t+1)Mp)( (T-1)2 vec( T*l)T_Kf_KZQ)

O _t11x(T-1)2

and where for Cov[ly, I}] we used the result N—* Zf\il mi7t_1et,T,1e’Qt_1z;7t_1 —p 07 i1k, -

Collecting terms, one finally obtains

M™ = Varfay] + Varfay] + Var[as] + Var[ay] + Var[as] + (OA.47)

Cov|ag, a)] 4+ Cov|ay, a3 + Cov|]ays, a5] + Covlag, aj| + Covlas, a5] + Covlas, a5] + Cov]ay, a5] + Covlas, a)].
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The asymptotic covariance matrix for f‘;(trf)l and ’y;(tf)l will then be L', (0,1 + MIET%)L;_ll, with

Li—; and O¢_; defined in (OA.35) and, given N‘lﬁgﬁ)_l = 0p(1),

X'X X'Z_ A
L _ |~ (A1 + Agt) 1) N Agi?ll
t—1 Z; 1X Z,_1Z¢1
N N

—p Ltfl. (OA48)

Proof of Theorem 6 We need to establish the limiting distribution of (61) under (i) and (ii).

First, notice that, by using the definition in (60), and replacing it into (61), we get

2%/ Z_MAZ_A*_
T2 =N <’th1t1 xZt-17;4 1>. (OA.49)

R,M, R,
Let us start from the denominator of (OA.49) and rewrite it as R{IM; Ry = R{R;—Rj1y1R;/N.
Recalling that Ry = v0t—11n + Z¢—17z,t—1 + B 1 + €, then:

R,].N B 1N Z:g_l]-N EtllN
tT - Y0,t— 1+5ft 17 nr N +7;,t—1 N + N

—p Vo4-1+ ‘%,t—l“ﬂ + '7;,t—1ﬂz-

Moreover, using the same arguments,

R,Rt B/B th_th_l thet
tT = 73,#1 + 5f,t—175f,t—1 + ’72,%1 T’Yz,t—l + N
1 171 1€
+  270¢-1 N Of¢—1+270,¢—1 %’Yz,t—l + 270,11 ]X[ L

th 1 B'e, Z, €
+ 2004 —— N wi- 1+ 20, —— N + 27,44 tN

—p 73,15—1 + 0t 13860501 + Y101 B2 T 1 Ya -1 + o

+ 290,118 Ot -1 + 270,011 Vi1 + 208 1 1 BT 1vs1

Therefore, combining terms

R/M;,R, _ RiR, R{1yI)R,

N N N
—p Oyt (Zp— pattls) 01+ 1 (T ZaTe1 — paptl) Yo

+ o2y 25;,1571 (EIZB-]Itfl - Hﬂ“lz) Yz, t—1

= UR,t’
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implying that o, > a% > 0.
Consider now the numerator of (OA.49) and notice that, under Assumptions OA.3-OA.7 and using

Lemma 2,

Z,_ \MZ

-1
N —p Jgflzz‘ﬂt—l — Xzx,t-1 (EX + UQP/P) /ZX,tfl =X

ZXZ,t—1"
Moreover, using Theorems 1-(ii) and 2, we have that
\/N (’3’;,1:—1 - ‘Yz,tfl) —a N <0Kz7 L;3—1 O L;1€1L1> )

with L, ;1 = [OKZx(KfH),IKZ] L;—1. Therefore, under the null hypothesis of v,; 1 = Og,, and
denoting for brevity VLOL = f;;g_l Ot_l IA,Z_tll_l, and V5o, = LZ_’ltl_1 O;_1 Lz_7t1,_1, with IA_,Z,t_l =
1

[OKZx(Kf+1)aIKZ] L;_1, we have that vV N (\A/‘LOL)f5 Vi1 —d N(0g,,1k,), and

1
I 2 (Z, MyZi_ A
(VLOL> ( e t 1) (VLOL> (Veon)? Bygz, 1 (VioL) e
— : =01,
R/M, R;/N P s =

N

NI
=

with ©;_1 being a symmetric and positive definite matrix admitting the spectral decomposition
O, = Al,tflAZ,tflA/Lt_ly for an orthogonal matrix Aj;_; and a diagonal matrix Aqg; 1 =
diag(dy ¢—1, -+ ,dk, +—1), whose diagonal elements correspond to the eigenvalues of ®;_;. There-
fore, combining these results into (OA.49), we have
VN (B VN,

R,M;,R;/N

s (Vion)  (Vn) (22522) (Vion)” (Vion) v

R/M,;, R;/N
Kz
—q €O, 1€ = A1 1 By AL, &= xFdiea
=1

denoting £ ~ N (0% ,Ik,), and where the last equality follows by noticing that {A; ;1 ~ N(Og,, Ir,),

given A, 1Ix, A1 = If,. Finally, notice that, under the null hypothesis of part (i),
ORt = 6é,t71 (Eﬁ - Mﬁﬂg’g) Or 41+ o’
This concludes the proof of part (i).
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To prove part (ii), let us first define the following d x 1 random vector

77\ 71 7Z'B Z'€ B'¢ ! 1
0= (vec < ~ ) ,TN,vec <N> ,vec (;) ,vec <Ne> ,vec <€]\€[> , GNN> (OA.50)

(T -1).

with d = (T —1)K,)* + (T — DK, + (T — 1)K, K¢ + (T — 1)2K, 4+ (T — 1) K¢ + (T — 1)2

Then, consider Ritfl in (60) and notice that it can be written as a function of @, such that

~

Rit—l = g1-1(0),

with g;—1(-) being an elementary and differentiable function, made by simple products and ratios

of the arguments in 6.2 All the random quantities in @ admit a continuous second-order derivative,

implying

—d N(Oda V9)7

with the d x d covariance matrix Vg having the following form

setting 6, = V/Nvec (%
) 95—Vec<f> 96—fveC<——T—2> and 6; = 5\/1%

Z'e
VeC(\/N

[ Var[@;] Cov[6, 6] Covl[61, 64]]
COV[BQ, 93] Var(Bg} COV[OQ, 0/7]
Vo , (OA.51)
_COV[07> 0/1] COV[077 0/2] Var[07]

ZZ> Bgzx/ﬁ(@—uzgp 1) ngx/ﬁvec(leB—EZB>,94E

Now, by Assumptions OA.7 and OA.13, Var(6;) = Var [VGC (\Z/]%)} — Uy, Var(62) = Var [Z\;NN] —

Yy — ,uZ7T_1,u’Z’T71, Var(03) = Var [Vec (
Var(0,) = Var [Vec<
Var(60g) = Var {vec (f/—%)} — U, and Var(67)

Zlel
VN

Z'B
%))
— (0?1771 ® X7), Var(0s)

= Var [%} — o2,

= Var {vec (

— (B @ 3g) - (MW'B ® po 1M, 1 ) = Spez,
W) - e D),

8To ease the exposition, we do not repor the gt—1(.) function, because it is elementary. Details are available upon

request.
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Consider now all the covariance terms. Under Assumptions OA.6, OA.7 and OA.13, we have
Cov[6r, 5] — Syey, Covls,04] — Ty, (@ 1, ), Covia, 04] — @ (S2 - poramr s ),
Cov]04,0] = o?Ir_1 ® uz,T_uL/ﬁ, Cov[04,05] = 0?11 ® u’LTfl, and Cov|[05, 05] — oIy ®ng-
Moreover, under Assumption OA.5, it follows that all the remaining covariance terms are zero

matrices. Putting all together gives Vy.

Therefore, by the mean-value theorem, it follows that
VN(RZ, | — R2,_1) »a N(O,wpe1)  with w1 = G)_1VeGy, (OA.52)
setting Gy_1(x) = dg;—1(x)/0x for a generic d-dimensional vector x, and G;_1 = G_1(xp) with ?
X0 = (Vec' (X7) ,u’LT_l, vec' (ZzB), 0'(T_1)2KZ, O'(T_l)Kf, vec' (6 17_1), O'(T_1)>,.

Finally, a consistent estimator w, ;1 for w,;_1 is obtained by replacing G;_; with

5 7'7 71 7Z'B
Gi1 =Gy <(Vecl <N) , vec' <NN> , vec' <N> 70/(T—1)2KZ70/(T1)Kf7VeC/(&QIT—1))/aOI(T1)) )

and replacing the terms of Vg with their sample counterparts, yielding

(Dz,t—l = G;_l\AIgét_l. (OA.53)

9The mapping from vectorized matrices to the original matrices is given by the linear function vec;llxp(x) =
(vec'(I,) ® 1) (I, ® x) mapping the mpx vector x into a m X p matrix.
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OA.5 Further Results on the CSR OLS and CSR WLS Estimators

This section is structured as follows. First, we focus on the traditional two-pass CSR OLS and CSR
WLS in (30) in (41), respectively, showing the bias that arises, both in the fixed-T and large-T" cases.
Next, focusing for simplicity only on the CSR OLS estimator, we study the limiting properties of
the locally-averaged estimator (40). Finally, we provide further results for the CSR OLS under
global misspecification (53), by deriving the misspecification-robust estimator (53), together with

the corresponding standard error, asymptotically valid when N — oo.

OA.5.1 The Augmented-Traditional CSR OLS and CSR WLS Eestimators

In this section, we investigate the limiting behaviour of the augmented traditional CSR, OLS and
CSR WLS estimators defined in (30) in (41), respectively, when N — oo and T is kept fixed. These
estimators generalize the conventional approach to the case when both anomalies and (estimated)
loadings are used in the cross-sectional OLS regression, hence resolving the bias coming from the
potential lack of orthogonality between the risk factors and the anomalies. However, as we show in
Propositions OA.1 and OA.2 below, other sources of bias arise in the fixed-T" setup, making them

biased.

Proposition OA.1 (biases of CSR OLS — time-varying estimator). Let K = K, + K¢, and define

the two matrices

0 0/ 0
A= B A =00 . (OA.54)
OKf O'QP/P Plzt—l,T—l
Under Assumptions OA.1-OA.7, as N — oo,
| AP Fft—1:| 1 ( [ Ay } [AQt—1]>
o — ’ _|_ C - — F _ + ’ 5 OA55
|:'Yz,t1:| P [’Yz,t—l =1 Ox.q) 1 O, ( )
where
Yx + A AN
Ciy = S (OA.56)
Yzxp—1 Jy 1 2zdi

Proof. Using (29), we can rewrite:

[ I o 1 5
It t—l:| [Ff t1:| [ X'X  X'Zi4 ] [ X’ ] .

Y Rl PV : €+ (X — X)Tpsq).
[’YZ,t—l Vz,t—1 Z, \ X Z, \Z;, v/ (e + ( )Tei1)
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X'X  X'Zyi

By Lemmas 1 and 2, then N1 [ -
Zy X Zy 24

} —p C¢—1, and, by Lemma 3,

1 [x o Ay Asy1
— X -=X)¢y— — | P ’ .
vz e+ = Som oy (= o2 e+ R

Proposition OA.2 (biases of CSR WLS — time-varying estimator—weighted). Under Assump-
tions OA.1-OA.11, as N — oo,

£

ft—1 Ff t—1:| -1 < |: Al :| |:At1 2:| >
- ’ +D, (- Tepq + ’ OA .57
~ (W) b [’)’z,t—l t=1 Osz(Kf+1) f,¢-1 Ok, ( )
z,t—1
where , ,
1 “,B l‘l‘z,tfl
Dia=| ps  Zp+0’PP psp, |,

Hzt—1 Nz,t—lﬂlg ZZ,tfl
with p,—1,X 741 are defined in Assumption OA.11.

Proof. Rewrite:
|

_ Ff,t—l] n { X'W; 1 X  X'W, 1Z; ]_1 [ X'W,_,
Yer—1

Yz,t—1 Z;_lwt_lX Z;_lwt_lzt_l ZLth_l

:| (Et + (X - X)Ff}tfl).

By Lemmas 4-5,

1 { XWX X'Wy1Zy

. —p Dy OA.58
N |Z, W, X zg_lwtlztj p il ( )

By Lemmas 5 and 6,
ot | o) P [5))
— Wi i(et+ (X =X)I'1—1) =5 | — i1+ ’ .
N [ZQ_J (e JTi-1) p( |:0Kz><(Kf+1) = Ok

QED

Remark OA.19. Proposition OA.1 shows that the conventional augmented CSR OLS estimator
is biased whenever N — oo and T is kept fizred. However, it is possible to show that bias also arises
in the conventional large-T-fized-N setting. Specifically, when P'e —, Og,xn and (X,Z;_1) has
full-column rank, then

. 1
| A Iy t—1:| [ XX X7 } { X/ ]
- ) — ) + €+. OA.59
[%,t—l] ? [7z,t—l Zy X Zy 174 v/ ( )
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The result in (OA.59) shows a bias term which is linear in €; and, hence, random and not pre-
dictable, making the bias term impossible to estimate consistently.
1
The same applies to the CSR WLS estimator. When P'e —, O, xn and W7 (X, Z_1) has a

full-column rank, then as T — oo and N remains fized,

fﬁfi)_l | ] X'W;_1X X'W,_1Zi_4 1T X'w,_;
_>P €, (OAGO)
AZ(“Z)_l Yzt—1 Z, \W X Zy Wy 174 7, W 4

hence, also affected by a random bias.
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OA.5.2 Anomalies with Time-Varying Premia: Locally-Averaged CSR OLS Estima-
tion

In Theorems 1 we have shown that our time-varying estimator f‘}:t_l and v, ; accurately capture
the true premia I't ;1 and -, ;1 at any given point in time. However, when premia’s time-variation
is sufficiently smooth and not too abrupt - something that seems not so hard to justify in our fixed-T
environment - one could benefit from the time-series dimension of the panel and obtain more precise
estimates of the premia parameters by means of rolling-windows average estimates. As explained

in Section 5, this reasoning suggests to use the locally-averaged CSR OLS estimator (40):

Ly
7

A~ N ~ N/
where A; is defined in (32), and where I'f = (%k, M ) . The next theorem establishes its limiting

X'X - NA, X'Z

I

CIX'R
Z'R

Z'X Z'Z

statistical properties.

Theorem OA.1 (large-N—fixed-T' - consistency and asymptotic normality of the locally-aver-
aged bias-adjusted CSR OLS estimator). Under Assumptions OA.1—OA.7 and @/(Zt_l, Voi—1) =
op(N~Y2), as N — oo,

(1)

I —T=0, ( ! > and A —~, = O, (1> , (OA.61)

VN VN
(i)

| .

VN Y (OKH, L”OL“') , (OA.62)

Yo — Yz

where
U o2GH'
0’HG' HXIyH/,

x X
Sox I'E,T

£
Il

(OA.63)

>0, and OE[

0 0

; S —_1D5'P'PS
with U = 77 [1+ (T — 1)6/P'Pd;] Ex + [ Ok, VUV

:|7 UE7 2]ZB; 2]ZX; EU and Mz T-1
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defined in Assumptions OA.3 and OA.7, and in Lemma 2, and where

1r_4 <
= -P
vec(IM 5)
= P)- ——2-QP
V. =QeP)- UEPlQP,
G =[Q®pr1, Q®Izs],
H =Q®I.
Proof. Starting from the definition in (40), we can rewrite
rr] [T] [XX-NA, X'Z]7 [[NATY] [X L
= + . _ +|_ | (e+(X=X)T¥)|. (OA.64)
Yz Yz Z'X Z'Z Ok, A

X'X - NA, X'z2]"

By Lemma 1 and Assumption OA.7, % [ = Op(1). Moreover, notice that

7Z'X 7'Z
X X . L X/ 1 P&
—e— —(X=X)I't+Ail| = |—€— L NJ\/[ _ B ,
NN N B Ps; + P/ Po; — 6°P'Po;

where
1., 1 - N 1 _ 1
SXe= (X -X)e+ - Xe=0, (N 2)

by Lemma 1, whereas by Assumptions OA.6(i) and OA.6(iii)
1 N 1 1 N - 1
Py =0, (N*a) o and > BiePo; = O, (N*a) .
i=1 1=1
Next, note that the term P’%ee’PSl — 62P'Pé; can be rewritten as

) [ €€ 1 & 2 s A2 2 1 & 2 2
P W—NZUiIT,l Pés — (6% —0°) — NZJZ' -0
i=1 i=1

P'Pé;, (OA.65)

1

with P (e€’ = 22, 021p 1) P8y = O, (N7 by Assumption OA.6(ii), 5% — 0> = 0, (N~7),
and % ZZ]\L 102 —02=0 (N _%> by Lemma 1 and Assumption OA.5(i). It implies that the term
in (OA.65) is O, (N_%>, which concludes the proof of part (i).

To prove part (ii), first notice that,

49



o fi-T [ A %27
V- Z'X 7Z'Z
LYz — Vz N N
[ 1€ 0
v Q 0
B¢ 1 e€ ) _ A2/ 0
X \/%Q + | P \/NQ \/NU P'Q | + f(f
| Ok, Ox, \/N<ZN€ ) Q
G R 5 —1
xNx _A, X2
= . - (a1 +az +a3), (OA.66)
Z'X 7Z'Z
N N

where we use the fact that P'Pé; = —P’Q, with Q = (1TT_‘11) — Pé¢. Now, using Lemmas 1 and 2,

we have

Sox J'EyT

N p

XX NA, X7
= L. (OA.67)

Z'X 7'Z

Next, consider the term a;. By Assumption OA.6, this term has zero mean with variance

Q'y Xk, Eleie]]Q Q% >N, Elee](Qe B) 0.
Varlh] = | 4 320(Q ©B)Elee]Q 5 XLy (Q @ B)Elee](Q®B) Oxxx, | +o(1)
i Ox, 0K, xK; Ox,xK, |
r -2 a? N S T
. o Q’QEX O(Kf+1)XKz] _ [T—l [1 + (T — 1)(5§P/P5f] 3x O(Kf+l)><Kz (OA68)
Ok, x(k;+1)  OK,xK, 0K, x (Ki+1) Ok, xK,
Consider now term as. First notice that
1 & 1 1 &
P— 2 t M5 o2 | P'Pé; = Og,. OA.69
m;%mT—K—f(m; )T o

Therefore, using the properties of the vec(-) operator and exploiting the result in (OA.65), it follows
that

ax = agy + Op(l). (OA?O)
Ok,
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setting

N tr (L Z]\i M- (€€, — o?Ip_ ))
1 VN &vi=1 D;\*1&q i +T—1 ,
ax = (Q' @ P')vec < Z(eieg — a?IT1)> - P'Q.
v N — T—-K-2

(gl )QP,

Under Assumptions OA.5(i) and OA.6(ii), using (OA.69), and recalling V = (Q®P)—

the variance of ass equals to

Var(ap) = E[agga’22]
vec(Mp)

"9 P')+ PP D7
(Q @P) +PPs T k3

%

J(QeP)+ SP'P|=VUV,

vec(Mp)’
T-K-2

implying that
0 O’Kf O’KZ
Var(ag) — OKf V/UEV OfoKz
Ox, Ox,xk; Ok,xk,

Moreover, notice that a; and as are (asymptotically) uncorrelated, therefore Cov(ay, ab) — O(K11)x(K+1)-

Consider now the term ag, and notice that

Z/E/Q = <Q, ® J/) E EN:(GZ ®2z;) = Hl iui
N NI N ,
where we set u; = €; ® z; and H= Q' ® J’. Under Assumptions OA.6 and OA.7, we have that
Var (%Q) LﬁQQ’\e/Z»] = H% i]ivzl ¥,.i;H - HEyH,
implying that
0 0Ok O,

Var(ag) — OKf OKfXKf OKfXKZ

Ox, Ox,xx, HEyH'

Finally, let us consider the covariance terms between as and as, and a; and ag. By Assumption

OA.7(viii), it follows that

= N

€z 1

Cov <a22, /\/N> = V,N g Eue,in, — Or;xK,,
i,7=1
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implying that Cov(az,a3) — O(x41)x(k+1)- Finally, note that

1€ Q _
Cov % Q’—ez _ 1 EN i (Q’ ® [1} E(z-)’> H — o’GH
It ’ - 1] . J
BN Q VN N P Bi

setting G = [Q® p, -1, Q& Bzp)]’, yielding

Ok +1)x (Kp+1) UZGH/]

Cov(aj,ay) — [
Ok, x(x+1) Ok, xk,

The following theorem shows how to construct asymptotically valid standard errors.

Theorem OA.2 (standard errors of the locally-averaged bias-adjusted CSR OLS estimator). Un-
der Assumptions OA.1—OA.7, @(Zt_l,’yzjt_l) = op(N*1/2), and the identification condition

ke =0, as N — o0,

L'OL™Y -, L7'oL™" (OA.71)
where
1 [X'X-NA, X'Z U  §°GH
L=— . , and O= R (OA.72)
N 7'X 7'7 F2HG HSyH
0 0O

- T-1

0x, VUV

0,6%) is a consistent plug-in estimator of U, = U(k4,c*) obtained by replacing o* with

with O = & [1 (T - 1)5§/P’P5ﬂ (Sx — A1) +

] and where U, = Uc(kg =

4 % Z]\il tT—_ll it @ _ 1 S
6t = — =) , with Mg = N Z (MDZ» ® MD’L) , (OA.73)
3tr (]MD ) P

recalling MD = N1 Zfil MDif with Mf)i =Ipr_1 — f),(f);f)l)_lf);, f)l = (D,Zi), with D =
(171,F), ¥x = N7'X'X, 3y = N"'Z'B, fi,7 1 = N 'Z'1y, and 3y = 6*Ir_, @ Z'Z/N,
with 62 defined in (33), and defining

. . . 174 .
H =Q'®J7,Q= — Po;
Q ® ’Q (T—l) 6f,
~ A vec(Mp) 4
= P)- ——DPLQ'P
G = [Q®l§'z,T—17 Q®2ZB],'
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Proof. By Lemma 1 and Lemma 2(i) and (ii), it follows that L —p L. By part (i) of Theorem
OA.1, then 5;“ —p ¢, implying that Q is a consistent estimator of Q. Moreover, as N — 00,
Mg —p Mp, fir—1. —p MT-1., 278 —p BzB, and Z'Z/N —, 7. Tt follows that V —, V,
G —p G, and H —p H. Finally, a consistent estimator of U requires a consistent estimate of the
matrix U, which can be obtained using Lemma 1(ix). This concludes the proof of Theorem OA.2.

OA.5.3 Anomalies with Time-Varying Premia: Global Misspecification - Asymp-
totics

We first establish the additional biases induced by global misspecification for the CSR OLS estima-
tor, then construct the misspecification-robust bias-adjusted estimator of the premia (53). Finally,

we show how to construct asymptotically-valid standard errors.

Proposition OA.3 (biases of CSR OLS — time-varying estimator with misspecification). Under
Assumptions OA.1-OA.7 and OA.12 (listed in Appendiz A.1), as N — oo,

0
| Y | N } —1 [ Ay ] = |:At—1 2} / [@-1 m:|
. — | - +C. | - i1+ “1+ | P ’ , OA.74
|:'7t1,z:| P |:'Yt—1,z =1 Or.xKp+1 =l Ok, O7r—_t41 ( )
Ok,

where Cy—_1, A1, and Ay_1 2 are defined in (OA.54) and (OA.56), respectively, and 6,1y, is defined
in Assumption OA.12.

Proof. Both parts (i) and (ii) follow by the steps adopted to proof Proposition OA.1. For part (i),

one needs to consider the additional term

S 0
1 [ X/ } 1 .
AT m;_1 = — (B — B /mt_l ,
N |:Z£1 N OK)Z
where ] ]
9t—3,m
9t—4,m
i(B -B)m; ; = iP’csm,t,l — P’ : =P |:0t—17m:| ’
N N ’ Or—t11
HO,m
sy

using the property (X, Z;—1)'m; 1 = O, x,+1. For part (ii), the result follows as X —, X as

T — oo, by the assumed conditions P'e —, Ok, xN and (X, Z;_1) being full-column rank. QED
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To construct the bias-adjusted estimator, we proceed as follows. A natural estimator for 6;_1 ,,

. 1 ~ prelim . ~ prelim __ S cprelim!  ~ prelim/yy . | €2;t—1 . _

is N7téy ,  my" "™ withm)" "™ = Ry— (X, Z—1) (L™, 472 12™ ), setting € = er |’ with €241 =
t,T—

(€2,...,€-1)  €,7—1 = (€,...,€r_1), and assuming the availability of preliminary consistent es-

tprelim!  ~ prelim/
T
t—1

timators for the premia parameters ( i1, ) . Notice that €, 7—1 and m;_; are mutually

independent, and hence their covariance is zero. Lemma 8 shows that N *1é'27t_1rhfiﬁlim is biased
but that, by adding a bias-correction term to it, one can construct the valid estimator for 6;_1 ,,

yielding the overall bias-adjustment term for the CSR OLS estimator, as follows,

0
124 [éfiil’%] _ AS,I;)—I _ Agt;lll f‘?rellim N Ag;)_l ’_Ayfrellim’
Or—t41 Ok, Or.xkp+1| Ok.xr.|
K.
setting
1 [ Okeia 1 0 1 [ Ok
Am L £ Am L Am L =
Al,t—l = N 3 A] 9 27t_1 — N = _ s ~] 3 and A3,t—1 = N P/‘j? 3
P ‘I’DX P lI’DR P ‘I’DD D7
(OA.75)
A MY ex ] M ez, ] MG eR
with Wp¢ = [ D=1 g = | D g = [TDe 1SR g
O(r—t+1)x (K¢ +1) Or—t11)xK, Or—t+1
- My, Mpe 17 (—1) 1
e D’t*(l] ’ , setting the (t—2)x (T'—1) matrix My, = M} [Ti-9, 0¢—2)x (1—t+1))
T—t+1
where IM1; denotes the (t — 2) x (t — 2) top-left block of Mp = Iz_; — D(D'D)~'D’, where we

M M12:|

use the partition IMp = []1\/1 M
21 22

Estimator (53) is then obtained finding the ’fixed-point’ solution to the system of equations

f‘*(m . . R AO
£t—1 _ |:Ft—1:| - 6;11 B [ Aq ] f‘;k(rf)l " |:At—1,2:| Y [ ?fLm]
. %(m) Yi-1,z Ok, xK;+1] Ox. Or—t41
z,t—1 OKZ
that is setting
0
P’ |: :1,m:| — Ag,rtl)fl AgI,lz)—l f‘;(m)l _ Aér,rtl)fl }Y*(tm)h
O7—t+1 Ok, Or.xripi1| Ok.xr.| 7
Ok

z

: . sprelim g prelim .1 . . paprels
obtained replacing I‘?;e_lzlm, ')If;e_lzlm with I‘r(ﬁ)l,’yz(ﬁ)l into 6" above.

The following theorem shows how to construct asymptotically valid standard errors.'”

10We do not report the proof to Theorem OA.3, given that it follows closely the proof to Theorem 2.
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Theorem OA.3 (standard errors of CSR OLS — time-varying estimator robust to misspecifi-
cation). Under Assumptions OA.1-OA.7 and OA.12, and the identification condition k4 = 0, as

N — oo,

~ (m 1 ‘da ‘al A A (m) ! . A (m)

ng_% _1 X'X — N(A; A+ ALtfl) X'Zi_1 NAM?1 S Lgl and

N Z, X Z, 7

QET{ = Qo+ Qo + Q1+ Qa1+ Dy Qﬂ,

setting
0 1 Oij 0.
A "2 M M _
Ql,t—l = O'Qo't—lmm OKf P’ |: IH 12:| [ ,12M111 IT—t—i—l] P OKfXKz ,
T—t+1
OKZ OKZXKf OszKZ
A 0 ) O%fA 0.
@t = [0k, AciUALL Ok |
OKZ OKZXKf OKZXKZ
Q?),tfl =
M, M2 . . A . .
P/ [ I;I_H_l } [0T7t+1><(t72)2 (0{5_1’,,1 ® 62Ir—1) (6%Ir4 ®02_1’m) OT—t+1x(T—t+1)2} Vi1 Ok;xk. | and
O x iy Ox.xK.
Q4,75—1 =
O, 0.

P’ []1\/11_11]1\/112
Ir_141

} [OT—t+1><(t—2)2 (011, @6% 1) (°Ir1®6;_4,,) 0T—t+1x(T—t+1)2} Ai v Ok,xk. |

Ok, xK; Ok, xK.

setting CHECK IF Mp, or Mp in 0,1,

R _ 1., X A ) N y
gtfl,m = Ml()jl_)l(ﬁﬁlmt*l - O'QMDLt—l,T—l), where my_1 = Ry — (X’ thl)(rf’(f?),, Z7(tT)1,)/7
. (OA.76)
N _ rh:f—lrht—l A2 A A Sx(m)/ Ht,L
Ot—tmm = — 7 =0 Qi 1Qi1+ 2(5“7113’ OT_t: ’ (OA.TT7)
and
A (Q’ ® My Iz, 0 )M~> (12 ~ vee(l )M)
At—LT—l - _PpP/ t—1 11 \A—=2, Vi—2xT—t+1 D T—1 T-1 T-K;—K.—2 ’
07— tt1x(7-1)2

where we recall Mj(j_tl_)1 = ]1\/11_11 [It,Q,O(t_Q)X(T_Hl)], and all the other quantities are defined in

Theorem 2.
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OA.6 Two-Pass Methodology and Anomalies: the Conventional Approach -
Asymptotics

This section provides the formal derivations of the main results established in Section 4 of the paper.
Particularly, we derive the limiting behavior of the conventional anomaly premia estimator (see
Fama and French (2008)), which consists of running, for every time period, a CSR OLS regression
of asset returns Ry on the anomaly variables Z;_1, yielding the time-varying estimator in (13). The
T premia estimates are then averaged across time, resulting in the average premia estimator (14).
This approach coincides exactly with the second step of the two-pass Fama and MacBeth (1973)

procedure where, however, one excludes the betas from the model, to avoid EIV-related issues.

In the following, we analyze the limiting behavior of the conventional estimators in (13) and
(14), together with the corresponding conventional t-ratio in (15), under three different sampling
schemes: (i) when 7' — oo and N is fixed, (ii) when N — oo and T is fixed, and (iii) when both N
and T are allowed to diverge. We first present the results in the univariate-regression setting, that
is when one considers only one anomaly at the time (K, = 1) in the regression model. Extension

to the multivariate case are presented in the final remarks.

Consider the following model
Ri =v,-11n +Zi—17,0—1 + Bog—1 + €, (OA.78)

with the objective of estimating the anomaly premium ~, ;1. Following Fama and French (2008),
at each point in time, we run a cross-sectional OLS regression of (OA.78), using the anomaly Z;_1,
but ezcluding the betas B from the model. This gives the time-varying OLS estimator

, OA.79
Z, \MiyZi ( )

'?z,tfl =

which satisfies

Z, M, (Boi—1+€)

~z -1 = Ypt—1 T
Yzt Vz,t ng_lMlNth

Then, averaging the time-varying estimator across time yields the average OLS estimator

1 < Z,_,M;, Ry

1 T
S D Vut-1= 5D or o
T T-1 ; ? T4 Zy MiyZ

U

(OA.80)
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which satisfies

T
- 1 nglMlN (B5f -1+ Et)>
Yo = Yz + ( . , (OA.81)
T tz:; Z, M, Z
with 7, = ﬁ Zthz Yz,t—1. and with estimated variance (squared standard error)
a )
Var[7.] = ToIe > a1 — )% = -7 121)’ (OA.82)
=2

with i% defined in (22) denoting the sample average of the time-varying estimates.

In the following, we want to derive the limiting behaviour of the time-varying estimator (OA.79)
and locally-averaged estimator (OA.80) under the three sampling schemes mentioned above. Before
introducing our results, we state below the set of assumptions required (not necessarily at the same

time) to derive our results.

Assumption OA.14 (Finite-N Orthogonality). For a given fixed N, the 8; and Z;;_; are cross-

sectionally orthogonal in the sample:
B'™,Z;_ = Og,xx,-

Assumption OA.15 (Large-N Orthogonality). As N — oo, the 8; and Z; ;1 are asymptotically
cross-sectionally orthogonal:

NB/MlNthl —p OKfXKZ .

Assumption OA.16 (Uncorrelatedness of risk factors and asset returns). For every ¢t = 1,...,T,

the risk factors f; and the asset returns R; are uncorrelated:
B =O0nxk;-

Assumption OA.17 (Constant anomaly premia). The anomaly premia -, ;1 are constant over

time
Yot—1 = Vas for everyt =2,..,T
OA.6.1 The large-T—fixed-N case

Under the large-T—fixed-N sampling scheme, clearly the time-varying OLS estimator in (OA.79) re-

mains unchanged and no meaningful asymptotic property can be established. The results regarding
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the locally-averaged OLS estimator in (OA.80) are summarized in the following theorem.!!

Theorem OA.4. (Locally-Averaged OLS FEstimator - large T—fized N) Assume the finite-N or-

thogonality Assumption (OA.14), and the following regularity conditions: E[€;|Z¢—1] = Oy, E|e€)|Zi—1] =

Z, M;,,XM;,Z . .
3, and T T Zt 2 Zi %Q i&lszNl)t D —p Vv, with 0 < Vy < 0co. Then, asT — oo and N is fized,

(i) Let 40 = lim7_,o0 72, then
Yo —p Tz

(ii) When, in addition, \/% ST, ¢, e —q N(0,Vy), setting ¢, 1 = . MiyZeos g

t-1MiyZi1)”
\/T(”:yz — ’_Yz) —d N(O, VN).

(iii) When, in addition, =5 Zthg(’Yz,tA — %) = a?fz, then

T
B 1 ) _
Z’Yz = T_1 E (’Yz,t—l - '7z)2 —p U’2Yz + Vn.
t=2

Proof. Parts (i) and (ii) follow immediately from (OA.81) and the assumptions made above. To
prove part (iii), notice that, using (OA.80) and (OA.81), we have that

Z/ 1]1\/11]\,6,5 _ Z 1M1N€s
Zt 1M1 Zi—q T—l Zs 1M1N s—1

Vat—1 — V2 = Vat—1 —

implying that

) Z, M, € 2

) _ _ 2 -1V 1N €t

ot i 7 = 7.t— - 7z 7 N 7 . 1 ’
(Yz,t—1 — V2) (Va,—1 = %2)" + (Zt_1M1NZt—1> Forll)

Therefore, using the definition in (OA.82) and the assumptions above, we get

T
(T - 1)@(:72,1571) = % Z(ﬁz,tfl - %/Z)Q
t=2
1 T _\2 1 T Z;_lMlNGtengNthl
= ﬁ tz; (72,15—1 - ’YZ) + T_1 tz; (Zt_lMlNZt_1)2 + Op(l)
—p U’2yz + VN
|

1We continue to define (OA.80) as locally-averaged for consistency with our definition even though, in this case,
we let T' — oo.
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Remark OA.20. Unless Assumption OA.17 is satisfied, namely ~y, ;1 is constant, the conventional

standard error of the average OLS estimator from the Fama and MacBeth (1973) regression contains

2

5, > 0. This implies that the associated t-ratio would be smaller than

an upward bias given by o

what it should, leading to potential under-rejections.

Remark OA.21. Theorem OA .4 easily extends to the multivariate case of K, > 1. In this case:

(i) Let 42 = limp o0 7., with 4, = ﬁ 23;2 Yzt—1, then
Yo —p Ay

. . -1 -1
(i) Assuming that 725 >/, (Zj_ M1, Zi—1) Zj_ M1 EMi,Ze1 (Z,_ M1, Zi—1) —p Va,

with Vy being a symmetric and positive-definite matrix, and

\/% ZtT:Q C;flet —d N(OKZ, VN), setting Cy;_1 = MlNZt—l(Z;/flMlNZt—l)_a then
\FT (‘:)’Z — :)’Z) —d N(OKZ,VN) .

(iii) When, in addition, - Zf:z (Yat-1 = ¥2) (V-1 — ¥2) —p £-,, with 3, being a symmetric

and positive-definite matrix, then

1

T
(T —1)Var HZ] =71 Z (:/z,tfl - %’z) (’?z,tfl - %’Z)’ —p 2y, + VN
t=2

OA.6.2 The fixed-T—large-N case

We now establish the asymptotic properties of the conventional estimators under the fixed-T—large-
N setting. Under this scheme, now the time-varying OLS estimator (OA.79) does change (with N)
and one can study its limiting behaviour. Therefore, in the next theorem, we summarize the main

results regarding both the conventional time-varying and average OLS estimators.

Theorem OA.5. (Locally-Averaged and Time-Varying OLS Estimators - fived T — large N) As-
sume that the large-N orthogonality condition in Assumption (OA.15) holds. Assume also that the
following regularity conditions are satisfied: El€t|Zi—1] = On, Eler€}|Zi—1] = X, N71Z, My, Zi—1 —p
a—1 > 0, and N~H(Z}_ M, XM, Z¢—1) = 02as_1, with 1yE1xy/N — o2, Then, as N — o0
and T is fixed,
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()

~ =~ =0
Yzt—1 —p Vzi—1 and Yz —p Vz-

(ii) Let Vi_1 = 02 Jaz_1. When, in addition, Assumption OA.15 is strengthened with ﬁB/Mh\;th —p

Ok, xK,, and assuming that ﬁZ%_lMlNet —a N(0,0%a;_1), then

VN (Jz-1 — Yat—1) —~a N (0, Vi) and
. T
VN Ga=%) 2a N (0V)  with V= s 3 Vi,
=2
(ii)
T T
Varhz— ZZ’thl QZ’YZtl_'Yz
=2 t=2

Proof. Parts (i) and (ii) follow immediately from (OA.80) and (OA.81), together with the as-
sumptions made above. To prove part (iii), notice that, using (OA.80) and (OA.81), we have
that

Byt = Ny = Vb1 — A+ Z, My (Bogs1 + ) B 1 zT: Z, M1y (Béss 1 +e€s)
Zyl— zZ — |Z,— 7z

Zy 1My Zy 4 -1 Zs 1My, Zs
Then, under the assumptions stated above, as N — oo
T 1 T
_122 Va,t—1 — 7z = (T—ﬁz 7zt1—'7z) +0p(1)
t=2 t=2

Remark OA.22. Theorem OA.5 (iii) shows that the sample variance of the time-varying OLS
estimates converges to a positive constant, different from V;_; or V. However, one can still obtain
a consistent estimation of the asymptotic variance of both 7,;_; and 9,;—1, by imposing further
orthogonality conditions, as we show below. Assume that Assumption OA.16 holds, so that risk
factors and returns are orthogonal to each other. Let

_ €€
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with € = R, — 1y R; — (Zi—1 — 1NZt_1):yZ,t_1. Then, under the above assumptions, 521& — o2 —p 0,

implying that

T
—p Vi1 and (T—11)2 ; Vieg = V
Remark OA.23. Theorem (OA.5) extends to the multivariate case (K, > 1) as follows.
(i) Let 7, = ﬁ Z?:Q ~zt—1. Then, under the same assumptions of Theorem (OA.5),
Yoit —=p Yoo and  F, =y AL

(ii) Let Vi1 = o At 1, with %Z;_lMlNthl —p Ay—1 as N — oo. Then, under the same
assumptions of Theorem (OA.5),

VN (Rt-1 — Yai-1) =a N (0k,, Vi_1) and

VN (5, = 7,) =a N (0k,, V) with V:(T11)22V;_1.
t=2
(iii)
T —
(T — 1)Var [¥.) — Z Yai-1 = V2) (Va1 — )"
t=2

OA.6.3 The large-T—large-N case

In this section we generalize all the above results to the case of both N, T — oco. We show below
that the limiting properties of the time-varying OLS estimator 7,1 remain the same as the ones
obtained in the fixed-T—large-N case described in Section OA.6.2. Similar results hold also for the
locally-averaged estimator, even though it now benefits from the faster rate of convergence, given
that both N and T are now allowed to diverge jointly. The main results are summarized in the

following theorem.

Theorem OA.6. (Locally-Averaged and Time-Varying OLS Estimators - large-N —large-T) As-
sume the all the conditions stated in Theorems OA.5 and OA.J are satisfied. In addition, assume

that (T — 1)~ S0, 2 = (T = 1)"' S, Viey = V. Then, as N, T — o,
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(1)
F?Z,t—l _>p Vz,t—1 and ":Yz _>p ’72
(ii)
VN (Fn-1 = Vap-1) =a N (0, Vi_1) and
VNT (3, — 3z) —a N (0,V) .
(iii)
1 T
Var (5] — z z \2 2
T'Var [’YZ] = ﬁ tz:;('ﬁ,tl - 'YZ) —7p E,YZ.

Proof. The proof follows immediately by combining all the results obtained in the above theorems.

Remark OA.24. Theorem OA.6 (iii) shows that, even in the case of both N, T — oo, the sample
variance of the time-varying OLS estimates converges to a positive quantity, different from ¥ and,
therefore, it would not be appropriate to use it for inferential conclusions on 7,1 or 7,. However,
it is still possible to obtain a consistent estimation of the asymptotic variance of the estimators.
Let tr(-) denote the trace operator and define, for € = (&3, -+ ,€r)’,

€€’

(T-1)(N-K,—1)

Then, under the assumptions made above, &2 —p o2, implying that

52 = tr

6’2

Vi1 =
o % (Zz,tflMlNthl)

1 . _
—p Vi and ZVH —p V
Remark OA.25. Theorem OA.6 extends to the multivariate case (K, > 1) as follows.
(i)
’?z,t—l _>p Yz,t—1 and %’z _>p :72
’ —1 _
(ii) Let % ST, (%) —p V. Then
VN (Rpt-1 — Yat-1) =a N (0k,, Vi_1) and
VNT (EYZ - ;Yz) —d N (OKmv) .
(iii)
( - 1)Var 'Yz -

T
T 1 Z '7zt 1— 'Yz (':/z,tfl - %’z)/ —p E'yz
t=2
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OA.7 Monte Carlo Experiments

VALENTINA - to replace-integrate the following.

OA.7.1 Premia Estimators: Finite-Sample Performance

In this section, we undertake a Monte Carlo simulation experiment to study the empirical perfor-

mance of the locally-averaged bias-adjusted estimator (40)

The return-generating process is given by

Rit = Yo+ Z1it—172 + Z2it—172 + Biln + fr — E[ft]) + €t (OA.84)

We consider balanced panels with a time-series dimension of T' = 36 and T = 72 observations.
Specifically, f; in (OA.84) is the excess market return (from Kenneth French’s website) from January
2013 to December 2015 for T=36, and from January 2011 to December 2015 for T=72. In addition,
E[f:] in (OA.84) is set equal to the time-series mean of f; over the two sample periods 2013-2015
and 2011-2015, when performing the analysis for T' = 36 and T = 72, respectively. To obtain
representative values for vp, v1 and (3; in (OA.84), we employ a cross-section of 1,000 stocks from
CRSP database in addition to the excess market return. Based on this balanced panel of 1,000
stock returns and the excess market return, for each time-series sample size, we compute the OLS

estimates of §;, 7o, and 1 and we set them in (OA.84).

For the anomalies Zy;¢—1 and Zg;;—1 in (OA.84), we first use data on two firms’ characteristics,
namely the book-to-market ratio (ZL-’t_l) and the asset growth (Z;M_l), over the two (lagged)
sample periods from December 2012 to Novemeber 2015 (for T = 36) and from December 2010
to November 2015 (for T' = 72). We then orthogonalize both ZL,tfl and ngfl with the market

factor f;, that is we derive
Zy = MpZl,+1r 7], (OA.85)

Zy = MpZ}+ 1712}, (OA.86)

where Z1; = [Z1i1, s Z1ir—1)s Zoi = [Zoip, s Zoir—1]', Mp = Ir—y — D(D'D)"'D’, with
D = (17_1, f) and where ij = ﬁzg‘tll Z,;.t, with £ = 1,2. In this way we ensure that
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Cov(Ziit—1, ft) = Cov(Za2it—1, ft) = 0 and that the sample averages of both Zj; and Zj; match
the ones of the original data. We then use (OA.85) and (OA.86) in the data generating process
in (OA.84). In our simulation design, both the factor and the anomalies realizations are taken as

given and kept fixed throughout.

To set the values of 7., and v, , we consider three different cases. In the first case, we set both
the parameters equal to zero, i.e. 7, = 7, = 0. In the second case, we set 7y,, = 0, while
we compute the estimate of v,, using our bias-adjusted estimator in Section ??. The third case
considers v,, # 7., # 0, where 7., is the same of the previous case and ., has been calibrated
by estimating the regression of the stock returns on the excess market factor and asset growth

anomaly.

The calibration of the error term €;; in (OA.84) is a more delicate task and is described in the next
two subsections. In all the simulation experiments, we consider cross-sections of N = 100, 500 and

1,000 stocks. All the results are based on 3,000 Monte Carlo replications.
Case (i): Z; and €; uncorrelated

We start by considering the simplest case in which we assume that €; ~ N (0, O'QIT_l) and that it is
also uncorrelated with both Zy; ;1 and Zs; ;1. We calibrate the parameter o? using the estimator
in (33) applied to our data of stock returns, excess market factor and the two anomalies. Tables
II, IIT and IV report the percentage bias (Bias %) and root mean squared error (RMSE) of the
bias-adjusted CSR OLS estimator (??) for the three cases v,, = v,, = 0 (Table II), v,, #0,7,, =0
(Table I1I), and ~,, # 7., # 0 (Table IV) . Panels A and B are for the cases of 7' = 36 and T' = 72,

respectively.

In Tables V, IX and VII we report the empirical rejection rates of the t-test. The null hypothesis
is that the parameter of interest is equal to its true value. The results are reported for different
levels of significance (10%, 5% and 1%) and for different values of N and T. The t-statistics are
derived using the asymptotic distribution of the bias-adjusted CSR OLS estimator in Theorem 77

and are compared with the critical values of a standard normal distribution.
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Table II: Case 1. v;, =%, = 0. Bias and RMSE

Panel A: T=36
Bias % RMSE
N 100 500 1000 100 500 1000
’%“ -0.291 -0.061 -0.011 0.343 0.142 0.106
47 0.405 0.066 0.029 0.166 0.067 0.055
4z, 0.011  0.000 0.000 0.484 0.230 0.161
4, 0.011  0.000  0.000 1.052 0.509 0.315
Panel A: T=72
Bias % RMSE
N 100 500 1000 100 500 1000
¥ -0.095 -0.007 -0.003 0.054 0.022 0.016
47 0.018 0.001 0.013 0.026 0.011 0.009
4;, 0.000  0.000 0.000 0.079 0.037 0.013
4z, 0.000 0.000 0.000 0.120 0.054 0.037

Table III: Case 2. 77, # 0,7, = 0. Bias and RMSE

Panel A: T=36
Bias % RMSE
N 100 500 1000 100 500 1000
Y5 -0.552  -0.061 -0.051 0.172 0.069 0.052
47 0.115  0.025 0.015 0.085 0.035 0.029
4;, 0.523  -0.482 0.327 0.251 0.118 0.084
¥z, 0.003 -0.002 0.000 0.379 0.170 0.118
Panel A: T=72
Bias % RMSE
N 100 500 1000 100 500 1000
vy -0.340 -0.010 -0.005 0.105 0.044 0.032
47 0.062  0.009 0.002 0.049 0.020 0.016
vz, 1249 0.235 0.155 0.150 0.071 0.050
4z, 0.002 -0.001 0.000 0.326 0.158 0.098
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Table IV: Case 3. v, # 7;, # 0. Bias and RMSE

Panel A: T=36
Bias % RMSE
N 100 500 1000 100 500 1000
Yo -1.563 -0.613 -0.503 0.579 0.226 0.173
47 1.013  0.201 0.132 0.313 0.126 0.105
vz, -1.875 -1.396 0.480 0.802 0.374 0.265
i, 2.768 -1.496 -0.572 0.921 0.539 0.376
Panel A: T=72
Bias % RMSE
N 100 500 1000 100 500 1000
¥ -0.080 0.001  0.001 0.032 0.014 0.010
47 0.013  0.002 0.000 0.015 0.006 0.005
4z, 0904 0.178  0.171 0.047 0.022 0.016
¥z, 1.026 -0.653 -0.396 0.101 0.049 0.030
Table V: Case 1. v}, = 7%, = 0. Rejection rates
Panel A: T=36
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.100 0.056 0.014 0.097 0.049 0.009 0.103 0.050 0.011
47 0.098 0.047 0.013 0.104 0.055 0.011 0.104 0.053 0.010
4z, 0.101 0.051 0.011 0.101 0.056 0.010 0.101 0.053 0.010
¥z, 0.099 0.049 0.011 0.097 0.043 0.009 0.101 0.048 0.008
Panel B: T=72
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.100 0.053 0.010 0.105 0.053 0.009 0.103 0.052 0.011
47 0.102 0.050 0.012 0.096 0.050 0.009 0.099 0.051 0.009
4z, 0.101 0.053 0.009 0.102 0.053 0.010 0.101 0.051 0.013
4;, 0.105 0.060 0.011 0.105 0.052 0.010 0.101 0.048 0.010
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Table VI: Case 2. 77, # 0,7;, = 0. Rejection Rates

Panel A: T=36
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.103 0.055 0.016 0.098 0.050 0.010 0.103 0.051 0.011
47 0.098 0.054 0.013 0.105 0.053 0.010 0.104 0.053 0.008
4z, 0.101 0.051 0.011 0.100 0.053 0.011 0.102 0.052 0.010
¥z, 0.098 0.049 0.011 0.098 0.043 0.009 0.101 0.048 0.009
Panel B: T=72
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.102 0.051 0.011 0.102 0.053 0.010 0.102 0.052 0.011
47 0.105 0.051 0.010 0.098 0.049 0.008 0.098 0.048 0.008
4z, 0.102 0.052 0.009 0.102 0.054 0.010 0.102 0.052 0.010
¥z, 0.109 0.059 0.012 0.105 0.052 0.010 0.101 0.047 0.010
Table VII: Case 3. 7%, # 72, # 0. Rejection Rates
PANEL A: T=36
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.106 0.057 0.015 0.098 0.050 0.011 0.100 0.052 0.010
47 0.106 0.053 0.014 0.102 0.056 0.010 0.095 0.052 0.010
4z, 0.105 0.047 0.01 0.098 0.054 0.011 0.101 0.055 0.010
Y, 0.099 0.054 0.013 0.098 0.044 0.009 0.099 0.048 0.008
Panel A: T=72
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.105 0.048 0.011 0.102 0.056 0.009 0.101 0.055 0.011
47 0.104 0.051 0.007 0.092 0.050 0.009 0.098 0.048 0.009
4z, 0.105 0.053 0.009 0.102 0.054 0.010 0.101 0.055 0.013
4;, 0.109 0.061 0.012 0.104 0.052 0.010 0.101 0.047 0.010
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Case (i1): Zy and e, weakly cross-sectionally correlated

In the second case, we allow the model disturbances to be weakly cross-sectionally correlated with

the anomalies. In particular, we consider the following data-generating process for the error terms:

1. n;
(uit Lt t) (OA.87)

€t =

219

where 7 = 1+ %, uj is generated from an i.i.d. standard normal random variable, o2 is calibrated
as in the uncorrelated case, while the K, x 1 vector n;; is calibrated using the standardized residuals
obtained by fitting a vector autoregressive (VAR) process of order 1 on the two anomalies. The
parameter § controls the strength of the cross-sectional correlation between the shocks and the
anomalies: the higher the value of § is, the weaker the cross-sectional correlation is. For our

theoretical results to hold, we require § > 0.5.

Table VIII reports the percentage bias (Bias %) and root mean squared error (RMSE) of the bias-
adjusted CSR OLS estimator derived in (??) for case 7,, # 0,7, = 0, where we use § = 0.5
in the data-generating process (OA.87). Panels A and B are for the cases of T = 36 and T =
72, respectively. The empirical rejection rates of the ¢-test, under the null hypothesis that the
parameters of interest are equal to the true values are reported in Table IX. As before, the results
are reported for the three levels of significance of 10%, 5% and 1% and for different values of N and
T. The t-statistics are derived again using the standard errors the CSR, OLS estimator in Theorem

OA.2, and are compared with the critical values of a standard normal distribution.

The empirical distributions of the four parameters 43, 47, 77, , and 43, , for different values of § (i.e.,
9 = 0.1,0.25,0.50, 1) are depicted in Figure 1, where the black solid line represents the standard
normal density. The results are obtained using 3,000 Monte Carlo replications, where we set T' = 72

and N = 1000.
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Table VIII: Case 2. 77, # 0,77, = 0 and 6 = 0.5. Bias and RMSE

Panel A: T=36
Bias % RMSE
N 100 500 1000 100 500 1000
A5 -0.974 -0.794 -0.529 0.576 0.227 0.174
47 0934 0.243 0.219 0.305 0.125 0.105
4;,  0.144 0.025 0.026 0.799 0.373 0.266
¥z, 0.004 0.004 0.003 1.190 0.538 0.376
Panel A: T=72
Bias % RMSE
N 100 500 1000 100 500 1000
4y -0.010 -0.008 0.000 0.005 0.002 0.002
47 0.001  0.000 0.000 0.003 0.001 0.001
¥z,  0.559  0.172  -0.016 0.008 0.004 0.003
¥z, -0.001  0.000 0.000 0.017 0.008 0.005

Table IX: Case 2. 77, # 0,7}, = 0 and 6 = 0.5. Rejection Rates

Panel A: T=36
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 o0.010
4, 0.106 0.059 0.015 0.101 0.054 0.010 0.100 0.050 0.011
47 0.102 0.052 0.014 0.102 0.056 0.010 0.102 0.051 0.010
v, 0.103 0.049 0.011 0.103 0.052 0.012 0.103 0.054 0.011
Y., 0.097 0.048 0.01 0.097 0.046 0.009 0.099 0.048 0.009
Panel B: T=T72
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
4  0.097 0.044 0.010 0.106 0.050 0.010 0.102 0.056 0.011
47 0.104 0.048 0.009 0.091 0.049 0.007 0.097 0.049 0.008
vz, 0.098 0.049 0.008 0.102 0.053 0.010 0.102 0.052 0.012
¥, 0.105 0.058 0.011 0.101 0.051 0.010 0.101 0.048 0.010
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Figure 1: Empirical distribution of 4g, 47, 4%,, and 47, for different values of 4.
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Case (iii): Zy and €, cross-sectionally correlated with cross-sectionally dependent error terms

As a third experiment, in this Section we consider the more general case in which we allow
also for a weak form of cross-sectional dependence among the model disturbances, besides the

cross-sectional correlation between ¢; and the anomalies.

Particularly, we generate the disturbances using the following weak factor structure

o a; ) 1,Kznit OA.S8
cit = |\ Vit + 75 (OA.88)

where

0
NQ"C% +(1-0)

Vi = ul}l (Vt]\\/[zci + m5it> Oi, w; = \/
and where 14, ¢; and &; are generated from i.i.d. standard normal random variables. The parameter
k controls the strength of the cross-sectional dependence of the shocks (the bigger x is, the weaker
the dependence), while 0 < 6 < 1 is a shrinkage parameter that controls the weight assigned to the
diagonal end extra-diagonal elements of the covariance matrix . To obtain representative values
for each o;, we first estimate the residual variances from historical data. Then, at each Monte Carlo
iteration, we generate a string of N values from a Uniform distribution, with parameters calibrated
to the 10%-winsorized minimum and maximum value of the series of cross-sectional estimated
variances 62-2. This resampling procedure is used to minimize the impact of an ill-conditioned ¥ on
the simulation results. For our theoretical results to hold, we require x > 0.5. Therefore, in Tables
X and XI, we report the results for the case of § = k = § = 0.5, setting the true values 7,, # 0 and
72, = 0. Panels A and B of Table X report the bias and the RMSE of the parameter estimates for
the case of T'= 36 and T = 72, respectively. The empirical rejection rates of the t-test, under the
null hypothesis that the parameters of interest are equal to the true values are reported in Table

XI.

Finally, Figure 2 shows the empirical distributions of the four premia parameters, obtained with
3,000 Monte Carlo replications, with 7" = 72 and N = 1000. In the figure, we fix the parameters
that regulate the cross-sectional dependence to 8 = k = 0.5 and we show the results for different

values of 6 = 0.1,0.25,0.50, 1.
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Table X: Case 3. 77, #0,7;, =0 and § = 0 = k = 0.5. Bias and RMSE

Panel A: T=36
Bias % RMSE

N 100 500 1000 100 500 1000
Yo -2.041 -1.079 -0.765 0.531 0.216 0.162
47 0.710 0.163 0.210 0.278 0.117 0.097
4z, 0.126  0.026  0.020 0.748 0.352 0.249
¥z, 0.002  0.002  0.001 0.525 0.432 0.357

Panel A: T=72
Bias % RMSE

N 100 500 1000 100 500 1000
v -0.178 -0.839 0.013 0.320 0.134 0.099
A7 0.211  0.075  0.036 0.155 0.065 0.053
¥z, -0.997 -0.584 -0.333 0.446 0.211 0.151
4, -0.002 0.001 -0.001 0.502 0.418 0.220
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Table XI: Case 3. 77, #0,7;, =0 and 6 = = k = 0.5. Rejection Rates

Panel A: T=36
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
A5 0.093 0.049 0.008 0.103 0.053 0.010 0.102 0.051 0.010
47 0.089 0.046 0.011 0.099 0.053 0.011 0.097 0.048 0.010
Y., 0.103 0.050 0.009 0.095 0.053 0.009 0.100 0.052 0.009
’%‘2 0.099 0.050 0.011 0.103 0.053 0.010 0.101 0.052 0.009
Panel B: T="72
N=100 N=500 N=1000
0.100 0.050 0.010 0.100 0.050 0.010 0.100 0.050 0.010
45 0.100 0.048 0.009 0.100 0.050 0.012 0.100 0.052 0.012
47 0.106 0.050 0.011 0.103 0.052 0.013 0.101 0.053 0.012
'Ay;kl 0.099 0.049 0.010 0.093 0.052 0.008 0.100 0.049 0.011
Y, 0.103 0.055 0.013 0.103 0.052 0.010 0.100 0.051 0.011
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Figure 2: Empirical distribution of 4g, 47, 4%,, and 47, for different values of 9, with x = 6 = 0.5.
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OA.7.2 Cross-Sectional R? Test: Size and Power

In this Section, we investigate the size and power properties of the cross-sectional R2-test, based on
the T, statistics derived in Theorem 6. Specifically, we generate asset returns using the specification
in (OA.84), with the error disturbances as in (OA.88), using different scenarios for the parameters
J, 0, k. To evaluate the size of the test, we generate the returns as in (OA.84) and under the null
hypothesis of no anomalies (v, = 7., = 0). For the evaluation of the power we set (v, # vz, # 0),
where 7y,, and 7,, have been calibrated using real data as in the previous cases. Then, at each
Monte Carlo simulation we calculate the T, statistics as in Theorem 6 and compare its empirical
distribution (over the 3,000 Monte Carlo replications) with the linear combination of i.i.d chi-
squared distributions defined in Theorem 6. Tables XII and XIII report the rejection rates for
different levels of significance (10%, 5%, 1%) and for different values of N (100, 500, 1000) when
T = 36 and T = 72, respectively. In both the tables we consider the case of cross-sectional
dependence among Z; and ¢;, setting § = 0.5 (Panels A and B) and § = 0.25 (Panels C and D),
under both the assumptions of ¥ diagonal (i.e. § = 0 and x = 0.5) and X full (where we set
0 =r =0.5).

The results in the two tables suggest that the rejection rates of our test under the null of no
anomalies are excellent for the diagonal and the full cases, when § = 0.5 When simulating with
0 = 0.25, consistently with our theory, the test starts to over-rejects as N increases, especially
for the case of T' = 36. The power properties of the test are fairly good when N = 100 and
excellent when N > 500. As expected, power increases when the number of assets becomes large
and the rejection rates are similar across time-series sample sizes. Overall, these simulation results
suggest that our test 7. should be fairly reliable for the time-series and cross-sectional dimensions

encountered in our empirical work.
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Table XII: Size and power of the T -test in a one-factor model with two anomalies (T' = 36)

SIZE POWER
N 10% 5% 1% 10% 5% 1%

Panel A: Z; and €; cross-sectionally correlated
(6 = 0.5) with ¥ diagonal (8 =0, x = 0.5)
100 0.104 0.046 0.008 0.996 0.993 0.972

500 0.106 0.054 0.010 1.000 1.000 1.000
1000 0.104 0.050 0.010 1.000 1.000 1.000

Panel B: Z; and €;_i cross-sectionally correlated
(6 =0.5) with ¥ full (# =k =0.5)
100 0.105 0.052 0.011 0.944 0.859 0.816

500 0.103 0.053 0.012 1.000 0.985 0.942
1000 0.102 0.052 0.012 1.000 1.000 1.000

Panel C: Z; and ¢; cross-sectionally correlated
(6 = 0.25) with ¥ diagonal (# =0, k = 0.5)
100 0.103 0.042 0.006 1.000 0.998 0.984

500 0.114 0.057 0.012 1.000 1.000 1.000
1000 0.124 0.069 0.012 1.000 1.000 1.000

Panel D: Z; and €; cross-sectionally correlated
(6 =0.25) with X full (# =k =0.5)
100 0.098 0.045 0.006 0.975 0.924 0.895

500 0.115 0.060 0.012 1.000 1.000 1.000
1000 0.122 0.070 0.012 1.000 1.000 1.000

The table presents the size and power properties of the 7, test. The null hypothesis is that there
are no anomalies. The alternative hypothesis is that there is at least one anomaly. The results are
reported for T' = 36, for different levels of significance (10%, 5%, and 1%) and for different values of
the number of stocks (N) using 3,000 simulations. The rejection rates are based on the asymptotic
distribution in Theorem 6.
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OA.8 Granularity

The relevance of granularity can be understood from the following result, reported without proof,
which extends Adler and Rosalsky (1991).
Proposition OA.4 (limiting behavior of weighted averages). For an iid sequence Y; with E|Y|? <

00, assume the following granularity conditions hold, for some finite constant C,

(i) Then

— a;Y; —p CEY < oo.
by 5

(ii) If, in addition, for some finite n < N and some constant 0 < C; < oo, 1 <i < n,

a; .
#%Ciforevery1§z§n<oo,
N

then

N n
1
- > a;Y; =, CEY + ) _Ci(Y; — EY).
i=1 =1

Case (i) is the granular case, which is implicit in our regularity assumptions, setting a; = w; ¢—1
and by = N, with C = 1, such that w;;/N = O,(N~1). Note that only when C' = 1, the simple
and weighted average converge to the same limit, namely, FY. Case (ii) is the non-granular case,

which leads to a random limit of the weighted average.

OA.9 No-Arbitrage with Anomalies

We show how the presence of anomalies does not necessarily rule out no-arbitrage with the following

proposition, reported without proof.

Proposition OA.5 (no-arbitrage with anomalies). The asset pricing restriction (4) does not wvi-

olate conditional no-arbitrage whenever (6) holds with
supy;_1 .24 [E(ere] I, H)]_lzt,l'yé_ljz < C < oo almost surely, (OA.89)
N

for some constant C, where we set the N x K, matriv Z; = (214, -+ ,2Zn4) -
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Table XIII: Size and power of the T.-test in a one-factor model with two anomalies (T' = 72)

SIZE POWER
N 10% 5% 1% 10% 5% 1%

Panel A: Z; and €; cross-sectionally correlated
(6 = 0.5) with ¥ diagonal (8 =0, x = 0.5)
100 0.107 0.051 0.013 1.000 1.000 1.000

500 0.096 0.049 0.012 1.000 1.000 1.000
1000 0.099 0.050 0.010 1.000 1.000 1.000

Panel B: Z; and €;_i cross-sectionally correlated
(6 =0.5) with ¥ full (# =k =0.5)
100 0.107 0.049 0.013 1.000 1.000 1.000

500 0.096 0.048 0.012 1.000 1.000 1.000
1000 0.099 0.049 0.011 1.000 1.000 1.000

Panel C: Z; and ¢; cross-sectionally correlated
(6 = 0.25) with ¥ diagonal (# =0, k = 0.5)
100 0.078 0.034 0.005 1.000 1.000 1.000

500 0.086 0.036 0.006 1.000 1.000 1.000
1000 0.100 0.044 0.011 1.000 1.000 1.000

Panel D: Z; and €; cross-sectionally correlated
(6 =0.25) with X full (# =k =0.5)
100 0.082 0.036 0.006 1.000 1.000 1.000

500 0.087 0.037 0.006 1.000 1.000 1.000
1000 0.102 0.043 0.011 1.000 1.000 1.000

The table presents the size and power properties of the 7, test. The null hypothesis is that there
are no anomalies. The alternative hypothesis is that there is at least one anomaly. The results are
reported for T' = 72, for different levels of significance (10%, 5%, and 1%) and for different values of
the number of stocks (N) using 3,000 simulations. The rejection rates are based on the asymptotic
distribution in Theorem 6.
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As practical examples when Proposition OA.5 does and does not hold, consider the case
when FE(eq€}|I;—1,II)] exhibits a limited degree of cross-dependence of the €, such as when equal
to o%Iy for some constant scalar o2. Then, condition (OA.89) is satisfied when either ~, =
O(N_%) or Z,_1Z,—1 = O(1). These restrictions are needed because the Z;_; affect the mean
but not the variances and covariances of the returns. In contrast, when instead E(eq€}|l;—1,II)] =
Z:1C.Z, | + oIy, for some K, x K, constant non-singular matrix C,, then (OA.89) is re-
dundant as it imposes no cross-sectional constraint. In fact, by the Sherman-Morrison decom-
position, whenever Z; ,Z; 1 diverges as N — oo, one obtains Z] |[E(et€;|l;—1,11)] 121 =
Z, Zi1(0?CJl +Z)_1Z; 1) 'C;t —, C7!, that is, bounded even for large N. No restric-

tion arises because the Z;_; affect the mean, variance, and covariances of the returns in the same

way, making their effect neutral in terms of the risk-return trade-off.

OA.10 Time-Varying Betas

This section establishes that, under Assumption 1, namely

(B.-B)(B,-B) _
- = o(N"3), (OA.90)

the whole asymptotic analysis remains unchanged as if the loadings were constant.

Our smoothing assumption is extremely general and accommodates a great variety of time-

varying patterns of the loadings. Important examples include the case when
Bis = Bi + B1igs + B2izis, (OA.91)

for matrices of coefficients Bo; (Kr x 1), By; (K¢ x Kg), and By (K¢ x K,) such that

N N

Z(Bli X Bli) = O(N%) and Z(Bgi X Bgi)(zis & Zis) = O(N%).

i=1 i=1
In turn, the former conditions are implied when By; = B’l‘i/(Nilog(N)) and Bo; = B’Q‘i/(N%log(N))
for coefficients B}, and B3, satisfying N1 ZZJ\LI(BTZ ®B%,) = O(1) and N~* ZZ]\LI(B; ® B%))
O(1).

SOME SIMULATIONS/NUMERICAL ILLUSTRATIONS
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We will focus on our main estimator, the CSR OLS-type estimator of Section 5. Consider again

the conditional asset pricing model (see (7))
Ri=Zi 17,1+ X—1Te -1 + & (OA.92)
setting X;—1 = (1n,B¢—1), where T¢ ;1 = (Y0,¢—1, 6&71)’, with d¢;—1 defined in (8). Then
Ri=7Zi 17,0-1+ X1 + €+ (X4 — X)T 1, (OA.93)

and in the matrix sense

F 7T
z
R=9ly+A:+(Ir-1©7.) | | +Ap+6&B +e
[ Zp ]
setting
(0t1 Ok, - Ok, ][ (Bi—=B) ] (Y- O, Ok, 171 Zi]
O, &, ... O (B, — B O Ao—7, .. O zZ, Ot
AB = ) Az = ,(Sf = : s
T
_O/va O/I(f e aé,T—l_ _(BT_l - B)/_ L O/[(Z O/I(Z o Wé,tfl - ’Y;_ _Zlel_
with A, defined in Assumption OA.1. Then
B =R'M,, F(FM, F)'=RP=(Inv)+AL+(Z1,Zs,- ,Zr_1)(Ir—1 ®7,) + A + Béj + € ) P

= (¢' + Ap)P + B,

where the last equation follows from Assumption OA.1. The term AP on the right-hand side of B
appears when considering the time-varying loadings but its effect will be shown to be asymptotically

negligible (as N — o0).

We now show that asymptotically one obtains that, for our CSR OLS estimator, the results
of Theorems 1-2 are obtained by replacing B;_; with B. The same applies to all our asymptotic

analyses of the CSR WLS estimator, the R? test, and the misspecification-robust case.!?

12Details are available upon request.
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By inspecting our CSR OLS-type estimator, namely

2
Pf,t—l
2%
72,15—1

I

X'X—NA;, X'Z_ |7 [X'R;— NAgy
Z;flx Zy 1Zi Z; Ry

one sees that we need to study the following quantities (and show that are asymptotically equivalent
when the locally-constant case is considered). First, considering the terms in the matrix inverse,

namely

LB = %[P’(AB +6)+B[(Ag+€)P +B]

1 1 1 1
= N[P'(—: + B'|[€P + B] + NP/ABAIBP + NP’AB(B +€P) + N(B/ +Pe)ARP.

(locally-constant term) (time-varying terms)

which requires

1 1
NABA%; =o(1), NABB =o0(1), and Age =o0,(1),

and
1 ! > 1 / /
Nztle =N i—1[B+ (Ap +¢€)'P]
1 1
= Nzg—l[B +eP] + Nzg—lAprv
| S ——

(locally-constant terms) (time-varying term)

which requires
1
NZ;flAIB == 0p(1).

Consider now the terms to the right hand of the matrix inverse. Then,

1 A 1

NRQB = N(Zt—l")’z,t—l +XTfi1 + €+ (Xio1 — X)gi—1)' B+ (Ap + €)'P]
1

= N(thl’)’z,tfl + XT¢i1 + €)' B+ €P]

(locally-constant terms)

1 1
+ N(Zt—l’)’z,t—l + XTsp1+ €+ (Xio1 — X)Dpy1) AP + N((Xt—l —X)T¢;1)'[B + €'P], and

(time-varying term)
1 1
¥ i 1[B+€P]  + NZ{HA’ ,
N——
(locally-constant terms) (time-varying term)

1 .
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which requires strengthening the above conditions to rate oy, (NN -1/ 2), namely

1 1 1
NABA% = o(N~1/%), NABB —o(N"?), and Age = op(N~Y2), and NZ;_lAjB = op(N_l/Q).

It turns out that Assumption 1 delivers precisely the required sufficient condition. For example,

for the following quantity

1
—ApAl =
N B

[0t1 O,
1 O/I(f 5%,2
N

0%, O,

to be op(N_%) one needs N~1(B; — B)'(B; — B) = o(N_%) for every t,s = 1,--- ,T — 1 which,

by Holder’s inequality for matrices, is implied immediately by Assumption 1. Similar arguments

/
OKf

/
OKf

/
Ot 1

(B1 - B)'(B; — B)

apply to all the other terms in (OA.94).

OA.11 List of Variables
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r S/ /
5f,1 Ok,
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Ok, 5f,2
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10k, Ok,
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OKf

/
Ot 1



Table A.1: List of variables. The table shows the list of predictors used in the paper. A detailed
description of the variables can be found in ?. The variables have been grouped following the
ex-ante categorization of Hou et al. (2020)

Variable name Description Category
ResidualMomentum 6 month residual momentum Momentum
AnnouncementReturn Earnings announcement return Momentum
CustomerMomentum Customer momentum Momentum
retConglomerate Conglomerate return Momentum
EarningsSurprise Earnings Surprise Momentum

High52 52 week high Momentum

IndMom Industry Momentum Momentum
AnalystRevision Analysts revision Momentum
EarnSupBig Earnings surprise of big firms Momentum
IndRetBig Industry return of big firms Momentum
RevenueSurprise Revenue Surprise Momentum
Mom12m Momentum (12 month) Momentum

Mom6m Momentum (6 month) Momentum

MomVol Momentum and Volume Momentum

IntMom Intermediate Momentum Momentum
EarningsConsistency ~ Earnings growth for consistent growers Value Versus Growth
SP Sales-to-price Value Versus Growth
EP Earnings-to-Price Ratio Value Versus Growth
NetPayoutYield Net Payout Yield Value Versus Growth
PayoutYield Payout Yield Value Versus Growth
IntanBM Intangible return using BM Value Versus Growth
IntanCFP Intangible return using CFtoP Value Versus Growth
IntanEP Intangible return using EP Value Versus Growth
IntanSP Intangible return using Sale2P Value Versus Growth
LRreversal Long-run reversal Value Versus Growth
MRreversal Momentum-Reversal Value Versus Growth
ShortInterest Short Interest Value Versus Growth
EquityDuration Equity Duration Value Versus Growth
cfp Operating Cash flows to price Value Versus Growth
sfe FEarnings Forecast to price Value Versus Growth
AM Total assets to market Value Versus Growth
BMdec Book to market using December ME Value Versus Growth
AnalystValue Analyst Value Value Versus Growth
DivSeason Dividends Value Versus Growth
ShareRepurchase Share repurchases Value Versus Growth
fgrbyrLag Long-term EPS forecast Value Versus Growth
CF Cash flow to market Value Versus Growth
MeanRankRevGrowth Revenue Growth Rank Value Versus Growth
DivYieldST Dividend Yield Value Versus Growth
EntMult Enterprise Multiple Value Versus Growth
BPEBM Leverage component of BM Value Versus Growth
EBM Enterprise component®$ BM Value Versus Growth
NetDebtPrice Net debt to price Value Versus Growth
BM Book to market using most recent ME ~ Value Versus Growth




List of variables (continued)

Variable name Description Category
ChInvIA Change in capital investment Investment
greapx Change in capex (two years) Investment
grcapx3y Change in capex (three years) Investment
InvGrowth Inventory Growth Investment
NetDebtFinance Net debt financing Investment
NetEquityFinance Net equity financing Investment
XFIN Net external financing Investment
AssetGrowth Asset Growth Investment
CompEqulss Composite equity issuance Investment
Sharelss5Y Share issuance (5 year) Investment
GrLTNOA Growth in Long term net operating assets Investment
PctAcc Percent Operating Accruals Investment
PctTotAcc Percent Total Accruals Investment
NOA Net Operating Assets NOA Investment
dNoa change in net operating assets Investment
CompositeDebtIssuance Composite debtissuance Investment
InvestPPEInv change in ppe and inv/assets Investment
Sharelss1Y Share issuance (1 year) Investment
DelCOA Change in current operating assets Investment
DelCOL Change in currentoperating liabilities Investment
DelEqu Change in equity to assets Investment
DelFINL Change in financial liabilities Investment
DelLTT Change in long-term investment Investment
TotalAccruals Total accruals Investment
Accruals Accruals Investment
Debtlssuance Debt Issuance Investment
Chlnv Inventory Growth Investment
ChTax Change in Taxes Investment
Investment Investment to revenue Investment
AbnormalAccruals Abnormal Accruals Investment
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List of variables (continued)

Variable name Description Category

roaq Return on assets including extraordinary income Profitability
CBOperProf Cash-based operating profitability Profitability
OperProfRD Cash-based operating profitability Profitability
CashProd Cash Productivity Profitability
OScore O Score Profitability
BookLeverage Book leverage (annual) Profitability
OperProf operating profits / book equity Profitability
RoE net income / book equity Profitability
VarCF Cash-flow to price variance Profitability
VolumeTrend Volume Trend Profitability
Tax Taxable income to income Profitability
ChEQ Sustainable Growth Profitability
MS Mohanram G-score Profitability
GP gross profits / total assets Profitability
PS Piotroski F-score Profitability
DelDRC Deferred Revenue Profitability
ChAssetTurnover Change in Asset Turnover Profitability
ChNNCOA Change in Net Noncurrent Operating Profitability
ChNWC Change in Net Working Capital Profitability
Mom6mJunk Junk Stock Momentum Profitability
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List of variables (continued)

Variable name Description Category

GrSaleToGrInv Gross Margin growth over sales growth Intangibles
GrSaleToGrOverhead Sales growth over overhead growth Intangibles
OrderBacklogChg Order backlog Intangibles
hire Employment growth Intangibles
BrandInvest Brand capital investment Intangibles
Leverage Market leverage Intangibles
FEPS Failure probability Intangibles
AdExp Advertising Expense Intangibles
RD R&D over market cap Intangibles
RDADbility R&D ability Intangibles
Activisml Shareholder activism 1 Intangibles
Activism2 Shareholder activism 2 Intangibles
ExclExp Excluded Expenses Intangibles
SurpriseRD Unexpected R&D increase Intangibles
OrgCap Organizational Capital Intangibles
AOP Analyst Optimism Intangibles
PredictedFE Predicted Analyst forecast error Intangibles
FR Pension Funding Status Intangibles
Governance Governance Index Intangibles
tang Tangibility Intangibles
Mom12mOffSeason Returns in not-same month last year Intangibles
MomOffSeason Returns in not-same month Intangibles
MomOffSeason06YrPlus Returns in different months years 6 to 10 Intangibles
MomOffSeason11YrPlus Returns in different months years 11 to 15  Intangibles
MomOffSeason16YrPlus Returns in not-same month years 16 to 20  Intangibles
MomSeason Return seasonality Intangibles
MomSeason06 YrPlus Return seasonality years 6 to 10 Intangibles
MomSeasonl11YrPlus Return seasonality years 11 to 15 Intangibles
MomSeason16YrPlus Return seasonality years 16 to 20 Intangibles
MomSeasonShort Return seasonality last year Intangibles
PriceDelayRsq Price delay r square Intangibles
PriceDelaySlope Price delay coeff Intangibles
PriceDelayTstat Price delay SE adjusted Intangibles
Herf Industry concentration (Herfindahl) sales Intangibles
HerfAsset Industry concentration (Herfindahl) assets  Intangibles
HerfBE Industry concentration (Herfindahl) book Intangibles
RDcap R&D capital-to-assets Intangibles
EarningsStreak Earnings streak indicator Intangibles
NumEarnIncrease Number of consecutive earnings increases Intangibles
GrAdExp Growth in advertising expenses Intangibles
RIO_Disp Institutional Own and Forecast Dispersion  Intangibles
RIO_MB Institutional Own and BM Intangibles
RIO_Turnover Institutional Own and Turnover Intangibles
RIO_Volatility Institutional Own arg Idio Vol Intangibles




List of variables (continued)

Variable name Description Category
OPLeverage Operating Leverage Intangibles

Cash Cash to assets Intangibles
OrderBacklog Order backlog Intangibles
realestate Real estate holdings Intangibles
ConvDebt Convertible debt indicator Intangibles
IdioVolAHT Idiosyncratic risk Trading Frictions
Miquidity Amihud (2002) illiquidity Trading Frictions
BidAskSpread Bid-ask spread Trading Frictions
betaVIX Systematic volatility Trading Frictions
IdioRisk Idiosyncratic risk Trading Frictions
IdioVol3F Idiosyncratic risk (3 factor) Trading Frictions
CoskewACX Coskewness Trading Frictions
MaxRet Maximum return over month Trading Frictions
ReturnSkew Skewness of daily returns Trading Frictions
ReturnSkew3F Skewness of daily idiosyncratic returns (3F) Trading Frictions
DolVol Past trading volume Trading Frictions
std_turn Share turnover volatility Trading Frictions
VolSD Volume Variance Trading Frictions
ProbInformedTrading Probability of Informed Trading Trading Frictions
Beta CAPM beta Trading Frictions
BetaFP Frazzini-Pedersen Beta Trading Frictions
Coskewness Coskewness Trading Frictions
VolMkt Volume to market equity Trading Frictions
OptionVolumel Option Volume to Stock Volume Trading Frictions
OptionVolume2 Option Volume relative to recent average Trading Frictions
BetaTailRisk Tail risk beta Trading Frictions
zerotrade Days with zero trades Trading Frictions
zerotradeAlt1l Days with zero trades Trading Frictions
zerotradeAlt12 Days with zero trades Trading Frictions
BetaLiquidityPS Pastor-Stambaugh liquidity beta Trading Frictions
skewl Volatility smirk near the money Trading Frictions
SmileSlope Put volatility minus call volatility Trading Frictions
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Comments

1. T have removed the section on the notation and explained everything in the text. Double

check if everything is properly defined.

2. Regarding assumptions: should we leave the regularity conditions in the Appendix and move
the main ones in the text? For example assumption 7 on smooth time variation and Assump-

tion 8 on granularity should be moved in the text?
3. The Appendix on U, is now a remark (See Remark OA.6). Does it work?

4. Do we really want to keep the misspecification section? It is really hard to write and follow.
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