
Inferential Theory for Generalized Dynamic Factor Models•

Matteo Barigozzi† Marc Hallin‡ Matteo Luciani∗ Paolo Zaffaroni∗∗

February 10, 2023

Abstract

We provide the asymptotic distributional theory for the so-called General or Generalized Dy-

namic Factor Model (GDFM), laying the foundations for an inferential approach in the GDFM

analysis of high-dimensional time series. By exploiting the duality between common shocks and

dynamic loadings, we derive the asymptotic distribution and associated standard errors for a class

of estimators for common shocks, dynamic loadings, common components, and impulse response

functions. We present an empirical application aimed at constructing a “core” inflation indicator for

the U.S. economy, which demonstrates the superiority of the GDFM-based indicator over the most

common approaches, particularly the one based on Principal Components.

Keywords: High-dimensional time series, Generalized Dynamic Factor Models, One-sided representa-

tions of dynamic factor models, Asymptotic distribution, Confidence intervals.
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1 Introduction

This paper provides the asymptotic distribution theory for the estimators recently proposed in Forni

et al. (2015, 2017) for the so-called General or Generalized Dynamic Factor Models (GDFM) introduced

by Forni et al. (2000). The GDFM is extremely popular in applied economic and finance applications

(see, e.g., Cristadoro et al., 2005; Giannone and Matheson, 2007; Altissimo et al., 2010; Hallin et al.,

2011; Luciani, 2014; Amstad et al., 2017; Barigozzi and Hallin, 2017; Forni et al., 2018; Barigozzi and

Hallin, 2020; Peña et al., 2021; Trucíos et al., 2022), but their theoretical analysis remains incomplete:

essentially, only consistency results have been established so far, sometimes with rates (see Forni et al.,

2017), with the limiting distributional properties remaining unavailable, which precludes the possibil-

ity of inferential procedures. This paper aims at filling this gap by providing a fully developed and

operational asymptotic theory for the GDFM.

Our methodology permits to exploit the flexibility of GDFMs in terms of dynamics with the versa-

tility offered by the Dynamic Factor Models (DFMs) of Stock and Watson (2002a,b) and Bai (2003), in
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terms of estimating the common shocks and their impulse response functions (IRFs). The possibility to

draw inference on these quantities represents the crucial ingredient at the core of almost every empirical

analysis in dynamic macroeconomics, and was hitherto available for DFMs but not for GDFMs. The

results developed in this paper are meeting that need.

Under the GDFM, the statistical analysis of a countable family {xit| t ∈ Z, i ∈ N} of stochastic

processes, i.e., the observables, is based on the decomposition of xit into

xit = χit + ξit = bi1(L)u1t + . . . + biq(L)uqt + ξit, i ∈ N, t ∈ Z, (1)

where ut = (u1t · · · uqt)′ is an unobservable q-dimensional white-noise vector of mutually orthogonal

common shocks or dynamic factors driving {χit| t ∈ Z, i ∈ N} and bif (L), i ∈ N, f = 1, . . . , q, are square-

summable filters (L, as usual, stands for the lag operator). Detailed assumptions on this decomposition

are formalized in the next section. The unobservable χit and ξit are called xit’s common and idiosyncratic

components, respectively; at minimum, it is assumed that the idiosyncratic components ξit are “weakly”

cross-correlated (in a sense to be made precise) and orthogonal at any lead and lag to the common

shocks u1t, . . . , uqt driving the common components χit.

In many applications, the space spanned by the common components χit in (1), is likely to be

infinite-dimensional: e.g., when the bij(L) yield plausible dynamic structures such as AR(1) filters, they

cannot be recovered from a finite number of standard principal components. To solve this problem, Forni

et al. (2000) use q principal components in the frequency domain (the dynamic principal components

introduced by Brillinger, 2001) to estimate the common components χit, where q can be obtained, for

instance, from the methods proposed by Hallin and Liška (2007), Onatski (2009), or Avarucci et al.

(2022).1 However, being based on dynamic principal components, the Forni et al. (2000) estimators

involve two-sided filters acting on the observations xit, hence do not allow to estimate the common

shocks at the end of the observation period, precluding (due to their two-sidedness) evaluation of their

impulse response functions (IRFs) and out-of-sample prediction exercises.

This contrasts with the versatility of DFMs, the validity of which, however, requires the crucial

assumption that, for any given t, the space spanned by the common components {χit| i ∈ N} is finite-

dimensional—of dimension r, say, with r independent of t—whereas for the GDFM in (1) one has, in

general, r = ∞. Under this finite-dimensional assumption, (1) can be rewritten as

xit = λi1F1t + . . . + λirFrt + ξit, i ∈ N, t ∈ Z, (2)

D(L)Ft = Hut, (3)

where Ft = (F1t . . . Frt)
′, D(L) := (Ir −D1L −D2L

2 − . . . −DpL
p), for some finite natural p, Ir is

the identity matrix of size r × r, and the matrices Dj (j = 1, . . . , p) and H, of size r × r and r × q,

respectively, define the singular Vector Autoregression (VAR) in (3) for Ft. Because the vector Ft

of r so-called static factors is loaded contemporaneously via the loadings λij , we call (2)-(3) a static

representation of the GDFM, which, as explained above, is possible only if r is finite. Sometimes in

the literature (2) is also called a static factor model for xit. As already mentioned, the very appealing

1 In fact, assuming q = 1 and bi1(L) = (1− αiL)
−1, one gets χit = ut + αiut−1 + α2

iut−2 + · · · , that is χit depends on
the infinite number of present and lagged values of ut. Furthermore, assuming that the αi have an absolutely continuous
distribution rules out that χit can itself be interpreted as a static factor.
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consequence of the finite-dimensional DFM formulation (2)-(3) is that it readily permits to derive the

IRFs of the common shocks ut, which can be interpreted as structural shocks by means of identification

restrictions on the matrix H (Forni et al., 2009; Stock and Watson, 2016), and to perform out-of-sample

forecasting in real time (Stock and Watson, 2002a; Giannone et al., 2008).

In a DFM, consistent estimates of the factors Ft and the loadings λij in (2) can be obtained using

the first r standard principal components analysis (hereafter PCA) (see Stock and Watson, 2002a,b

and Bai, 2003; and also Fan et al., 2013, 2015, 2016, 2017, 2021 where, in a finance context, several

refinements of the PCA approach are proposed). Bai (2003) formalized the inferential theory for this

standard PCA estimator, where r can be obtained, for instance, from the information criteria proposed

by Bai and Ng (2002) or from the test proposed by Onatski (2010). Estimation of (2) and inference via

Quasi Maximum Likelihood, when possibly considering also (3), has been studied in Doz et al. (2012),

Bai and Li (2016), and Barigozzi and Luciani (2019).

Forni et al. (2015, 2017) bring together the virtues of the (infinite-dimensional) GDFM in (1) and

the convenience of the (finite-dimensional) DFM in (2)-(3). In particular, under the mild assumption

of existence and rationality of the spectral density of the common components χit —that is, assuming

that each filter bif (L) in (1) is a ratio of finite-degree polynomials in L—Forni et al. (2015) prove

that the vector χχχnt := (χ1t, χ2t, . . . , χnt)
′ of common components in (1) admits a unique singular VAR

representation of the form An(L)χχχnt = Rnut, where An(L) is a n×n block-diagonal matrix polynomial

in L of finite degree, and Rn a n× q matrix of rank q, implying

An(L)xnt = An(L)(χχχnt + ξξξnt) = Rnut + φnt, t ∈ Z, (4)

with φnt := An(L)ξξξnt where ξξξnt := (ξ1t · · · ξnt)′.2 Representation (4) is key because it shows how to

re-write the infinite-dimensional GDFM (1) as a static factor model of the form (2) for the filtered

variables znt := An(L)xnt by setting Dn(L) = In, Ft = ut, (λi1 · · ·λir) = R′
i, the ith row of Rn, and

thus having r = q. Moreover, it can be shown that, under our assumptions, φnt is idiosyncratic in the

sense of Forni et al. (2000).

Therefore, in (4), the static and dynamic factors coincide, suggesting that standard PCA can be

used for estimation of the factors ut and loadings Ri. This would be trivial and inference possible by

means of the established asymptotic results for standard PCA, if the znt were observed. However, this

would require knowing the VAR filters An(L), which in practice are unspecified. Forni et al. (2017)

show how to consistently pre-estimate the An(L) and, subsequently, the factors and the loadings.

Clearly, representation (4) of the GDFM readily yields the IRFs A−1
n (L)Rn of the common shocks

and allows for performing out-of-sample forecasting of the xit and their components χit and ξit. Suitable

identification restrictions on Rn permit to interpret the elements of ut as structural economic shocks.

In macroeconomic analysis, these quantities are typically coupled with bands that reflect the sampling

variability of the estimates, i.e., confidence and forecasting intervals. However, the existing inferential

theory for DFM (Bai, 2003) cannot be used due to the sampling variability affecting the estimation

of the filters An(L), and the consistency result of Forni et al. (2017) falls short. This is the challenge

resolved in this paper, exploiting new insights regarding the combination of the GDFM parameters with

2In particular, An(L) has a block-diagonal structure consisting of (q + 1)× (q + 1)-dimensional blocks, mitigating the
curse of dimensionality because q is finite and typically small, and thus the high-dimensional VAR filter An(L) is obtained
by piecing together a set of m := ⌊n/(q + 1)⌋ low-dimensional VARs.
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different convergence rates, and suitably combining the different representations of GDFMs, i.e., the

time-series and cross-sectional projections, to improve efficiency of their parameter estimates. Finally,

we show how our asymptotic distribution theory is unaffected by the fact that q, in practice, must be

replaced by a consistent estimator. Therefore, by using the theoretical results established in this paper,

one can make full use of the GDFM in (1), through its finite-dimensional representation (4), for the

most common and important empirical macroeconomic analyses.

The estimation of the GDFM decomposition (1) mainly consists of three steps which can be sum-

marized as follows. First, by means of the method of Hallin and Liška (2007), estimate q and by means

of dynamic PCA estimate the spectral density matrix of χχχnt. Second, by Fourier inversion, derive the

corresponding autocovariance matrices and the Yule-Walker estimators of the (q + 1) × (q + 1) blocks

of An(L) in (4). This yields an estimated znt, hence, up to estimation errors, allows us to switch from

the dynamic to the static representation (4) of the GDFM. Third, exploiting the finite-dimensional

nature of (4), apply static PCA to the estimated znt.

Building on the uniform consistency results for high-dimensional spectral density matrices by Wu

and Zaffaroni (2018) and Zhang and Wu (2021), and on the consistency results by Forni et al. (2017),

we provide here the complete limiting distribution theory for the estimation procedure just described,

allowing one to perform asymptotically correct inference on the GDFM and its VAR form (4) as n and T

diverge. Noticeably, despite the increased generality and greater complexity, with respect to the DFM,

of the GDFM, our estimators achieve the same rates of convergence as the traditional PCA estimators,

which are valid in the static model context (3) only. A detailed Monte Carlo study corroborates our

theory. Our simulation results confirm the findings of Forni et al. (2017), who show that (i) when

the data are generated by (4), the estimation of the common component by our estimators are by far

better than via classical PCA; (ii) when the data are generated by (3), our estimators still outperform,

although by a slight margin, the PCA ones. We then present an empirical application that demonstrates

the flexibility and enhancement of our theory, focusing on building an indicator of core inflation for the

U.S. economy.

In Sections 2, 3, and 4 we formalize the GDFM and the assumptions needed for our inferential

theory. The estimation procedure is described in Section 5 and its limiting statistical properties are

established in Section 6. Section 7 presents the Monte Carlo experiments, and Section 8 illustrates an

empirical application on U.S. inflation indexes. Section 9 concludes. Technical proofs are relegated to

the final Appendix.

Notation. Throughout, for a generic real symmetric N×N matrixA with jth largest eigenvalue µAj ,

we make use of the norms ‖A‖ = µA1 and ‖A‖F =
√

tr(AA′).

2 GDFM: General Representation

Throughout, we study a double-indexed zero-mean stochastic process x := {xit| i ∈ N, t ∈ Z}, of

which we observe a finite realization {xit| i = 1, . . . , n, t = 1, . . . , T}.3 Assumption (A) is listing the

assumptions we are making on x. These assumptions, are borrowed from Forni et al. (2015, 2017); they

are formalizing and reinforcing the general presentation of the introduction.

3All stochastic variables in this paper belong to the Hilbert space L2(Ω,F , P ) where (Ω,F , P ) is some common
probability space.
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Denote by xn the n-dimensional subprocess {xit| i = 1, . . . , n, t ∈ Z}; the lag-k autocovariance

matrix of xn is Γn,k := Cov(xnt,xn,t−k), with Γn := Γn,0 := Var(xnt) for simplicity.

Assumption (A). The process x is stationary with respect to time and xn, for all n ∈ N, admits the

spectral density

Σn(θ) :=
1

2π

∞∑

k=−∞
Γn,k e

−ιkθ, θ ∈ [−π, π]

where ι =
√
−1. There exists a finite natural number q > 0 such that (1) holds with:

(a) a common component χit of the form

χit =

q∑

j=1

bij(L)ujt = b′
i(L)ut, i ∈ N, t ∈ Z, (5)

where

(a-i) {ut := (u1t · · · uqt)′| t ∈ Z} is a q-dimensional i.i.d. zero-mean stochastic process, with po-

sitive definite covariance E[utu
′
t] =: Γu; moreover, for some ε > 0 and some finite con-

stant Mu > 0 independent of j and t, E
[
|ujt|4+ε

]
≤Mu for all j = 1, . . . , q;

(a-ii) for all i ∈ N, j = 1, . . . , q, and z ∈ C, bij(z) is rational, that is, bij(z) = cij(z)/dij(z) where

– cij(z) =
∑s1

k=0 cij,kz
k for some positive integer s1, with |cij,k| ≤ Mc for some

finite Mc > 0 independent of i and j and

– dij(z) =
∑s2

k=0 dij,kz
k for some positive integer s2 is such that all the roots of dij(z) = 0

satisfy |z| ≥Md > 1 for some Md > 0 independent of i and j;

(a-iii) for all j = 1, . . . , q, there exist two real strictly positive continuous functions θ 7→ λχj (θ)

and θ 7→ λ̄χj (θ) such that, for all θ ∈ [−π, π],

λχj (θ) ≤ lim inf
n→∞

λχnj(θ)

n
≤ lim sup

n→∞

λχnj(θ)

n
≤ λ̄χj (θ)

with λ̄χj (θ) < λχj−1(θ) for all j = 2, . . . , q;

(b) an idiosyncratic component ξit satisfying

ξit =

∞∑

j=1

∞∑

k=0

βij,kηj,t−k, i ∈ N, t ∈ Z, (6)

where

(b-i) {ηt := (η1t η2t · · · )′| t ∈ Z} is an infinite-dimensional i.i.d. zero-mean stochastic process such

that E[ηitηjt] = 0 for all i 6= j, E[η2it] = 1, and E[|ηit|4+ε] ≤ Mη for some ε > 0 and some

finite constant Mη > 0 independent of i and t;

(b-ii) for all i, j ∈ N and k ∈ Z
+, |βij,k| ≤ Bijρ

k, with ρ ∈ [0, 1),
∑∞

i=1Bij ≤ B,

and
∑∞

j=1Bij ≤ B for some finite real B > 0 independent of i and j;

(c) {ut} and {ηt} are mutually independent processes.

Remark 1. Denoting by λnj(θ) the jth largest eigenvalue of the spectral density matrix Σn(θ), it

has been shown (see, e.g., Forni and Lippi, 2001; Hallin and Lippi, 2013) that x admits a GDFM
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representation (1) with q common shocks if Σn(θ) has q <∞ diverging eigenvalues, that is,

lim
n→∞

λnq(θ) = ∞, θ-a.e in [−π, π] and sup
θ∈[−π,π]

sup
n∈N

λn,q+1(θ) <∞. (7)

Now, under Assumption (A), the n-dimensional subprocesses

χn := {χ1t, . . . ,χnt| t ∈ Z} and ξn := {ξ1t, . . . , ξnt| t ∈ Z}

admit spectral density matrices Σ
χ
n(θ) and Σ

ξ
n(θ) with j-th largest eigenvalues λχnj(θ) and λξnj(θ) satis-

fying

lim
n→∞

λχnq(θ) = ∞, θ-a.e in [−π, π] and sup
θ∈[−π,π]

sup
n∈N

λξn1(θ) <∞, (8)

respectively; this is a consequence of Assumption (A-a-iii) for λχnj(θ), of Assumption (A-b-ii) for λξn1(θ)

(see Remark 3 for details). It then straightforwardly follows (see Remark 5) that (8) implies (7).4 Hence,

under Assumption (A), x admits a GDFM representation and the number q of diverging eigenvalues

of Σn(θ) corresponds to the number of dynamic factors and common shocks.

Remark 2. Assumption (A) requires q to be finite, irrespective of n. That assumption is standard in

all the factor model literature (Stock and Watson, 2002a,b; Bai and Ng, 2002; Bai, 2003; Doz et al.,

2012; Forni et al., 2017; etc.). It sometimes has been argued that q itself should increase as n → ∞.

Remember, however, that the cross-sectional dimension, in practice, is fixed, and that letting n → ∞
is a mathematical way to construct a tractable approximation to the actual finite-n problem. Adding

factors or common shocks that are not present in the finite-n observation is unlikely to improve that

approximation, while purposelessly making the inferential problem harder. An n-dependent q, moreover,

is incompatible with the random cross-section approach adopted here.

Remark 3. Assumption (A-a-ii) implies that σχij(θ) is a rational spectral density matrix, bounded

in θ uniformly in i and j. Assumption (A-b-ii) entails square-summability of the idiosyncratic filters

for the idiosyncratic MA(∞) representation (6) in the i.i.d. innovations, both along the time and the

cross-sectional dimensions. This, in turn, implies limited (lagged) cross-sectional dependence among

idiosyncratic components. For example, Assumption (A-b-ii) is obviously satisfied in the purely idiosyn-

cratic case ξit = ηit and for finite cross-section moving averages, for example ξit = ηit+ηi+1t. Moreover,

letting σξij(θ) denote the (i, j)th entry of the idiosyncratic spectral density matrix Σ
ξ
n(θ), it follows that

sup
θ∈[−π,π]

sup
j∈N

∞∑

i=1

|σξij(θ)| ≤ sup
θ∈[−π,π]

sup
j∈N

1

(1− ρ)2

∞∑

i=1

∞∑

s=0

BisBjs ≤
B2

(1− ρ)2
= Bξ, say.

This immediately implies (see Forni et al., 2017, Proposition 1)

sup
θ∈[−π,π]

sup
n∈N

λξn1(θ) ≤ Bξ, (9)

hence the ξits are effectively idiosyncratic components since they satisfy (8).

4In fact, also the converse holds true, see Forni and Lippi (2001).
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Remark 4. Assumption (A-a-iii) implies that each common shock uit is pervasive in the sense that it

affects almost all items of the cross-section as n increases. This implies that the common components χit

are identified (see Chamberlain and Rothschild, 1983), that the number of dynamic factors q is unique,

ruling out the possibility of a representation like (5) with a different number of dynamic factors (see Forni

and Lippi, 2001). Linear divergence rates, moreover, are the only ones compatible with the fact that

the cross-sectional ordering is completely arbitrary, hence should remain irrelevant—see the stochastic

approach in Section 3 for further justification. In other words, we are only considering the case of strong

factors, as opposed to the case of factors which have a weak effect on all series (see, e.g., Onatski, 2012)

or only affect some sub-group of series (see, e.g., Hallin and Liška, 2011).

Remark 5. Having spelled out the second-order properties of the common component χit and ξit,

the corresponding properties for the observables xit follow. For instance, the cross-spectral densi-

ties σxij(θ) = σχij(θ)+σ
ξ
ij(θ) are bounded, in θ, uniformly in i and j. It also follows (see Forni et al., 2017,

Proposition 2) that σxij(θ) possesses derivatives of any order and are of bounded variation uniformly

in i, j ∈ N.5 Furthermore, a simple application of Weyl’s inequality entails linear divergence and

separability of the largest q eigenvalues λnj(θ) of Σn(θ), i.e., for all j = 1, · · · , q, and all θ ∈ [−π, π],

λχj (θ) ≤ lim inf
n→∞

λnj(θ)

n
≤ lim sup

n→∞

λnj(θ)

n
≤ λ̄χj (θ), and sup

θ∈[−π,π]
sup
n∈N

λn,q+1(θ) ≤ Bx (10)

for some positive real Bx (see Forni et al., 2017, Proposition 1).

Remark 6. Finite (4+ ε)th moments and i.i.d.-ness of the common and idiosyncratic shocks ut and ηt

are needed in order to control the degree of physical dependence (Wu, 2005) of the common and idiosyn-

cratic components, hence of each xit. Note that Bai (2003, Assumption C) requires boundedness of the

eighth moment of ξits, which is a much stronger condition.

Remark 7. Let us observe that whereas the χit are identified, the ut and the polynomials bi(L) are

identified up to an invertible linear transformation, i.e., for any invertible q × q matrix H the common

component χit has the alternative representation χit = b′
i(L)HH−1ut = b∗′

i (L)u
∗
t . Further discussion

on identification is elaborated in the next section, where we describe the VAR representation of the

GDFM.

Example. AR(1) common and idiosyncratic components. We illustrate how the eigenvalue

conditions derived from Assumption (A) are verified in a simple GDFM example. Let

xit =
ut

1− diL
+

ηit
1− ρiL

, (11)

where {di} and {ρi} are i.i.d., with −1 < −1/Md ≤ di ≤ 1/Md < 1 and −1 < −ρ ≤ ρi ≤ ρ < 1,

and {ut} and {ηit} satisfy Assumptions (A-a-i) and (A-b-i), respectively.

Despite its simplicity, (11) does not admit the popular static representation (2)-(3) studied by Stock

and Watson (2002a,b) and Bai (2003) as soon as the AR coefficients di are generic, i.e., are drawn from

an absolutely continuous distribution (see footnote 1), thus severely limiting the applicability of the

DFM approach. Let us show that it nevertheless enters the realm of Assumption (A)

5Namely, there exists Ax > 0 such that
∑ν
h=1 |σ

x
ij(θh) − σxij(θh−1)| ≤ Ax, for all i, j, ν ∈ N and all partitions of the

form −π = θ0 < θ1 < · · · < θν−1 < θν = π of the interval [−π, π].
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Setting ci1,0 = 1, ci1,k = 0 for k > 0, di1,0 = 1, and di1,1 = −di, Assumption (A-a-ii) follows. As-

sumption (A-b-ii) holds with βij,k = 0 whenever i 6= j for every k, and βii,k = ρki . Finally, letting Bij = 0

for i 6= j and Bii = B = 1 otherwise, Assumption (A-c) is satisfied provided that Cov(us, ηit) = 0 for

every s, t, and i. Writing Γu for Var(ut), elementary algebra, yields, for any given n ∈ N, the spectral

density matrix

Σχ
n(θ) =

Γu

2π




1
1−d1e−ιθ

...
1

1−dN e−ιθ



(

1

1− d1eιθ
· · · 1

1− dNeιθ

)

=
Γu

2π




1
|1−d1e−ιθ|2 · · · 1

(1−d1e−ιθ)(1−dN eιθ)
...

. . .
...

1
(1−dN e−ιθ)(1−d1eιθ) · · · 1

|1−dN e−ιθ|2


 ,

which has rank one for all θ and unique non-zero eigenvalue λχn1(θ) =
Γu
2π

n∑

i=1

1

|1− die−ιθ|2
satisfying

1

2
≤ 1

1 + 1/M2
d

≤ 1

n

n∑

i=1

1

1 + d2i
≤ 1

n

n∑

i=1

1

|1− die−ιθ|2
≤ 1

n

n∑

i=1

1

1− d2i
≤ 1

1− 1/M2
d ≤ 1

,

hence

λχ1 (θ) := 1/2 ≤ λχn1(θ)/n ≤ 1 =: λ̄χ1 (θ).

Assumption (A-a-iii) thus holds. Finally, the spectral density matrix of ξn, for any given n ∈ N , is

Σξ
n(θ) =

1

2π




1
|1−ρ1e−ιθ|2 0 · · · 0

0 1
|1−ρ2e−ιθ|2 · · · 0

...
...

. . .
...

0 0 · · · 1
|1−ρN e−ιθ|2 ,



,

with largest eigenvalue λξn1(θ) ≤ 1/(1−ρ2) ≤ 1: all the eigenvalues of the spectral density matrix Σn(θ)

of xn thus satisfy (10) in Remark 5.

3 GDFM: Singular Vector Autoregressive Representation

Let Assumption (A) hold. For any s ∈ N and t ∈ Z, consider the (q + 1)-dimensional subvector of

common components χ
(s)
t := (χ(s−1)(q+1)+1,t · · ·χs(q+1),t)

′. Forni et al. (2015) prove that the following

property is satisfied for generic values of the parameters cij,k and dij,k in Assumption (A-a-ii): turning

it into an assumption, thus, only places an extremely mild restriction on the actual data-generating

process.

Assumption (B). For all s ∈ N and all t ∈ Z, there exist a unique (q + 1)-dimensional VAR fil-

ter A(s)(L) = Iq+1 −
∑ps

k=1A
(s)
k Lk and a (q + 1)× q-dimensional matrix R

(s) such that

A(s)(L)χ
(s)
t = R

(s)ut, t ∈ Z (12)
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where

(a) ps ≤ S := qs1 + q2s2 <∞ and all the roots of the determinantal equation det
(
A(s)(z)

)
= 0, z ∈ C,

are such that |z| > 1;

(b) R
(s) has maximal rank q;

(c) denoting by C
χ
s the S(q + 1) × S(q + 1) covariance matrix of (χ

(s)′
t · · ·χ(s)′

t−S)
′, there exists a finite

real d such that det(Cχ
s ) ≥ d > 0 for all s ∈ N.

Denote by A(L) the infinite-dimensional block-diagonal matrix with diagonal blocks A(s)(L), s ∈ N

and define R := (R(1)′
R

(2)′ · · · )′ with (q+1) columns and infinitely many rows. Considering, without

loss of generality, n such that n = m(q + 1) for some integer m, let

An(L) :=




A(1)(L) 0 . . . 0

0 A(2)(L) . . . 0
...

...
. . .

...

0 0 . . . A(m)(L)




and Rn :=




R
(1)

R
(2)

...

R
(m)




(13)

denote the upper n × n and upper n × q sub-matrices of A(L) and R, respectively. Then, from

Assumption (B), the common component χn admits the finite-order singular VAR representation

An(L)χnt = Rnut, n ∈ N, t ∈ Z, (14)

so that, with Cn(L) := [An(L)]
−1 and Bn(L) = (b1(L) · · ·bn(L))′ := Cn(L)Rn,

χnt = Bn(L)ut = Cn(L)Rnut, n ∈ N, t ∈ Z. (15)

Here, Bn(L) are the non-identified IRFs of the common shocks ut.

Now, since An(L) is block-diagonal, Cn(L) also is block-diagonal. Therefore, denoting

by Is := {ℓ | ℓ = (s − 1)(q̂ + 1) + 1, . . . , s(q̂ + 1)} the set of cross-sectional indices of the series be-

longing to block s, s = 1, . . . ,m, each common component χit of χnt in (15) satisfies

χit =

∞∑

k=0

q+1∑

js=1

ci,js,kR
′
jsut−k, i ∈ Is, s = 1, . . . ,m, t ∈ Z, (16)

where ci,js,k is the (i, js)th entry of Cn(L) and js indicates the jth column of block s of Cn(L), i.e.,

the jth element of Is.
The following example shows how to build a singular VAR representation of the common component.

Example. MA(1) common components. Consider a GDFM with q = 1 and MA(1) common

components. Since q = 1, q + 1 = 2 and

χit = ci,0ut + ci,1ut−1, (17)

χjt = cj,0ut + cj,1ut−1. (18)

Excluding the non-generic6 subset of R
4 in which ci,0cj,1 − ci,1cj,0 = 0, one obtains the solu-

6A non-generic subset of a real space R
d is a set of Lebesgue measure zero; its complementary is called generaic.
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tion ut = (cj,1χit − ci,1χjt)/(ci,0cj,1 − ci,1cj,0). Taking this into account in (17)-(18), yields the de-

sired VAR(1) representation

χit =
ci,1cj,1

(ci,0cj,1 − ci,1cj,0)
χit−1 −

(ci,1)
2

(ci,0cj,1 − ci,1cj,0)
χjt−1 + ci,0ut, (19)

χjt =
(cj,1)

2

(ci,0cj,1 − ci,1cj,0)
χit−1 −

ci,1cj,1
(ci,0cj,1 − ci,1cj,0)

χjt−1 + cj,0ut. (20)

Now, we can assume without loss of generality that n is an even number and that i = 2l− 1 and j = 2l

for some l = 1, . . . ,m and m = n/2. Then, the lth diagonal 2×2 block of An(L) and the corresponding

rows of Rn in (12) read as

A(l)(L) = I2 −




ci,1cj,1
(ci,0cj,1−ci,1cj,0) − (ci,1)

2

(ci,0cj,1−ci,1cj,0)
(cj,1)

2

(ci,0cj,1−ci,1cj,0) − ci,1cj,1
(ci,0cj,1−ci,1cj,0)


L and R

(l) =

(
ci,0

cj,0

)
. (21)

It can be shown (see Forni et al., 2015) that no other autoregressive representation of order one exists,

but many other autoregressive representations of order two and higher can be obtained. This, however, is

not the case for square systems, i.e., when n = q, where only an infinite VAR representation of (17)-(18)

would be possible.7

In view of xnt = χnt + ξnt, we obtain

znt := An(L)xnt = Rnut +An(L)ξnt =: ψnt + φnt, n ∈ N, t ∈ Z. (22)

As shown in Forni et al. (2017, Proposition 4), it immediately follows from Assumptions (A)-(B) and (9)

that the eigenvalues of the spectral density matrix of φn are uniformly bounded for θ ∈ [−π, π] for

all n ∈ N. Indeed, let Σφ
n(θ) := An(e

−ιθ)Σξ
n(θ)A′

n(e
ιθ), and denote by Λ

φ
n(θ) the n×n diagonal matrix

of the eigenvalues λφnj(θ) of Σφ
n(θ). Let Pφ(θ), with (i, j)th entry pφij(θ), be the corresponding n × n

matrix of orthonormal eigenvectors. Then, Σ
φ
n(θ) = P

φ
n(θ)Λ

φ
n(θ)P

φ†
n (θ) where P

φ†
n stands for the

transposed complex-conjugate of Pφ
n. We have

sup
θ∈[−π,π]

sup
n∈N

λφn1(θ) ≤ sup
θ∈[−π,π]

sup
n∈N

λξn1(θ)λ
A
n1(θ) ≤ BξDφ =: Bφ, say, (23)

where λAn1(θ) is the largest eigenvalue of An(e
−ιθ)A′

n(e
ιθ), which is finite because of Assumptions (B-a)

and (B-c). Therefore, φn is still idiosyncratic in the sense of Section 2, and we call (22) the singular

VAR representation of the GDFM.

4 Dual static representation

Let us show that (22) is a static factor model for znt in the sense of Bai (2003). Hereafter, we consider

the nT -dimensional subprocess {xit| 1 ≤ i ≤ n, 1 ≤ t ≤ T} of x, with elements that, for any given n ∈ N

7Interestingly, when ci,0cj,1 − ci,1cj,0 6= 0, the noise ut is fundamental for (χit, χjt)
′ even if (17)-(18) both are non-

invertible (see Forni et al., 2015), that is, even if uit (ujt) is not fundamental for χit ( χjt).
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and T ∈ N, can be rearranged as

XnT :=




x11 · · · xi1 · · · xn1
... · · · ... · · · ...

x1t · · · xit · · · xnt
... · · · ... · · · ...

x1T · · · xiT · · · xnT




=:




x′
n1
...

x′
nt
...

x′
nT




=:
(
x1
T · · ·xiT · · ·xnT

)
, (24)

with tth row xnt = (x1t · · · xnt)′ (an n-dimensional random vector) and ith column xiT = (xi1 · · · xiT )′
(a T -dimensional random vector), respectively. Similarly define the idiosyncratic T × n matrix

ΦnT = (φn1 · · ·φnt · · ·φnT )′ =
(
ϕ1
T · · ·ϕiT · · ·ϕnT

)
,

with tth row φ′
nt = (φ1t · · ·φnt) (an n-dimensional random vector) and ith column ϕiT = (φi1 · · ·φiT )′

(a T -dimensional random vector). Define the T × q matrix of common shocks UT := (u1 · · ·ut · · ·uT )′,
with tth row u′

t (a q-dimensional random vector). With this notation, the static representation (22) of

the GDFM, takes the form (in matrix representation)

ZnT := (An(L)X
′
nT )

′ = UTR
′
n +ΦnT =: ΨnT +ΦnT , (25)

where ZnT is T × n, with rows z′nt and columns ziT , and LX ′
nT = L(xn1 · · ·xnT ) = (xn0 · · · xn,T−1).

Furthermore, the matrix representation (25) can be written under (transposed) row-vector form as

a cross-sectional projection which, denoting by eTt the tth column of the T × T identity matrix IT , is

given by

znt =
(
An(L)X

′
nT

)
eTt = Rnut + φnt, n ∈ N, t ∈ Z (26)

(that is, the static factor model (22)). Or, equivalently, by denoting as R′
i the ith q-dimensional row

of Rn and by eni the ith column of the n×n identity matrix In, the matrix representation (25) can be

written under column-vector form as a temporal projection given by

ziT = (An(L)X
′
nT )

′eni = UTRi +ϕ
i
T , i ∈ N, T ∈ N. (27)

The two forms (26) and (27) constitute dual static factor model representations, with the time- and

cross-sectional-dimensions (the indices i and t) exchanging roles—that is, X′
nT replacing XnT . The

duality between (26) and (27), as we shall see, plays a fundamental role when studying the limiting

properties of the estimators. Exploiting it, however, requires some structure on (27) and the Ris that

parallels the assumed structure provided by Assumption (A-a) for (26) and the uts, along with some

bounds on the second-order moments of the idiosyncratic components φit.

Assumption (C).

(a) For all n and T , the distribution of XnT , hence also the distributions of ZnT , ΨnT , and ΦnT are

invariant under column permutations, i.e., they are cross-sectionally exchangeable;

(b) {Ri := (Ri1 · · ·Riq)′| i ∈ N} is a q-dimensional i.i.d. zero-mean stochastic process, with positive

definite covariance E[RiR
′
i] =: Σ

R; moreover, for all j = 1, . . . , q and all i ∈ N, E[|Rij |4+ε] ≤MR

for some ε > 0 and some finite constant MR > 0 independent of i and j;
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(c) {Ri|i ∈ N} and {(ut,ηt)|t ∈ Z} are mutually independent processes;

(d-i) for all i, j ∈ N, limT→∞ E[( 1√
T

∑T
t=1{φitφjt−E[φitφjt]})2] ≤MΓ for some finite constant MΓ > 0

independent of i and j;

(d-ii) for all t, s ∈ Z, limn→∞ E[( 1√
n

∑n
i=1{φitφis−E[φitφis]})2] ≤MG for some finite constant MG > 0

independent of t and s.

Remark 8. Under Assumption (C), the duality between representations (26) and (27) is fully estab-

lished: both now have the form of static factor model representations, with random vectors ut loaded at

time t by cross-sectional item i via random loadings Rn in (26) and random vectors Ri loaded by cross-

sectional item i at time t via random loadings UT in (27). Both ut and Ri are i.i.d. noise, the only dif-

ference being that {ut} is simply i.i.d. while {Ri} also is exchangeable in the sense of Assumption (C-a),

which takes into account the irrelevance of the cross-sectional ordering (while chronological ordering

is of fundamental importance). Note also that the linear rate of divergence of exploding eigenvalues

in Assumption (A-a-iii) is the only rate compatible with cross-sectional exchangeability. Appendix E

clarifies the relationship between Assumption (C) and the notion of exchangeability.

Remark 9. Assumption (C-d-i) is the same as Assumption 8 in Forni et al. (2009) and it basically says

that, for any given n ∈ N, we can estimate consistently all entries of the covariance matrix of {φnt}. This

is quite natural and mild in view of stationarity and the existence of 4-th moments of the innovations in

(6), see Remark 10 below. Moreover, if for any fixed n ∈ N we let Γφn be the n×n symmetric matrix with

entries limT→∞ 1
T

∑T
t=1 E[φitφjt] =: γ

φ
ij (due to stationarity), i, j = 1, . . . , n, then, Assumption (C-d-i)

implies that, as T → ∞,
1

n

∥∥∥∥
Φ′
nTΦnT

T
− Γφn

∥∥∥∥ = OP

(
1√
T

)
. (28)

Indeed,

lim
T→∞

T E

[
1

n2

∥∥∥∥
Φ′
nTΦnT

T
− Γφn

∥∥∥∥
2
]
≤ lim

T→∞
T E

[
1

n2

∥∥∥∥
Φ′
nTΦnT

T
− Γφn

∥∥∥∥
2

F

]

=
1

n2

n∑

i,j=1

lim
T→∞

T E



(

1

T

T∑

t=1

φitφjt − γφij

)2



≤ max
i,j=1,...,n

lim
T→∞

E



(

1√
T

T∑

t=1

{
φitφjt − E[φitφjt]

})2

 ≤MΓ,

and (28) follows from Chebychev’s inequality. Similarly, if for any fixed T ∈ N we let Gφ
T be the T × T

symmetric matrix with entries limn→∞ 1
n

∑n
i=1 E[φitφis] =: g

φ
ts, t, s = 1, . . . , T , then, it follows from

Assumption (C-d-ii) that, as n→ ∞,

1

T

∥∥∥∥
ΦnTΦ

′
nT

n
−Gφ

T

∥∥∥∥ = OP

(
1√
n

)
. (29)

The proof of (29) is analogous to the proof of (28), thus is omitted.
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Remark 10. Necessary and sufficient conditions for Assumptions (C-d-i) and (C-d-ii) to hold are

1

T

T∑

t,s=1

|cum(φit, φjt, φis, φjs)| ≤M,

1

T

T∑

t,s=1

|Cov(φit, φis)Cov(φjt, φjs)| ≤M,
1

T

T∑

t,s=1

|Cov(φit, φjs)Cov(φis, φjt)| ≤M, (30)

and

1

n

n∑

i,j=1

|cum(φit, φjt, φis, φjs)| ≤M,

1

n

n∑

i,j=1

|Cov(φit, φjt)Cov(φis, φjs)| ≤M,
1

n

n∑

i,j=1

|Cov(φit, φjs)Cov(φis, φjt)| ≤M, (31)

respectively, for some finite constant M > 0 (possibly different across conditions), where cum(a, b, c, d)

is the mixed 4-th order cumulant.8 Hence, conditions (30) and (31) are equivalent to summability of4-th

order moments, and can be interpreted as mixing conditions in the time series and cross-sectional sense,

respectively. For (30), see also Hannan (1970, pp. 209-211), while (31) is similar to Assumption C.5 in

Bai (2003), where, however, it is assumed summability also of 8-th order moments.

In fact, given the VARMA representation of φit, which follows from (6) and (22), and given

that E[φ4it] ≤ C0 for some positive real C0 independent of i and t (see below), then, it is easy to

see that, under Assumption (A-b), the process {φit} is ergodic for all i, which implies that also the

process {φitφjt} is ergodic for all i and j (White, 2001, Theorem 3.35). Thus Assumption (C-d-i) holds

under our setting.9 Although Assumption (C-d-i) is in principle redundant, since it could be proved us-

ing standard time series results, the cross-sectional condition in Assumption (C-d-ii) must be assumed,

therefore, for symmetry, we prefer to assume both conditions.

Finally, in order to show that E[φ4it] ≤ C0, notice that, since φit = e′niAn(L)ξnt and each row

of An(L) is of finite order and has only q + 1 non-zero elements by Assumption (B-a), we just need

to show that E[ξ4it] ≤ C1 for some positive real C1 independent of i and t. To see that this is indeed

the case, just notice that from (6), Assumptions (A-b-i) and (A-b-ii), and using the Cauchy-Schwarz

inequality, we obtain

E[ξ4it] =

∞∑

k1=0

∞∑

k2=0

∞∑

k3=0

∞∑

k4=0

∞∑

j1=1

∞∑

j2=1

∞∑

j3=1

∞∑

j4=1

βij1,k1βij2,k2βij3,k3βij4,k4E[ηj1,t−k1ηj2,t−k2ηj3,t−k3ηj4,t−k4 ]

≤
∞∑

k=0

∞∑

j1=1

∞∑

j2=1

∞∑

j3=1

∞∑

j4=1

Bij1Bij2Bij3Bij4ρ
4k
E[|ηj1,t−kηj2,t−kηj3,t−kηj4,t−k|]

≤ B4

1− ρ4
sup

j1,j2,j3,j4∈N

(
E[η4j1,t]

)1/4 (
E[η4j2,t]

)1/4 (
E[η4j3,t]

)1/4 (
E[η4j4,t]

)1/4 ≤ B4M4
η

1− ρ4
=: C1, say,

8Recall that, since E[φit] = 0, then its mixed 4-th order cumulant is

cum(φit, φjt, φis, φjs) = E[φitφjtφisφjs]− E[φitφjt]E[φisφjs]− E[φitφis]E[φjtφjs]− E[φitφjs]E[φisφjt].

9This same result is also proved by Forni et al. (2017, Lemma 11) by direct substitution of (6) and (22) into the
statement of Assumption (C-d-i).
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and since B, ρ, and Mη are independent of i and t, this result holds uniformly.

Example. MA(1) idiosyncratic components. In (21), let A
(l)
n (L) = I2 − A(l)L; for simplicity,

denote by a
(l)
hk, h, k = 1, 2 the entries of A(l). Then, the filtered idiosyncratic components are

φilt = ξilt − a
(l)
11ξil,t−1 − a

(l)
12ξjl,t−1, (32)

φjlt = ξjlt − a
(l)
21ξil,t−1 − a

(l)
22ξjl,t−1. (33)

where il := 2l−1 and jl := 2l . Assuming independence of the ξits both across t and i, with Var(ξit) = σ2i ,

one obtains that (32)-(33) is a VMA(1), implying

Cov(φilt, φils) =





σ2il + σ2il(a
(l)
11 )

2 + σ2jl(a
(l)
12 )

2, t = s,

−σ2ila
(l)
11 , s = t+ 1, s = t− 1,

0, otherwise.

Cov(φjlt, φjls) =





σ2jl + σ2il(a
(l)
21 )

2 + σ2jl(a
(l)
22 )

2, t = s,

−σ2jla
(l)
22 , s = t+ 1, s = t− 1,

0, otherwise.

Cov(φilt, φjls) =





σ2il(a
(l)
11a

(l)
21 ) + σ2jl(a

(l)
12a

(l)
22 ), t = s,

−σ2ila
(l)
21 , s = t+ 1,

−σ2jla
(l)
12 , s = t− 1,

0, otherwise.

Cov(φilt, φjms) = 0, for all t, s and m 6= l.

The fourth order cumulants cum(φit, φjt, φis, φjs) are always zero for units (i, j) belonging to distinct

bivariate VARs, and not zero only when considering units within the same VAR for {il = jl, t = s},
{il 6= jl, t = s}, and {il = jl, t = s± 1}.

Given that, by the cumulants theorem (see Brillinger, 2001, Theorem 2.3.2, Equation 2.3.7),

E[(φiltφjlt − γφiljl)(φilsφjls − γφiljl)] = cum(φilt, φjlt, φils, φjls) +Cov(φilt, φils)Cov(φjlt, φjls)

+ Cov(φilt, φjls)Cov(φjlt, φils),

and defining κ4(il) := cum(φilt, φilt, φilt, φilt), it follows that (28) holds in view of

T∑

t,s=1

E[(φiltφjlt − γφiljl)(φilsφjls − γφiljl)]

= T (σ2il + σ2il(a
(l)
11 )

2 + σ2jl(a
(l)
12 )

2)(σ2jl + σ2il(a
(l)
21 )

2 + σ2jl(a
(l)
22 )

2) + 2(T − 1)a
(l)
11a

(l)
21

+ Tσ2ilσ
2
jl
(σ2il(a

(l)
11a

(l)
22 ) + σ2jl(a

(l)
12a

(l)
22 ))

2 + 2(T − 1)σ2ilσ
2
jl
a
(l)
21a

(l)
12

+ T Iil=jl(κ4(il)(1 + (a
(l)
11 )

4 + (a
(l)
12 )

4) + κ4(jl)(1 + (a
(l)
21 )

4 + (a
(l)
22 )

4))

+ T Iil 6=jl(κ4(il)(a
(l)
11 )

2(a
(l)
12 )

2 + κ4(jl)(a
(l)
21 )

2(a
(l)
22 )

2)

+ 2T Iil=jlκ4(il)((a
(l)
11 )

2 + (a
(l)
21 )

2) + T Iil 6=jl(κ4(il)(a
(l)
12 )

2 + κ4(jl)(a
(l)
21 )

2) ≤ TM

(I[...] the indicator of [. . .]), which holds as long as supl(|a(l)11 |+ |a(l)12 |+ |a(l)21 |+ |a(l)22 |)+supl σ
2
il
+supl κ4(il)
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is bounded, which is always satisfied under our assumptions, since, as shown in Remark 10, the fourth

order cumulants are bounded and the VAR coefficients are also bounded by Assumption (B-a), i.e.,

stationarity.

Similarly, given the fact that

E[(φiltφils − gφts)(φjltφjls − gφts)] = cum(φilt, φjlt, φils, φjls) + Cov(φilt, φjlt)Cov(φils, φjls)

+ Cov(φilt, φjls)Cov(φjlt, φils),

it follows that (29) holds since the φits have an MA(1) structure across units, i.e.,

n∑

i,j=1

cum(φit, φjt, φis, φjs) =

m∑

l=1

cum(φilt, φjlt, φils, φjls)

≤ It=s

m∑

l=1

(κ4(il)(1 + (a
(l)
11 )

4 + (a
(l)
12 )

4) + κ4(jl)(1 + (a
(l)
21 )

4 + (a
(l)
22 )

4))

+ It=s

m∑

l=1

(κ4(il)(a
(l)
11 )

2(a
(l)
12 )

2 + κ4(jl)(a
(l)
21 )

2(a
(l)
22 )

2)

+ (It=s−1 + Is=t−1)

m∑

l=1

(2κ4(il)(a
(l)
11 )

2 + 2κ4(jl)(a
(l)
21 )

2)

+ It=s−1

m∑

l=1

κ4(jl)(a
(l)
12 )

2 + Is=t−1

m∑

l=1

κ4(il)(a
(l)
21 )

2 ≤ mM = n(M/2), (34)

n∑

i,j=1

Cov(φit, φjt)Cov(φis, φjs) = 2

m∑

l=1

Cov(φilt, φjlt)Cov(φils, φjls) +

m∑

l=1

Var(φilt)Var(φils)

= 2

m∑

l=1

(σ2il(a
(l)
11a

(l)
21 ) + σ2jl(a

(l)
12a

(l)
22 ))

2 +

m∑

l=1

(σ2il + σ2il(a
(l)
11 )

2 + σ2jl(a
(l)
12 )

2)2

≤ mM = n(M/2), (35)

and

n∑

i,j=1

Cov(φit, φjs)Cov(φjt, φis) = 2

m∑

l=1

Cov(φilt, φjls)Cov(φils, φjlt) +

m∑

l=1

Cov(φilt, φils)Cov(φjls, φjlt)

= 2
m∑

l=1

(σ2ila
(l)
21σ

2
jl
a
(l)
12 ) +

m∑

l=1

(σ2ila
(l)
11σ

2
jl
a
(l)
22 ) ≤ mM = n(M/2), (36)

where the bounds (34)-(36) hold whenever the elements of A(l)(L) in (21) satisfy
∑m

l=1 ‖A(l)‖s ≤ mM

for s = 1, 2, 3, 4, which follows from Assumption (B-a), i.e., by stationarity.

The two static representations (26)-(27) contain common components which are static across time

and exchangable across units, respectively. Therefore, for our asymptotic analysis, it suffices to study

the behavior of their sample second moment across time and the cross-section, respectively, rather than

their spectral density matrices. This is developed in the next section. At the same time, one needs to

ensure that the idiosyncratic components in (26)-(27) are indeed idiosyncratic, i.e., are weakly dependent
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both across time and units. This is taken care of in the subsequent section.

4.1 Static Common Components

From Assumption (A-a-i) and the Weak Law of Large Numbers, it immediately follows that

1

T

T∑

t=1

utu
′
t =

U
′
TUT

T
−→P Γu as T → ∞, (37)

where Γu is a finite q × q positive definite matrix. This is the same as Assumption A in Bai (2003).

Similarly, from Assumption (C-b), and the Weak Law of Large Numbers, there exists a finite q × q

positive definite matrix ΣR such that

1

n

n∑

i=1

RiR
′
i =

R
′
nRn

n
−→P ΣR as n→ ∞, (38)

which is the classical condition of factor pervasiveness made in static factor models; in particular, this is

the same as Assumption B in Bai (2003), but in the case of random loadings. Moreover, the convergence

rates in (37) and (38) are
√
T and

√
n, respectively (see Lemma 1 in the Appendix).

Remark 11. Assumption (C-b) and it consequence (38) pave the way for clarifying the issue of iden-

tification of the common shocks and their IRFs as discussed in Remark 7. In particular, full rank

of R′
nRn/n, for n sufficiently large, which requires a sufficient degree of heterogeneity of the elements

of Rn, implies that the space spanned by the q elements of ut is identified, or equivalently that the q

elements of ut are identified up to an invertible linear transformation H. It follows from (15) that

the uts are fundamental with respect to the χnts—that is, the space spanned by their present and past

values coincides with the space spanned by the present and past values of χnt. In turn, this means that

identification is reduced to the choice of a q × q invertible matrix H such that economically motivated

restrictions on the identified IRFs matrix B(L)H = [An(L)]
−1RnH hold. This is achieved, for instance,

by maximizing or minimizing an objective function involving B(L)H or, alternatively, by imposing zero

restrictions on its elements (see Forni et al., 2009 for a detailed discussion and examples). Notice that,

under our assumptions, in particular ensuring a sufficient degree of heterogeneity of the elements of Rn,

the number of economic identification restrictions needed depends only on q and not on n.

Now, from (28), which follows from Assumption (C-d-i), (37), and Assumption (C-c),

Z ′
nTZnT

T
=

RnU
′
TUTR

′
n

T
+

Φ′
nTΦnT

T
+ oP(1) −→P RnΓ

u
R

′
n + Γφn, as T → ∞. (39)

Letting µψnj denote the jth largest eigenvalue of RnΓ
uR

′
n, because of (38) and since Γu is positive

definite, for all j = 1, . . . , q, there exist two positive reals µψ
j

and µ̄ψj such that

µψ
j
≤ p-lim inf

n→∞

µψnj
n

≤ p-lim sup
n→∞

µψnj
n

≤ µ̄ψj . (40)

This is similar to Assumption 6 in Forni et al. (2017), although here derived from our assumptions.
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Likewise, from (29), which follows from Assumption (C-d-ii), (38), and Assumption (C-c),

ZnTZ
′
nT

n
=

UTR
′
nRnU

′
T

n
+

ΦnTΦ
′
nT

n
+ oP(1) −→P UTΣ

R
U

′
T +Gφ

T , as n→ ∞. (41)

Letting νψTj denote the j largest eigenvalue of UTΣ
RU

′
T , because of (37) and since ΣR is positive

definite, for all j = 1, . . . , q, there exist two positive reals νψj and ν̄ψj such that

νψj ≤ p-lim inf
T→∞

νψTj
T

≤ p-lim sup
T→∞

νψTj
T

≤ ν̄ψj . (42)

In fact, by the Strong Law of Large Numbers, (37) and (38) hold also almost surely and weak

convergence statements in Lemma 1 of the Appendix could be replaced by almost sure ones with

convergence rates O(T 1/2−ǫ) and O(n1/2−ǫ) for some arbitrarily small ǫ > 0.10 As a consequence, the

eigenvalue properties (40) and (42) could be shown to hold with probability one, as in the classical

factor model literature.

Consistent estimation of eigenvectors, however, also requires the usual assumption of asymptotic

separation of eigenvalues—a slight reinforcement of (40) and (42).

Assumption (D). For all j = 2, . . . , q, µ̄ψj < µψ
j−1

and ν̄ψj < νψj−1.

This assumption, together with (40) and (42), is the analog, for the covariance matrix of the static

common component ψn of the assumption made on the eigenvalues of the spectral density matrix of

the common component χn (Assumption (A-a-iii)).

4.2 Static Idiosyncratic Components

From (28) and (29), we have that Γφn = limT→∞ 1
T

∑T
t=1 E[φntφ

′
nt] = E[φntφ

′
nt] because of stationarity,

while Gφ
T = limn→∞ 1

n

∑n
t=1 E[ϕ

i
Tϕ

i′
T ]. Therefore, for any bn = (b1 · · · bn)′ such that b′nbn = 1,11

sup
n∈N

b′nΓ
φ
nbn = sup

n∈N
b′nE[φntφ

′
nt]bn = sup

n∈N

n∑

i,j=1

bibj

∫ π

−π
σφij(θ)dθ

≤ sup
n∈N

n∑

i,j=1

|bibj|
∫ π

−π
|σij(θ)|dθ ≤ sup

n∈N

n∑

i=1

|bi|22πBφ = 2πBφ, (43)

and, for any cT = (c1 · · · cT )′ such that c′TcT = 1,12

10More precisely, it is possible to show that
∥∥∥U

′

T
UT

T
− Γ

u
∥∥∥ = Oa.s.

(
log log T√

T

)
and

∥∥∥R
′

n
Rn

n
−Σ

R
∥∥∥ = Oa.s.

(
log log n√

n

)
.

11Because of (23), the diagonal entries of Σφ
n(θ) are such that

sup
θ∈[−π,π]

sup
i∈N

σφii(θ) = sup
θ∈[−π,π]

sup
i∈N

n∑

j=1

|pφij(θ)|
2λφnj(θ) ≤ Bφ,

since eigenvectors are normalized. Notice that σφii(θ) is real and positive.
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sup
T∈N

c′TG
φ
TcT = sup

T∈N
c′T

{
lim
n→∞

1

n

n∑

i=1

E[ϕiTϕ
i′
T ]

}
cT = sup

T∈N

T∑

t,s=1

ctcs lim
n→∞

1

n

n∑

i=1

{∫ π

−π
σφii(θ)e

ι(t−s)θdθ
}

≤ sup
T∈N

T∑

t,s=1

|ctcs| lim
n→∞

1

n

n∑

i=1

{∫ π

−π
|σii(θ)| |eι(t−s)θ |dθ

}

≤ sup
T∈N

T∑

t,s=1

|ctcs| sup
i∈N

{∫ π

−π
|σii(θ)| |eι(t−s)θ |dθ

}
≤ sup

T∈N

T∑

t=1

|ct|22πBφ = 2πBφ. (44)

This implies that the largest eigenvalues of Γφn and Gφ
T satisfy

sup
n∈N

‖Γφn‖ = sup
n∈N

max
bn

b′nbn=1

b′nΓ
φ
nbn ≤ 2πBφ and (45)

sup
T∈N

‖Gφ
T ‖ = sup

T∈N
max
cT

c′T cT=1

c′TG
φ
TcT ≤ 2πBφ, (46)

respectively. Following a similar reasoning, it is straightforward to show that also Assumptions C2

and C3 of Bai (2003) hold.

5 Estimation

In order to estimate the common component, we need to estimate the common loading filters, i.e.,

the impulse response functions Bn(L) = [An(L)]
−1Rn and the common factors or shocks ut. That

estimation proceeds in two steps: first we estimate An(L) and then, by considering the static represen-

tation (22) of the GDFM, we estimate ut and Rn by performing a principal component analysis of the

filtered data znt = An(L)xnt. This section describes the estimators while Section 6 is devoted to their

asymptotic properties.13

Throughout, we denote by q̂ a consistent estimator of the number q of factors; such an estimator can

be obtained by means of the Hallin and Liška (2007) information criterion applied to the observed data

matrix XnT or, alternatively, via the methods proposed by Onatski (2009) or Avarucci et al. (2022).

5.1 Estimation of A(L)

Without loss of generality we keep assuming n = m(q̂ + 1) for some finite integer m (we discuss below

what to do in practice if n/(q̂+1) is not an integer). To start with, we compute the lag-window estimator

Σ̂n(θh) :=
1

2π

T−1∑

k=−T+1

K
(
k

BT

)
e−ιkθhΓ̂n,k, θh =

πh

BT
, |h| ≤ BT , (47)

12Because of (23) and the Cauchy-Schwarz inequality, the off-diagonal entries of Σφ
n(θ) satisfy

sup
θ∈[−π,π]

sup
i,j∈N

|σφij(θ)|≤ sup
θ∈[−π,π]

sup
i,j∈N

n∑

k=1

|pφik(θ)p̄
φ
jk(θ)|λ

φ
nk(θ)≤ sup

θ∈[−π,π]
sup
i,j∈N

n∑

k=1

|pφik(θ)|
2Bφ≤Bφ.

13We denote estimated quantities as Σ̂n(θ), Γ̂n, Ân(L), R̂n, etc. The use of “hats” implicitly implies dependence both
on n and T , not to be confused with the use of the index n and/or T which refers to the dimension of the object.
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of the spectral density matrix of the observables; here Γ̂n,k := T−1
∑T

t=|k|+1 xntx
′
n,t−|k| is the usual lag-k

sample autocovariance matrix (assuming to work with centered data, i.e., such that T−1
∑T

t=1 xnt = 0)

and K(·) is a suitable kernel with bandwidth BT . The choice of the kernel and its bandwidth BT are

standard problems and in our empirical analysis we use the classical choice of a Bartlett kernel with

bandwidth BT = ⌊T 1/3⌋, a choice which is compatible with our theoretical results (see Assumption (K)

in Section 6.2). The asymptotic properties of Σ̂n(θh), defined in (47), are given in Proposition 1.

Then, we estimate the spectral density matrix of the common component by dynamic principal

component analysis. Specifically, we collect the normalized column eigenvectors associated with the q̂

largest eigenvalues of Σ̂n(θh) into the (n × q̂ ) matrix P̂n(θh), and the corresponding eigenvalues into

the (q×q) diagonal matrix Λ̂n(θh). Our estimator of the spectral density matrix of the common compo-

nent is Σ̂
χ
n(θh) := P̂n(θh)Λ̂n(θh)P̂

†
n(θh), where P̂

†
n(θh) is the transposed complex-conjugate of P̂n(θh).

By computing the inverse Fourier transform of Σ̂χ
n(θh), we can estimate the autocovariance matrices

of the common component:

Γ̂
χ
n,k :=

π

BT

BT∑

h=−BT
eιkθhΣ̂χ

n(θh), |k| ≤ BT .

Consider the m diagonal (q̂ + 1) × (q̂ + 1) blocks Γ̂
χ(s)
k of the Γ̂

χ
n,k’s. For each block, we estimate,

via the Yule-Walker method, the coefficients of a (q̂ + 1)-dimensional VAR model (order determined

via AIC or BIC). This yields, for the s-th diagonal block, an estimator Â(s)(L) of the autoregressive

filter A(s)(L) appearing in Assumption (B).14 By combining the m estimators for the m diagonal

blocks A(1)(L), . . . ,A(m)(L), we obtain an estimator Ân(L) of the VAR filter An(L) as defined in (13);

the asymptotic properties of that estimator are given in Proposition 2.

Three important remarks about estimation of An(L) are in order here.

Remark 12. The cross-sectional ordering of the panel has an impact on the selection of the diagonal

blocks when estimating An(L). Each cross-sectional permutation of the panel, thus, would lead to dis-

tinct estimators—all sharing the same asymptotic properties. In line with the exchangeability property

Assumption (C-a), a Rao-Blackwell argument (see Forni et al., 2017 for details) suggests aggregating

these estimators into a unique one by simple averaging (after obvious reordering of the cross-section)

of the resulting estimated shocks. Although averaging over all n! permutations is clearly unfeasible,

as explained by Forni et al. (2017) and verified empirically also in Forni et al. (2018), a few of them

are enough, in practice, to deliver stable averages, well-approximating the infeasible average over all n!

permutations.

Remark 13. Although we assumed, for simplicity, that n = m(q̂ + 1) for some integer m, this might

not be the case in practice. When n is not an integer multiple of (q̂+1), we can consider ⌊n/(q̂+1)⌋−1

blocks of size (q̂+1) and a last one of size (q̂+1) + n− ⌊n/(q̂ +1)⌋(q̂ +1), which is larger than (q̂+1)

but smaller than 2(q̂ + 1). Since the arguments from Forni et al. (2017) used in the next section apply

to any partition into blocks of size (q̂ + 1) or larger, nothing changes for the subsequent asymptotic

theory.

Remark 14. It is known that, as ps increases, the estimation of a singular VAR via Yule-Walker

methods may become unstable, since it requires inversion of a ps(q̂ + 1) × ps(q̂ + 1) Toeplitz matrix.

14For example, in the VAR(1) case, i.e., ps = 1, we have Â
(s)(L) = Iq̂+1 − Â

(s)L with Â
(s) := Γ̂

χ(s)
1 (Γ̂

χ(s)
0 )−1.
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To tame this potential issue, Hörmann and Nisol (2020) have proposed a regularized approach, aimed

at stabilizing the estimates Â(s)(L). Empirically, this seems to be an important step—to be taken only

when ps is much larger than 1, though.

5.2 Estimation of UT and Rn

We now describe how to estimate the the common component (the product of UT and Rn) in the

static representation (25) of the GDFM. It is well known (see Bai, 2003) that estimation of UT and Rn

involves (i) the evaluation of the (suitably normalized) eigenvectors of the sample covariance matrix

of Ẑ′
nT := Â′

n(L)X
′
nT , and (ii) the construction of a linear projection of the ẐnT s onto a subset of the

sample eigenvectors obtained in step (i), corresponding to the estimated number q̂ of factors. By the

duality outlined above, this can be done in two different ways, depending on whether the n× n sample

covariance matrix Ẑ′
nT ẐnT /T or the T × T covariance matrix Ẑ′

nT ẐnT /n is considered. In particular,

in the former case of the n× n sample covariance matrix, the estimator of UT , which we denote as ÛT ,

is obtained as a linear projection of the ẐnT onto the n-dimensional sample eigenvectors that are used

to build an estimator of Rn, denoted as Řn. Our main insight is to exploit the linearity rooted in the

linear projection operator to derive the limiting distribution of the estimator for UT , relying on the

consistency of the sample eigenvectors estimator established in Forni et al. (2017). The same reasoning,

now based on the T × T sample covariance matrix, permits to deriving the limiting distribution of

a (different) estimator of Rn, denoted as R̂n, which has the desired linear projection form, and is a

function of the T -dimensional sample eigenvectors of the covariance matrix used to build a (different)

estimator of UT , which we denote as ǓT . This procedure is warranted by the duality that characterizes

the static model (25) as discussed above, leading to the representations (26) and (27).

Therefore, one has two sets of estimators for UT and Rn. When inference is to be performed on

either UT or Rn, we focus on the asymptotic properties of the linear projection estimators ÛT and R̂n

given in Theorems 1 and 2, respectively. However, for estimating the static common component ΨnT

defined in (25), we will combine the two estimators ÛT Ř
′
n and ǓT R̂

′
n, thus enjoying an efficiency gain

(see the next section).15 To this end, we will derive also the asymptotic properties of the eigenvectors

estimators ǓT and Řn (see Appendix C).

Let us start with the estimation of UT . Consider the n× n sample covariance matrix

Γ̂zn :=
1

T

T∑

t=1

ẑntẑ
′
nt =

Ẑ′
nT ẐnT

T
. (48)

of the ẑnt’s. Collect the normalized column eigenvectors associated with the q̂ largest eigenvalues of Γ̂zn

into the n × q̂ matrix P̂z
n and the corresponding eigenvalues into the q̂ × q̂ diagonal matrix Λ̂z

n. Then,

for the estimation of UT , construct a preliminary estimator of Rn as

Řn =
(
Ř1 · · · Řn

)′
:= P̂z

n

(
Λ̂z
n

)1/2
. (49)

Next consider the submatrix of Řn consisting of a selection of n̄ ≤ n rows. The asymptotic conditions n̄

should satisfy are discussed in Section 6.3, while the specific choice of n̄ in finite samples is considered

15Note that ÛT R̂
′
n is not convenient as an estimator of ΨnT because ÛT and R̂n are, as expected, affected by two

different (and unknown) rotation matrices. For the same reason, we cannot consider the estimator ǓT Ř
′
n.
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in Section 7. Without loss of generality, assume that the first n̄ rows are selected, and define

Řn̄ =
(
Ř1 · · · Řn̄

)′
:= P̂z

n̄

(
Λ̂z
n

)1/2
(50)

where P̂z
n̄ is the n̄× q̂ submatrix of P̂z

n’s first n̄ rows. Note that each entry of Řn̄ still is a function of n

and T only; in particular, the matrix of eigenvalues Λ̂z
n does not depend on n̄.

Then, let Ẑn̄T = (ẑ1T · · · ẑn̄T ) be the T × n̄ matrix of ẐnT ’s first n̄ columns. We estimate UT as the

cross-sectional linear projection ÛT of the ẑiT s onto Řn̄: namely,

ÛT = (û1 · · · ût · · · ûT )′ := Ẑn̄T Řn̄

(
Ř

′
n̄Řn̄

)−1

= Ẑn̄T P̂
z
n̄

(
Λ̂z
n

)1/2((
Λ̂z
n

)1/2
P̂z′
n̄ P̂

z
n̄

(
Λ̂z
n

)1/2)−1

= Ẑn̄T P̂
z
n̄

(
Λ̂z
n

)−1/2
. (51)

This is the estimator we are proposing for UT , for which we provide the asymptotic properties in detail

below.

Turning to the estimation of Rn, consider the T × T sample covariance matrix

Ĝz
T :=

1

n

n∑

i=1

ẑiT ẑ
i′
T =

ẐnT Ẑ
′
nT

n
. (52)

of the ẑiT ’s. Collect the normalized column eigenvectors associated with the q̂ largest eigenvalues of Ĝz
T

into the n× q̂ matrix Π̂z
T , and the corresponding eigenvalues into the q̂ × q̂ diagonal matrix L̂zT . Then,

for the estimation of Rn, construct a preliminary estimator ǓT of UT as

ǓT = (ǔ1 · · · ǔT )′ := Π̂z
T

(
L̂zT

)1/2
. (53)

Next consider the submatrix of ǓT consisting of a selection of T̄ ≤ T rows. The asymptotic conditions T̄

should satisfy are discussed in Section 6.4, while the specific choice of T̄ in finite samples is considered

in Section 7. Without loss of generality, assume that the first T̄ rows are selected, and define

Ǔ T̄ = (ǔ1 · · · ǔT̄ )′ := Π̂z
T̄

(
L̂zT

)1/2
,

where Π̂z
T̄

is the T̄ × q̂ submatrix of Π̂z
T ’s first T̄ rows. Note that each entry of Ǔ T̄ continues to be

function of n and T only; in particular the matrix of eigenvalues L̂zT does not depend on T̄ .

Then, let ẐnT̄ = (ẑn1 · · · ẑnT̄ )′ be the T̄ × n matrix of ẐnT ’s first T̄ rows. We estimate Rn as the

time-series linear projection R̂n of the ẑnt’s onto ǓT : namely,

R̂n =
(
R̂1 · · · R̂i · · · R̂n

)′
:= Ẑ′

nT̄ Ǔ T̄

(
Ǔ

′
T̄ Ǔ T̄

)−1

= Ẑ′
nT̄ Π̂

z
T̄

(
L̂zT

)1/2((
L̂zT

)1/2
Π̂z′
T̄ Π̂

z
T̄

(
L̂zT

)1/2)−1

= Ẑ′
T̄ Π̂

z
T̄

(
L̂zT

)−1/2
. (54)

This is the estimator we are proposing for Rn, the asymptotic properties of which are developed below.
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Summing up, we have two sets of estimators for UT , namely ÛT and ǓT , and two sets of estimators

for Rn, namely R̂n and Řn. As mentioned above, for the purpose of inference on UT and Rn, we will

consider ÛT and R̂n only. Instead, to conduct inference on ΨnT , we will also consider Řn and ǓT .

5.3 Estimation of ψit and χit

To estimate the static common component ψit, we make full use of the four estimators (two for UT and

two for Rn) defined in the previous section. We either have ψ̂it := R̂′
iǔt and/or ψ̂it := Ř′

iût. However,

as discussed in Section 6.5 below, efficient estimators are convex linear combinations of the form

ψ̂it := ωnT Ř
′
iût + (1− ωnT )R̂

′
iǔt, i = 1, . . . , n, t = 1, . . . , T, (55)

where the weight ωnT is such that ωnT = 1/2 if n = T , ωnT ↑ 1 if n/T ↓ 0, and ωnT ↓ 0 if T/n ↓ 0,

to take advantage of the dimension of the panel. The asymptotic properties of ψ̂it defined in (55) are

given in Theorem 3.

Finally, recalling the definitions Cn(L) := [An(L)]
−1 and Is := {ℓ | ℓ = (s−1)(q̂+1)+1, . . . , s(q̂+1)},

the set of integers indexing the series belonging to block s, s = 1, . . . ,m, (see (16)), our estimator of χit is

χ̂it :=

K∑

k=0

q̂+1∑

js=1

ĉi,js,kψ̂js,t−k, i ∈ Is, s = 1, . . . ,m, t = K + 1, . . . , T (56)

whereK is a finite integer, ĉi,js,k is the (i, js)th entry of the kth coefficient matrix of Ĉn(L) := [Ân(L)]
−1,

and ψ̂js,t−k is the estimator of the static common component defined in (55). Notice that, in (56), we sum

over a finite number of lags K only since the observed sample has always finite length. Moreover, since,

by stationarity, the coefficients of Cn(L) are decaying geometrically, K can always be chosen in such a

way that the contribution of the lags k > K is uniformly negligible. This is the same standard problem

that arises when reporting IRFs after estimating a VAR. In our empirical analysis, we set K = 20. The

asymptotic properties of χ̂it defined in (56) are given in Theorem 4.

6 Asymptotic properties

6.1 The number of factors

Any of the estimators of q available in the literature, generically denoted as q̂, converges in probability

to q as n, T → ∞ (see Bai and Ng, 2002; Hallin and Liška, 2007; Onatski, 2009; Avarucci et al., 2022).

Since q is an integer, this means that, for any ǫ > 0, there exist n∗(ǫ) and T ∗(ǫ) such that P(q̂ = q) > 1−ǫ
for all n > n∗(ǫ) and T > T ∗(ǫ). It follows that, for any v ∈ R, as n, T → ∞,

P(χ̂it ≤ v) = P(χ̂it ≤ v; q̂ = q) + P(χ̂it ≤ v; q̂ 6= q) = P(χ̂it ≤ v; q̂ = q) + o(1)

= P(χ̂it ≤ v|q̂ = q)P(q̂ = q) + o(1) = P(χ̂it ≤ v|q̂ = q) + o(1)

(see also Bai, 2003, footnote 5). So the asymptotic distribution of χ̂it does not depend on q being

substituted with q̂; the same holds true for all asymptotic statements in the rest of this section. Hence,

without loss of generality, we hereafter can assume that q is known.
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6.2 Asymptotics for An(L)

The first step in our estimation procedure is the computation of a lag-window estimator (47) of the

spectral density matrix Σn(θ). This requires a kernel K(·) and a bandwidth BT on which we make the

following standard assumptions.

Assumption (K).

(a) The kernel K(u) is even, bounded, with support [−1, 1], and

(i) |K(u)− 1| = O(|u|κ), as u→ 0, for some positive real κ;

(ii)
∫ 1
−1K2(u)du <∞;

(iii)
∑

j∈Z sup|s−j|≤1 |K(jw) −K(sw)| = O(1), as w → 0;

(b) the bandwidth BT is such that c1T
δ ≤ BT ≤ c2T

δ for some 0 < δ < 1 and positive reals c1 and c2.

Let σχij(θ) and σ̂ij(θ), i, j = 1, . . . , n, denote the (i, j)th entries of Σχ(θ) and Σ̂(θ), respectively.

Building on recent results on the estimation of large spectral density matrices (Wu and Zaffaroni, 2018;

Zhang and Wu, 2021), Forni et al. (2017, Propositions 6 and 7) prove the following result (see also

Barigozzi et al., 2021, Lemma 4 and Proposition 1).

Proposition 1. Let ηT ;κ,p := max

(√
BT log T

T , T
2/pBT (log T )

2+2/p

T , 1
BκT

)
, where p > 4, and BT and κ

satisfy Assumption (K). Then, under Assumptions (A) and (K), for any ǫ > 0, there exist η(ǫ), T ∗(ǫ),

and n∗(ǫ), all independent of i and j, such that

P


 max

|h|≤BT

|σ̂ij(θh)− σij(θh)|
max

(
ηT ;κ,p,

1√
n

) ≥ η(ǫ)


 ≤ ǫ (57)

for all T > T ∗(ǫ) and n > n∗(ǫ).

Remark 15. The rate ηT ;κ,p in (57) depends on (i) the kernel smoothness κ, (ii) the bandwidth BT

which, by Assumption (K-b), is such that BT ≍ T δ, and (iii) the minimum number p of finite moments

we allow to exist which, for the result in Proposition 1 to hold, must be such that p > 4, in agreement

with Assumptions (A-a-i) and (A-b-i).

Typical values for κ are 1 for the Bartlett kernel, and 2 for the Parzen, Daniell, General Tukey, Tukey-

Hanning, Tukey-Hamming, and Bartlett-Priestley kernels (see Priestley, 1982, p. 463). To determine

the optimal rate, notice that ηT ;κ,p is the maximum of three terms. Now, the first term is larger than

the third if δ ≥ 1
2κ+1 : hence, given the choice of a kernel among Bartlett, Parzen, Daniell, General

Tukey, Tukey-Hanning, Tukey-Hamming, and Bartlett-Priestley, we need to set either δ ≥ 1
3 or δ ≥ 1

5

to get rid of the bias. Moreover, the first term in ηT ;κ,p is always larger than the second one if δ ≤ 1− 4
p .

Remark 16. To obtain the classical rate ηT ;κ,p =
√

BT log T
T , we must have p > 5 if we choose κ = 2,

while we need p > 6 if we choose κ = 1. Whereas, if 4 < p ≤ 5 , setting δ ≥ 1
2κ+1 yields the slightly

worse rate ηT ;κ,p =
T 2/pBT (log T )

2+2/p

T which is such that
√

BT log T
T < ηT ;κ,p <

BT (log T )
5/2

√
T

. In fact, recent

results by Barigozzi and Farnè (2021) show that it is possible to obtain Proposition 1 with the classi-

cal
√

BT log T
T convergence rate, regardless of the minimum number p of moments we assume to exist,

as long as at least p > 4. These results, however, are based on assumptions that slightly differ from

the usual GDFM setup considered in this paper. Therefore, we prefer to stick to the convergence rate

presented in Proposition 1.
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Hereafter, we define

ζn,T := max

(
ηT ;κ,p,

1√
n

)
,

dropping for simplicity the dependence on κ and p. Let A[s] := (A
(s)
1 · · ·A(s)

ps ) and Â[s] := (Â
(s)
1 · · · Â(s)

ps )

for s = 1, . . . ,m. Then, Forni et al. (2017, Proposition 9) prove the following.

Proposition 2. Under Assumptions (S) and (K), for any s = 1, . . . ,m, ‖Â[s] − A[s]‖ = OP(ζn,T )

as n, T → ∞.

6.3 Asymptotics for ÛT

Considering the spectral decomposition

RnΓ
u
R

′
n = Pψ

nΛ
ψ
nP

ψ′
n , (58)

where Λ
ψ
n is the q× q diagonal matrix of RnΓ

uR
′
n’s eigenvalues and P

ψ
n the n× q matrix with columns

the corresponding orthonormal eigenvectors, we make the following assumption.

Assumption (E). Let n̄ be such that 1
n̄ + n̄

n → 0 as n→ ∞. Then, for any t ∈ Z,

√
n

n̄
P
ψ′
n̄ φn̄t −→d N (0q,P

u
t ) as n→ ∞, (59)

where P
u
t := limn→∞ n

n̄E[P
ψ′
n̄ φn̄tφ

′
n̄tP

ψ
n̄ ] is positive definite.

Remark 17. Note that P
u
t is not limn→∞ n

n̄P
ψ′
n̄ E[φn̄tφ

′
n̄t]P

ψ
n̄ since the eigenvectors in P

ψ
n̄ are random;

so we must assume its existence. A similar assumption is made also in Bai (2003, Assumption F3) in

the case of non-random eigenvectors.

Consistency and asymptotic normality of ût are proved in the next theorem.

Theorem 1. There exists a q × q diagonal matrix Ŵz with diagonal entries ±1 depending on n, T ,

and the observations, such that, for any t = 1, . . . , T and any n̄ satisfying 1
n̄ + n̄

n → 0 as n, T → ∞,

(i) under Assumptions (A) through (K),

∥∥∥ût − Ŵz (Γu)−1/2
ut

∥∥∥ = OP

(
max

(
1√
n̄
, ζnT

))
as n, T → ∞;

(ii) under Assumptions (A) through (E), with n̄ satisfying

1

n̄
+

√
n̄ ζnT → 0 as n, T → ∞, (60)

Ŵz−Wu →P 0q×q for some Wu and, letting M
u := plimn→∞ n

n̄P
ψ′
n̄ P

ψ
n̄ and L

u := plimn→∞
Λ
ψ
n
n ,

√
n̄
(
ût − Ŵz (Γu)−1/2

ut

)
−→d N

(
0q,W

u (Lu)−1/2 (Mu)−1
P
u
t (M

u)−1 (Lu)−1/2
Wu

)

where P
u
t is defined in Assumption (E).
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Remark 18. For condition (60) to hold we can assume n̄ to be of the form n̄ = ζ−2
nTL

−1(ζ−1
nT ) for

some slowly varying at infinity function L(·), i.e., such that L(ζ−1
nT ) → ∞ but L(aζ−1

nT )/L(ζ
−1
nT ) → 1

for any real a, as n, T → ∞. This implies that the rate in part (ii) is only marginally slower than the

consistency rate ζ−1
nT obtained in Forni et al. (2017). In fact, inspection of the proof of part (i) reveals

that consistency holds with a faster rate and we could relax (60) to n̄√
n
ζnT → 0. However, since we

need (60) anyway in Section 6.5 for deriving the asymptotic properties of the common component, we

stick to it also in Theorem 1.

Remark 19. Note that n̄ then depends on both n and T . Let us assume, for simplicity, that p > 6.

Then, in light of Remark 16, we have ζnT = max

(√
BT log T

T , 1√
n

)
. So, in view of the previous remark,

we can achieve a convergence rate almost equal to
√
n if T/(BTn) ↓ 0, which is the rate obtained by

Bai (2003) in the static factor model . If (nBT )/T ↓ 0, we can achieve a convergence rate almost equal

to
√
T/BT , which is slower than the rates

√
n or T (depending on whether

√
n/T ↓ 0 or T/

√
n ↓ 0)

obtained in Bai (2003).

Remark 20. A consistent estimator of the asymptotic covariance matrix of
√
n̄(ût−Ŵz (Γu)−1/2

ut) is

(
Λ̂z
n

n

)−1/2 (n
n̄
P̂z′
n̄ P̂

z
n̄

)−1
P̂
u

t

(n
n̄
P̂z′
n̄ P̂

z
n̄

)−1
(
Λ̂z
n

n

)−1/2

,

where Λ̂z
n is the q × q diagonal matrix of largest eigenvalues of Γ̂zn defined in (48), P̂z

n̄ is n × q matrix

of the corresponding normalized eigenvectors, and P̂
u

t is a consistent estimator of Pu
t . This requires

specific assumptions on the form of the cross-sectional dependence of {φit}. For instance, when the φits

are cross-sectionally independent, then the approach of Section 5(a) in Bai (2003) can be adapted,

providing16

P̂
u

t =
n

n̄2

n̄∑

i=1

p̂zi p̂
z′
i

{
1

T

T∑

t=1

φ̂ 2
it

}
(61)

where φ̂it = ẑit−Ř′
iût and p̂z′i is the ith row of P̂z

n. If we want to address cross-sectional dependence we

can instead follow Bai and Ng (2006, Section 3), and consider, for example, the Cross-Sectional HAC

estimator defined therein.

6.4 Asymptotics for R̂n

Thanks to the duality between (26) and (27), the asymptotics for R̂n follow along the same lines as

for ÛT . Consider the spectral decomposition

UTΣ
R
U

′
T = Π

ψ
TL

ψ
TΠ

ψ′
T , (62)

where LψT is the q × q diagonal matrix of UTΣ
RU

′
T ’s eigenvalues and Π

ψ
T the T × q with columns the

corresponding orthonormal eigenvectors. Similar to (59), we make the following assumption.

16Although P̂
u

t does not depend on t we keep the index t to highlight the possibility of considering estimators of the
asymptotic covariance that allow for heteroskedasticity.
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Assumption (F). Let T̄ be such that 1
T̄
+ T̄

T → 0 as T → ∞. Then, for any i ∈ N,

√
T

T̄
Π
ψ′
T̄
ϕiT̄ −→d N (0q,P

R) as T → ∞, (63)

where P
R
i := limT→∞ T̄

T E[Π
ψ′
T̄
ϕi
T̄
ϕi′
T̄
Π
ψ
T̄
] is positive definite.

Remark 21. Here again, notice that P
R
i is not limT→∞(T/T̄ )Πψ′

T̄
E[ϕi

T̄
ϕi′
T̄
]Πψ

T̄
since the eigenvectors

in Π
ψ
T̄

are random; so we must assume its existence. If eigenvectors were not random, its existence

would follow from of Lemma 18 in the Appendix, for all T ∈ N. Moreover, PR
i is positive definite since

it is a Toeplitz matrix containing all the autocovariances of the ith idiosyncratic component. A similar

assumption is made also in Bai (2003, Assumption F4); it is satisfied, for example, by all α-mixing

processes.

The next theorem, which can be proved along the same lines as Theorem 1, then establishes the

consistency and asymptotic normality of R̂i.

Theorem 2. There exists a q × q diagonal matrix Ŵz with diagonal entries ±1 depending on n, T ,

and the observations, such that, for any i = 1, . . . , n and any T̄ satisfying 1
T̄
+ T̄

T → 0, as n, T → ∞,

(i) under Assumptions (A) through (K),

∥∥∥R̂i − Ŵ z
(
ΣR
)−1/2

Ri

∥∥∥ = OP

(
max

(
1√
T̄
, ζnT

))
;

(ii) under Assumptions (A) through (K) and (F), with T̄ such that

1

T̄
+
√
T̄ ζnT → 0, as n, T → ∞, (64)

Ŵz−WR →P 0q×q for some WR and, letting MR := plimT→∞ T
T̄
Π
ψ′
T̄
Π
ψ
T̄
, and LR := plimT→∞

L
ψ
T
T ,

√
T̄
(
R̂i − Ŵ z

(
ΣR
)−1/2

Ri

)
−→d N

(
0q,W

R
(
L
R
)−1/2 (

M
R
)−1

P
R
i

(
M

R
)−1 (

L
R
)−1/2

WR
)

where P
R
i is defined in Assumption (F).

Remark 22. For condition (64) to hold, we can assume T̄ to be of the form T̄ = ζ−2
nTL

−1(ζ−1
nT ) for

some slowly varying at infinity function L(·), i.e., such that L(ζ−1
nT ) → ∞ but L(aζ−1

nT )/L(ζ
−1
nT ) → 1 for

any real a, as n, T → ∞. This implies, in part (ii), a marginally slower rate than ζ−1
nT , which is the

consistency rate obtained in Forni et al. (2017). In fact, inspection of the proof of part (i) reveals that

consistency holds with a faster rate, hence that we could relax (64) to T̄√
T
ζnT → 0. However, since we

need (64) anyway for deriving the properties of the common component in Section 6.5, we stick with it

also in Theorem 2.

Remark 23. Note that T̄ here depends on both n and T . Let us assume, for simplicity, that p > 6. In

light of Remark 16, we then have ζnT = max

(√
BT log T

T , 1√
n

)
. So, if T/(BTn) ↓ 0, we can achieve a

convergence rate almost equal to
√
n, while if (nBT )/T ↓ 0, we can achieve a convergence rate almost
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equal to
√
T/BT . Both rates are slower than the rates

√
T or n (depending on whether

√
T/n ↓ 0

or n/
√
T ↓ 0) in Bai (2003). This is because we need to estimate a spectral density before running

PCA. In particular, if (nBT )/T ↓ 0, the best rates we can achieve are T 2/5 if we choose a quadratic

kernel, i.e. κ = 2, with optimal bandwidth BT ≍ T 1/5, or T 1/3 if we choose a Bartlett kernel, i.e. κ = 1,

with optimal bandwidth BT ≍ T 1/3.

Remark 24. A consistent estimator of the asymptotic covariance matrix of
√
T̄ (R̂i−Ŵz

T (Σ
R)−1/2Ri) is

(
L̂zT
T

)−1/2(
T

T̄
Π̂z′

T̄ Π̂
z
T̄

)−1

P̂
R

i

(
T

T̄
Π̂z′

T̄ Π̂
z
T̄

)−1
(
L̂zT
T

)−1/2

,

where L̂zT is the q× q diagonal matrix of largest eigenvalues of Ĝz
T defined in (52), Π̂z

T̄
the n× q matrix

of the corresponding normalized eigenvectors, and P̂
R

i is a consistent estimator of PR
i . If we assume

that {φit} is not autocorrelated, we can use

P̂
R

i :=
T

T̄ 2

T̄∑

t=1

π̂zt π̂
z′
t φ̂

2
it, (65)

where φ̂it = ẑit− ǔ′
tR̂i and π̂z′t is the tth row of Π̂z

T . To address idiosyncratic autocorrelation, a natural

choice is the usual HAC estimator used also in Bai (2003, Section 5(b)).

6.5 Asymptotics for the static common component ψ̂it

Using the estimators developed in Section 5.2 for the loadings Ri and the common shocks ut, one can

construct estimates of the static common components ψit. Several approaches are possible. Both Ř′
iût

and R̂′
iǔt, in fact, are consistent estimators of ψit. However, due to the presence of the product of the

rotation matrices Ŵz(Γu)−1/2 and Ŵ z(ΣR)−1/2, identification with R̂′
iût, is not warranted. Indeed, the

rotation Ŵz(Γu)−1/2 arises when estimating ut, while the rotation Ŵ z(ΣR)−1/2 when estimating Ri,

and they are not necessarily identical. In contrast, as shown in Appendix D, it holds that

∥∥∥Ř′
i −R′

i (Γ
u)1/2 Ŵz

∥∥∥ = OP(ζnT ) and
∥∥∥ǔ′

t − u′
t

(
ΣR
)1/2

Ŵ z
∥∥∥ = OP(ζnT ),

which, together with Theorems 1 and 2, imply that Ř′
iût and R̂′

iǔt are rotation-free as they only involve

either (Ŵz)2 = Iq or (Ŵ z)2 = Iq. This is why the estimator ψ̂it we are proposing for ψit are of the

form (55). These estimators could achieve an asymptotic efficiency gain with respect to both Ř′
iût

and R̂′
iǔt. Moreover, by setting n̄ = T̄ , they avoid the technical difficulty of combining estimators with

different rates of convergence (see Bai, 2003, proof of Theorem 3).

In order to establish the asymptotic properties of ψ̂it, we need to slightly strengthen Assumptions (E)

and (F) as follows.

Assumption (G). Set n̄ = T̄ =: h̄ such that 1
h̄
+ h̄

min(n,T ) → 0 as n, T → ∞. Then, for any t ∈ Z and

any i ∈ N,

√
n

h̄
P
ψ′
h̄
φh̄t +

√
T

h̄
Π
ψ′
h̄
ϕih̄ −→d N (0q,P

u
t +P

R
i +Ωit +Ω′

it) as n, T → ∞,
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where P
u
i and P

R
i are defined in Assumptions (E) and (F), respectively,

Ωit := lim
n,T→∞

(√
nT

h̄

)
E

[
P
ψ′
n̄ φn̄tϕ

i′
T̄Π

ψ
T̄

]
,

and the q × q asymptotic covariance matrix (Pu
t +P

R
i +Ωit +Ω′

it) is positive definite.

The next theorem establishes the consistency and asymptotic normality of ψ̂it.

Theorem 3. Set n̄ = T̄ =: h̄. Then, for any i = 1, . . . , n and t = 1, . . . , T , and any h̄ such

that 1
h̄
+ h̄

min(n,T ) → 0 as n, T → ∞,

(i) under Assumptions (A) through (K),

∥∥∥ψ̂it − ψit

∥∥∥ = OP

(
max

(
1√
h̄
, ζnT

))
;

(ii) if also Assumption (G) holds, and if h̄ is such that

1

h̄
+
√
h̄ζnT → 0, as n, T → ∞, (66)

and Ŵz →P Wu, Ŵ z →P WR, then

√
h̄
(
ψ̂it − ψit

)
−→d N

(
0,ω′

(
V u
it Cit

Cit V R
it

)
ω

)
,

where ω := limn,T→∞

(
ωnT

1− ωnT

)
,

V u
it := R′

i (Γ
u)1/2 Wu (Lu)−1/2 (Mu)−1

P
u
t (M

u)−1 (Lu)−1/2
Wu (Γu)1/2 Ri,

V R
it := u′

t

(
ΣR
)1/2

WR
(
L
R
)−1/2 (

M
R
)−1

P
R
i

(
M

R
)−1 (

L
R
)−1/2

WR
(
ΣR
)1/2

ut,

Cit := R′
i (Γ

u)1/2 Wu (Lu)−1/2 (Mu)−1
Ωit

(
M

R
)−1 (

L
R
)−1/2

WR
(
ΣR
)1/2

ut,

with P
u
t , M

u, and L
u as defined in Theorem 1, P

R
i , M

R, and L
R as defined in Theorem 2,

and Ωit as defined in Assumption (G).

Remark 25. The challenge that we need to resolve is that ZnT is not observed but rather estimated

by Ẑ′
nT := Â′

n(L)X
′
nT , for otherwise one could apply Bai (2003) directly to derive the limiting properties

of the static common component Ψn,T . This would necessarily involve a certain loss in the rate of

convergence of the estimator with respect to the min(
√
n,

√
T ) rate obtained by Bai (2003), and thus a

larger sampling variability (for given n and T ) of our estimator.

For instance, assuming p > 6, and considering a very smooth kernel (κ = ∞), so that we can pick BT

as constant independent of T , we would have ζn,T = max
(

1√
T
, 1√

n

)
.17 Then, in light of Remarks 18

and (22), we can choose h̄ = min(n, T )L−1(ζ−1
n,T ) for some slowly varying at infinity function L(·), thus

17Notice that the log T factor in ζnT comes from the estimation of the spectral density using BT autocovariances and
the fact that BT = O(T δ) in Assumption (K). Thus, when BT is treated as a constant, this log T will disappear from the
expression for ζnT .
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ensuring 1
h̄
+ h̄

min(n,T ) → 0 as n, T → ∞. This means that, up to the slowly varying function L(·), we

can achieve the same convergence rate as the one given in Bai (2003) for the static factor model case.

Remark 26. Notice that, in agreement with (38), we always can write (see the proof of Theorem 1)

znt = Pψ
n

(
Λψ
n

)1/2
(Γu)−1/2

ut + φnt, t = 1, . . . , T,

which implies R′
i = p

ψ′
i (Λψ

n)1/2(Γu)−1/2 (here p
ψ′
i is the ith row of Pψ

n). Moreover, Ř′
i = p̂z′i (Λ̂

z
n)

1/2

by definition, where p̂z′i (Λ̂
z
n)

1/2 (see the proof of Theorem 3) is a consistent estimator of R′
i(Γ

u)1/2Wu.

Therefore, a natural estimator of V u
it is

V̂ u
it := Ř′

i

(
Λ̂z
n

n

)−1/2 (n
n̄
P̂z′

n̄ P̂
z
n̄

)−1
P̂
u

t

(n
n̄
P̂z′

n̄ P̂
z
n̄

)−1
(
Λ̂z
n

n

)−1/2

Ři

= n p̂z′i
(n
n̄
P̂z′

n̄ P̂
z
n̄

)−1
P̂
u

t

(n
n̄
P̂z′

n̄ P̂
z
n̄

)−1
p̂zi , (67)

where P̂
u

t is an estimator of P
u
t as, for example, the one defined in (61). The estimator in (67) is

rotation-free as it neither depends on the unknown matrix Γu nor on the sign matrix Wu. Similarly,

we always can write

ziT = Π
ψ
T

(
L
ψ
T

)1/2 (
ΣR
)−1/2

Ri +ϕ
i
T , i = 1, . . . , n,

which implies u′
t = π

ψ′
t (LψT )

1/2(ΣR)−1/2 (here πψ′t is the tth row of Πψ
T ). Moreover, by definition, we

have that ǔ′
t = π̂z′t (L̂

z
T )

1/2 where (see the proof of Theorem 3) π̂z′t (L̂
z
T )

1/2 is a consistent estimator

of u′
t(Σ

R)1/2WR. Therefore, a natural estimator of V R
it is

V̂ R
it := ǔ′

t

(
L̂zT
T

)−1/2(
T

T̄
Π̂z′

T̄ Π̂
z
T̄

)−1

P̂
R

i

(
T

T̄
Π̂z′

T̄ Π̂
z
T̄

)−1
(
L̂zT
T

)−1/2

ǔt

= T π̂z′t

(
T

T̄
Π̂z′

T̄ Π̂
z
T̄

)−1

P̂
R

i

(
T

T̄
Π̂z′

T̄ Π̂
z
T̄

)−1

π̂zt , (68)

where P̂
R

i is an estimator of PR
i as, for example, the one defined in (65). The estimator in (68) is also

rotation-free since it neither depends on the unknown matrix ΣR nor on the sign matrix WR. Finally,

an estimator of Cit can be computed along the same lines.

6.6 Asymptotics for the dynamic common component χ̂it

For the estimator of the common component χit, defined in (56), we have the following result.

Theorem 4. Set n̄ = T̄ =: h̄. Then, for any s = 1, . . . ,m, i ∈ Is, and t = 1, . . . , T and for

any h̄ such that 1
h̄
+ h̄

min(n,T ) → 0, as n, T → ∞,

(i) under Assumptions (A) through (K),

‖χ̂it − χit‖ = OP

(
max

(
1√
h̄
, ζnT

))
;
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(ii) if also Assumption (G) holds, if Ŵz →P Wu, Ŵ z →P WR and h̄ is such that

1

h̄
+
√
h̄ζnT → 0, as n, T → ∞, (69)

then
√
h̄ (χ̂it − χit) −→d N

(
0,ω′

(
W u
it Git

Git WR
it

)
ω

)
,

where ω := limn,T→∞

(
ωnT

1− ωnT

)
and, letting Is = {i1, . . . , iq+1}, for a given finite integer

lag K,

W u
it := ι

′
q+1




Ci ⊙


ι

′
K+1 ⊗




R′
i1
(Γu)1/2

...

R′
iq+1

(Γu)1/2











V
u
t...t−K




Ci ⊙


ι

′
K+1 ⊗




R′
i1
(Γu)1/2

...

R′
iq+1

(Γu)1/2











′

ιq+1,

WR
it := ι′K+1




Di ⊙


ι

′
q+1 ⊗




u′
t(Σ

R)1/2

...

u′
t−K(Σ

R)1/2











V
R
i1...iq+1




Di ⊙


ι

′
q+1 ⊗




u′
t(Σ

R)1/2

...

u′
t−K(ΣR)1/2











′

ιK+1,

Git := ι
′
q+1




Ci ⊙


ι

′
K+1 ⊗




R′
i1
(Γu)1/2

...

R′
iq+1

(Γu)1/2











Oi1...iq+1

t...t−K




Di ⊙


ι

′
q+1 ⊗




u′
t(Σ

R)1/2

...

u′
t−K(Σ

R)1/2











′

ιK+1,

with ⊗ and ⊙ the Kronecker and Hadamard products, respectively, ιK+1 a (K + 1)-dimensional

vector of ones, and ιq+1 a (q + 1)-dimensional vector of ones,

Ci :=




ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,1,K
...

. . .
...

ι′q ⊗ ci,q+1,0 . . . ι′q ⊗ ci,q+1,K


 , Di :=




ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,q+1,0

...
. . .

...

ι′q ⊗ ci,1,K . . . ι′q ⊗ ci,q+1,K


 ,

V
u
t...t−K :=

{
IK+1 ⊗

[
Wu (Lu)−1/2 (Mu)−1

]}
P
u
t...t−K

{
IK+1 ⊗

[
(Mu)−1 (Lu)−1/2

Wu
]}
,

V
R
i1...iq+1

:=
{
Iq+1 ⊗

[
WR

(
L
R
)−1/2 (

M
R
)−1
]}

P
R
i1...iq+1

{
Iq+1 ⊗

[(
M

R
)−1 (

L
R
)−1/2

WR
]}
,

Oi1...iq+1

t...t−K
:=
{
IK+1 ⊗

[
Wu (Lu)−1/2 (Mu)−1

]}
Ωi1...iq+1

t...t−K

{
Iq+1 ⊗

[(
M

R
)−1 (

L
R
)−1/2

WR
]}
,
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with M
u and L

u as defined in Theorem 1, MR and L
R as defined in Theorem 2, and

P
u
t...t−K := lim

n→∞
n

h̄
E



{
IK+1 ⊗P

ψ′
h̄

}



φh̄t
...

φh̄t−K







φh̄t
...

φh̄t−K




′
{
IK+1 ⊗P

ψ′
h̄

}′


 ,

P
R
i1...iq+1

:= lim
T→∞

T

h̄
E



{
Iq+1 ⊗Π

ψ′
h̄

}



ϕi1
h̄
...

ϕ
iq+1

h̄







ϕi1
h̄
...

ϕ
iq+1

h̄




′
{
Iq+1 ⊗Π

ψ′
h̄

}′


 ,

Ωi1...iq+1

t...t−K
:= lim

n,T→∞

√
nT

h̄
E



{
IK+1 ⊗P

ψ′
h̄

}



φh̄t
...

φh̄t−K







ϕi1
h̄
...

ϕ
iq+1

h̄




′
{
Iq+1 ⊗Π

ψ′
h̄

}′


 .

Remark 27. To appreciate the formulas given in Theorem 4, let us consider a simple illustrative

example. Let q = 1, K = 1, s = 1, so that i = 1, 2 and js = 1, 2. Then, if n≪ T so that ωnT ≃ 1, from

the proof of Theorem 4 we have

√
h̄(χ̂1t − χ1t) =

√
h̄

1∑

k=0

2∑

js=1

{
c1,js,kR

′
js

(
ût−k − ut−k

)}
+ oP(1), (70)

which has asymptotic variance (notice that ut and Ri now are scalars)

W u
it = lim

n,T→∞
h̄
(
c21,1,0R

2
1Var(ût − ut) + c21,2,0R

2
2Var(ût − ut)

+ c21,1,1R
2
1Var(ût−1 − ut−1) + c21,2,1R

2
2Var(ût−1 − ut−1)

+ 2c1,1,0c1,2,0R1R2Var(ût − ut) + 2c1,1,1c1,2,1R1R2Var(ût−1 − ut−1)

+ 2c1,1,0c1,1,1R
2
1Cov

(
(ût − ut), (ût−1 − ut−1)

)

+ 2c1,2,0c1,2,1R
2
2Cov

(
(ût − ut), (ût−1 − ut−1)

)

+ 2c1,1,0c1,2,1R1R2Cov
(
(ût − ut), (ût−1 − ut−1)

)

+ 2c1,2,0c1,1,1R1R2Cov
(
(ût − ut), (ût−1 − ut−1)

))
. (71)

Similarly, if T ≪ n so that ωnT ≃ 0, from the same proof we have

√
h̄(χ̂1t − χ1t) =

√
h̄

1∑

k=0

2∑

js=1

{
c1,js,ku

′
t−k
(
R̂js −Rjs

)}
+ oP(1), (72)
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which has asymptotic variance

WR
it = lim

n,T→∞
h̄
(
c21,1,0u

2
tVar(R̂1 −R1) + c21,2,0u

2
tVar(R̂2 −R2)

+ c21,1,1u
2
t−1Var(R̂1 −R1) + c21,2,1u

2
t−1Var(R̂2 −R2)

+ 2c1,1,0c1,1,1utut−1Var(R̂1 −R1) + 2c1,2,0c1,2,1utut−1Var(R̂2 −R2)

+ 2c1,1,0c1,2,0u
2
tCov

(
(R̂1 −R1), (R̂2 −R2)

)

+ 2c1,1,1c1,2,1u
2
t−1Cov

(
(R̂1 −R1), (R̂2 −R2)

)

+ 2c1,1,0c1,2,1utut−1Cov
(
(R̂1 −R1), (R̂2 −R2)

)

+ 2c1,2,0c1,1,1utut−1Cov
(
(R̂1 −R1), (R̂2 −R2)

))
. (73)

The variances in (71) and (73) are given in Theorems 1 and 2, respectively, and the covariances are

easily derived along the same lines (for details, see the proof of Theorem 4). Clearly, if n ≃ T , we should

also include covariances between the terms in (70) and those in (72), which contribute to the term Git

in the expression of the asymptotic variance.

7 Monte Carlo Simulations

The main goal of this section is to check whether the asymptotic distributions derived in Theorem 4

are empirically confirmed. We set q = {1, 2} and we consider the data-generating process (a slightly

modified version of the one used by Forni et al., 2017)

xit =

q∑

j=1

aij
(1− αijL)

ujt + ξit. (74)

We generate ujt and ξit either as i.i.d. standard normal variables, or as Student-t with 5 degrees of

freedom, aij as i.i.d. normal random variables with mean and variance both equal to one, and αij as

i.i.d. random variables uniformly distributed over [0.1, 0.8]. Finally, each idiosyncratic component ξit is

rescaled so that the share of variance of xit it is accounting for is θ/(1 + θ), with θ = 0.5 for all i.

We simulate panels of size n = T ∈ {120, 240, 480} and consider a total of B = 500 Monte Carlo

replications. At each replication b, we compute an estimator χ̂
(b)
it of the common component χ

(b)
it as

in (56) with K = 20 lags for the MA representation (notice that according to (74) the largest AR

coefficient we allow for is 0.8, and, since 0.820 ≃ 0.01, the truncation error is likely to be negligible).

To estimate the spectral density we use a Bartlett kernel with bandwidth BT = ⌊T 1/3⌋. The size of

the blocks of the singular VAR representation is set at q + 1 and for each of them we fit a VAR(1)

model. Since in all considered cases n is an integer multiple of (q + 1), the number of VARs to be

fitted is always m = n/(q + 1). Because we simulate panels with n = T , the static common component

is estimated with weight ωnT = 1
2 , which is slightly different from the estimator used by Forni et al.

(2017), in which ωnT = 1. We also set n̄ = n and T̄ = T : indeed, in light of Remarks 18 and 22, for any

fixed n and T , we can always set n̄ and T̄ arbitrarily close to n and T , respectively. In fact, n̄ and T̄

differ from n and T by an “arbitrarily slow” slowly varying function, which is in practice arbitrarily close

to, hence indistinguishable from, one. Finally, the asymptotic variance of χ̂
(b)
it is computed as described

in Theorem 4 when using the estimators in (67) and (68).
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Table 1: Estimation of the number of factors with the Hallin-Liška criterion

ujt, ξit ∼ N (0, 1) ujt, ξit ∼ t5
q T n % of times q̂ = q % of times q̂ = q
1 120 120 97.1 98.2
1 240 240 100 100
1 480 480 100 100
2 120 120 98.2 98.7
2 240 240 100 100
2 480 480 100 100

In the sequel, we treat q as known because although the effect of the estimation of q for the estimation

of the common component is in principle an important issue, in practice, this issue poses no problem,

at least when the Hallin and Liška (2007) method is adopted. Indeed, the results in Table 1 show that

we almost always recover the true value of q when we apply the Hallin and Liška (2007) criterion to

our simulated data. A similar approach is adopted in other simulation studies about factor models, see,

e.g., Bai (2003) and Forni et al. (2017).

Table 2 reports the average Standardized Mean Squared Error (S-MSE) and the average Standardized

Mean Absolute Error (S-MAE)

S-MSE :=
1

B

B∑

b=1

∑n
i=1

∑T
t=1

(
χ̂
(b)
it − χ

(b)
it

)2

∑n
i=1

∑T
t=1

(
χ
(b)
it

)2 , S-MAE :=
1

B

B∑

b=1

∑n
i=1

∑T
t=1 |χ̂

(b)
it − χ

(b)
it |∑n

i=1

∑T
t=1 |χ

(b)
it |

(75)

of the estimator of χit. The results clearly show that the estimator in (56) works very well. As n and T

increase, the S-MSE and S-MAE decrease monotonically, to the point that, for n = T = 480, the S-MSE

(S-MAE) is more than 70% (65%) lower than for n = T = 120. This holds even when q = 2 and, in

particular, when the shocks are generated from a heavy-tailed distribution.

Having looked at the properties of the estimator of the common components, we look into the

estimator of the common shocks UT . Since the common shocks are not fully identified, we report the

values of the multivariate R2 coefficient

TR
(b)
U :=

tr
(
(U (b)′
T Û (b)

T )(Û (b)′
T Û (b)

T )−1(Û (b)′
T U (b)

T )
)

tr
(
U (b)′
T U (b)

T

) .

These trace statistics are always positive and smaller than one, and they tend to one when the space

spanned by the true and estimated quantities are closer, i.e., when the empirical canonical correlations

between the two tend to one. The results in Table 3 clearly demonstrate that our estimator does a good

job at estimating the common shocks.

Next, we turn to the asymptotic distribution of the estimator of the common component. To this

end, for each replication b and each (i, t), we compute

Z
(b)
it :=

(
1

4
Ŵ u
it +

1

4
ŴR
it

)−1/2 (
χ̂
(b)
it − χ

(b)
it

)
(76)

which, according to Theorem 4, is asymptotically standard normal. Figure 1 shows histograms

of {Z(b)
it : i = 1, . . . , n, t = 1, . . . , T, b = 1, . . . B}. These histograms indicate that, while struggling
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Table 2: Standardized Mean Squared/Absolute Errors

Common components

ujt, ξit ∼ N (0, 1) ujt, ξit ∼ t5
q T n S-MSE S-MAE S-MSE S-MAE
1 120 120 0.29 1.13 0.29 1.23
1 240 240 0.04 0.21 0.19 0.75
1 480 480 0.02 0.15 0.08 0.35
2 120 120 0.28 0.93 0.28 0.95
2 240 240 0.17 0.57 0.16 0.56
2 480 480 0.08 0.32 0.08 0.34

Table 3: Multivariate R2

Common shocks

q T n ujt, ξit ∼ N (0, 1) ujt, ξit ∼ t5
1 120 120 0.96 0.95
1 240 240 0.98 0.97
1 480 480 0.99 0.98
2 120 120 0.92 0.91
2 240 240 0.95 0.95
2 480 480 0.98 0.97

a little bit in the tails, the empirical distribution of Z
(b)
it is pretty close to the standard normal distri-

bution (the red dashed line), well in line with Theorem 4—of course, the empirical distribution of Z
(b)
it

worsens a little bit when there are multiple factors, or when the shocks are heavy-tailed, but they are

still reasonably close to a normal distribution. As shown in Proposition 1, the fatter than normal tails

are, the slower is the convergence in estimating the spectral density and therefore in estimating An(L),

and in this case the first step of estimation has a larger impact on the asymptotic distributions.

8 Empirical Application: a “core” inflation indicator for the U.S.

Headline (or total) PCE price inflation, the measure chosen by the Federal Reserve to target its 2%

target inflation objective, is highly volatile. Therefore, economists and policymakers have suggested

alternative measures, which the literature calls “core” inflation indicators, to reduce the variance of the

measured inflation, thus better distinguishing transitory from persistent movements. This Section uses

the one-sided GDFM considered in this paper to estimate a new “core” inflation indicator for the U.S.18

Nowadays, the notion of core inflation in the U.S. is mainly associated with inflation excluding food

and energy. The rationale for this indicator is that both food and energy prices are very volatile and

often driven by idiosyncratic shocks (such as weather for food or OPEC decisions for energy). Thus, not

only they do not provide a useful signal for inflation going forward, but also they are not controllable

by the Federal Reserve (Blinder, 1997). Therefore, the literature has proposed alternative ways of

measuring core inflation, such as trimmed means and factor model-based estimates.19

The idea of considering (low-dimensional) factor models to estimate core inflation dates back to

18Altissimo et al. (2009) estimate a dynamic factor model, on disaggregated inflation data that represents an over-
simplified case of our setting, as it is assuming that the common components follow AR(1) processes with i.i.d. idiosyncratic
components. This simplification allows to use a different estimation method. Unlike us, they estimate their model on euro
area data.

19The rationale for the use of trimmed means as core inflation indexes is that a trimmed mean is a robust estimator of
the location of a fat-tailed distribution, while a weighted mean (like the total inflation index, or the index excluding food
and energy) typically is not.
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Figure 1: Histograms of the simulated Z
(b)
it ’s in (76), for various values of n and T
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Bryan and Cecchetti (1993), while Cristadoro et al. (2005) and ? more recently have used high-

dimensional dynamic factor models, similar to the GDFM, with the same objective.20 The rationale

for considering factor models in the estimation of core inflation is that central banks are particularly

interested in identifying movements in inflation that are driven by common (macroeconomic) shocks, so

to avoid responding to changes in inflation due to sector-specific shocks, or, even worse, measurement

error.

The dataset we are analyzing here consists of n = 148 PCE price inflation rates from January 1995 to

December 2019 (T = 300). Specifically, the dataset contains headline PCE price inflation, which is the

target chosen by the Federal Reserve for their inflation stability objective, PCE price inflation excluding

20Other papers have used high-dimensional factor models for constructing inflation indicators, though with a different
goal. For example, Reis and Watson (2010) estimate an index of equiproportional changes in disaggregated PCE price
inflation, while Luciani (2020) disentangles the effects of common versus idiosyncratic shocks in PCE price inflation
excluding food and energy.
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Table 4: Percentage of explained variance

1 2 3 4 5 6 7 8 9 10
q 8.5 6.2 5.5 4.9 4.5 4.2 3.8 3.6 3.3 3.1

This table reports the percentage of total variance explained by the q largest eigenvalues of the spectral density matrix of the

data.

food and energy, and 146 disaggregated PCE prices. These 146 disaggregated PCE prices represent

a particular disaggregation of PCE prices in which each disaggregated price index is constructed from

a distinct data source. Indeed, most disaggregated PCE prices are measured using a corresponding

index from the CPI, a few of them are measured using PPIs, and some others are imputed. As a

result, some disaggregated PCE prices are based on the same CPI (or PPI) series, which means that

some disaggregated PCE price indexes are identical (or nearly so). For the complete list of prices and

detailed information on the data sources, we refer the reader to Luciani (2020).

To determine the number q of factors, we look at the behavior of the eigenvalues of the spectral

density matrix. From Table 4, we see that the first eigenvalue seems to separate from the rest, thus

suggesting the presence of only one factor. This intuition is confirmed by the information criterion

proposed by Hallin and Liška (2007), which exploits the behavior of the eigenvalues of the spectral

density matrix of the data averaged across all frequencies. It is worth noting that the largest eigenvalue

accounts only for a relatively small fraction of the variance. This is a known stylized fact of disaggregated

monthly PCE prices, which are very volatile in an idiosyncratic way, and thus one common factor cannot

capture all this high frequency. For example, it is well known that food prices are driven to a great

extent by idiosyncratic factors, such as weather (e.g., draughts and hurricanes) or disease (e.g., avian

flu). Likewise, nonenergy goods prices are also known to be idiosyncratic because they are primarily

imported and thus not related to the U.S. business cycle (see Luciani, 2020, for a detailed discussion

of commonality and idiosyncrasy in disaggregated PCE prices). However, if one were to filter out the

“ultra-high” frequency fluctuations (i.e., those with a period shorter than six months), the common

factor would account for a much larger share of the variance.

The specification used in this section features q = 1 common factor, the spectral density is estimated

using a Bartlett kernel with bandwidth BT = ⌊T 1/3⌋ = 6, the m = n/(q + 1) = 74 two-dimensional

singular VARs are estimated using one lag, as determined via standard BIC, and the MA coefficients in

the expression for the estimated dynamic common component are truncated at lag K = 20 (notice that

the average lag-1 autocorrelation across the n series is 0.6, and, since 0.620 ≃ 4 · 10−5, the truncation

error is clearly negligible). Finally, because n≪ T , to estimate UT and Rn, and therefore the common

components and the asymptotic variances, we set ωnT = 1. In light of this, we just need to set n̄ which,

as in Section 7 we choose to be equal to n.

The upper-left charts in Figures 2 and 3 show our estimate of core inflation based on the estimated

common component of headline PCE price inflation, as defined in (56) (the red line), where the shaded

area around our estimate is the ± one standard deviation confidence band, together with headline

PCE price inflation (the black line). Let P ht denote the headline PCE price index: Figure 2 shows

month-over-month inflation in the PCE price index, i.e., πht = 100 × (
Pht
Pht−1

− 1), while Figure 3 shows

year-over-year inflation in the PCE price index, i.e., πht = 100× (
Pht
Pht−12

− 1). The former is the target of

forecasters following inflation, and the latter is what policymaker care about and, consequently, what

newspaper tends to comment on. Note that the model is estimated over month-over-month inflation
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Figure 2: “Core” PCE price month-over-month inflation

Headline PCE price inflation PCE price inflation excluding food and energy

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

-1.0  

-0.8  

-0.6  

-0.4  

-0.2  

 0.0  

 0.2  

 0.4  

 0.6  

 0.8  

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

-1.0  

-0.8  

-0.6  

-0.4  

-0.2  

 0.0  

 0.2  

 0.4  

 0.6  

 0.8  

Dallas Fed Trimmed Mean PCE price inflation Principal Components

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

-1.0  

-0.8  

-0.6  

-0.4  

-0.2  

 0.0  

 0.2  

 0.4  

 0.6  

 0.8  

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

-1.0  

-0.8  

-0.6  

-0.4  

-0.2  

 0.0  

 0.2  

 0.4  

 0.6  

 0.8  

In all charts, the red line is based on our estimate, the shaded area is the asymptotic ± one standard deviation confidence band.

rates, and then the estimated common component is computed by converting the month-over-month

estimate into an year-over-year estimate.21

From simple visual inspection of the upper-left charts in Figures 2 and 3, we immediately see that

our measure of core inflation is doing what it is supposed to do: tracking the trend of headline PCE price

inflation while reducing the variance. Moreover, the confidence band seems to be quite well calibrated,

as monthly headline PCE price inflation is outside the confidence band 27% of the time (as a reference,

the ± one standard deviation interval of a standardized normal excludes 32% of the observations).

The other charts in Figures 2 and 3 compare our estimate with other core PCE price inflation

estimates. Starting with the upper-right charts, our estimate of core inflation is quite similar to PCE

price inflation excluding food and energy (the blue line), but less volatile. Indeed, our estimate is not

affected by well-known idiosyncratic shocks such as the (down-up) spikes in September-October 2001 or

the large decline in March 2017, which not surprisingly are 3 of the 15 (out of 300) dates in which PCE

price inflation excluding food and energy is lying outside the confidence band of our estimate of core

inflation.22 Moreover, as shown in Figure 4, our estimate of core inflation captures primarily fluctuations

21As for the asymptotic variance, we took a shortcut for year-over-year estimates. Indeed we compute the variance for
year-over-year estimates as 12× the asymptotic variance over the month-over-month estimates. However, in doing so we
are neglecting the autocorrelations, hence we can say that the confidence bands shown in Figure 3 are an approximation,
which, most likely, are slightly tighter than they should be.

22The 2001 swing in core PCE price inflation was driven by the price index for life insurance, which plunged 55 percent
in September 2001 and jumped 121 percent in October 2001 as a result of the 9/11 terrorist attacks. The March 2017
decline in core PCE price inflation was largely due to the plunge in the price index for wireless telephone services (52%
at an annual rate). The plunge was due to both a methodological change in the measurement of wireless services in the
CPI and the fact that in late February of 2017 both Verizon and AT&T (which in March 2017 accounted for nearly 70%
of wireless subscriptions in the U.S.) brought back unlimited data plans.
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Figure 3: “Core” PCE price year-over-year inflation
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In all charts, the red line is our estimate, while the shaded area is the asymptotic ± one standard deviation confidence band.

Figure 4: Spectral density PCE price inflation
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The spectral densities are standardized so that the integral below the curve is

equal to one. The x-ticks stands for frequencies corresponding to periods of “5

years”, “2 years”, “1 year”, and “6 months.” Points on the right of a given x-tick
denote fluctuations with period shorter than the x-tick.

with periods longer than six months, while a large share of fluctuations in PCE price inflation excluding

food and energy is accounted for by fluctuations with periods shorter than six months. Finally, as can

be clearly seen in Figure 3, our measure of core inflation points towards higher inflation at the end of

the 1990s, which is in line with the literature indicating that the U.S. economy was very tight before

the dot com bubble burst (see, e.g., Hasenzagl et al., 2020; Barigozzi and Luciani, 2021).

Next, the lower-left charts in Figures 2 and 3 compare our estimate of core inflation with the Dallas
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Fed Trimmed Mean PCE price inflation proposed by Dolmas (2005) (the slate-grey line), a measure

that is highly considered by officials at the Federal Reserve and by newspapers.23 Our measure and

the Dallas trimmed mean are remarkably similar, and they also capture similar frequencies. However,

our measure performs better in capturing the decline in inflation during recessions, where the Dallas

trimmed mean is a bit lagging, as is evident when looking at Figure 3.

Finally, the lower-right charts in Figures 2 and 3 show the comparison with a principal component

estimate. This is the estimate of core inflation that comes from a high-dimensional static factor model.

By looking at the two charts, it is clear that a static factor model does not do a good job in estimating

core inflation, as the estimate is very volatile, thus failing to achieve one of the goals a core inflation

indicator is supposed to achieve. Even more so, the PCA estimate is very similar to the headline index

itself. This demonstrates the importance of considering dynamic (GDFM) rather than static (DFM)

loadings when constructing a core inflation indicator.

9 Conclusion

In the past decades, factor models have emerged as the most efficient tool for analyzing and predicting

high-dimensional time series (high-dimensional panel data). The literature has proposed several factor

models, the most flexible of which is the so-called Generalized Dynamic Factor Model (GDFM) where

common shocks are loaded via filters—as opposed to the Dynamic Factor Model (DFM) where shocks

are loaded in a static way. While complete results on the asymptotic behavior of DFM estimators are

available (Bai, 2003), the corresponding theory for estimators of the GDFM is still incomplete. This

paper fills that gap by deriving the asymptotic distributions of the GDFM estimators (common shocks,

loadings, and common components).

Our results pave the way for inferential applications of the GDFM of great interest to macro and

applied economists, such as asymptotic confidence intervals in prediction, impulse responses, and the

construction of economic indicators. We illustrate the use of our methodology by constructing a new

“core” inflation indicator for the U.S. economy. The GDFM-based indicator appears to provide more

stable results than the current methods—it also outperforms its DFM-based counterpart estimated via

Principal Components, which appears to be much more volatile.
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APPENDIX

This Appendix collects the proofs of the main results. For simplicity, we throughout assume that
Assumptions (A) through (G) and (K) hold—even though most results are valid under a subset thereof.

A Proof of Theorem 1

A.1 Preliminary lemmas

Lemma 1. As n, T → ∞,

(i)

∥∥∥∥
U

′
TUT

T
− Γu

∥∥∥∥ = OP

(
1√
T

)
as T → ∞; (ii)

∥∥∥∥
R

′
nRn

n
−ΣR

∥∥∥∥ = OP

(
1√
n

)
as n→ ∞.

Proof. Part (i) follows from the i.i.d.-ness of ut in Assumption (A-a-i) and (37); part (ii) from the
i.i.d.-ness of Ri in Assumption (C-b) and (38). �

Lemma 2. For any given t and any n̄ ≤ n such that 1
n̄ + n̄

n → 0 as n→ ∞,

1√
n̄
‖ẑn̄t − zn̄t‖ = OP(ζnT ) as n, T → ∞.

Proof. Without loss of generality, set n̄ = m̄(q+1), implying m̄ ∼ cn̄. Then, in view of Proposition 2,

‖ẑn̄t − zn̄t‖ =
∥∥∥
(
Ân̄(L)−An̄(L)

)
xn̄t

∥∥∥ ≤
p∑

r=0

(
m̄∑

i=1

x
(i)′
t−r
(
Â(i)
r −A(i)

r

)′ (
Â(i)
r −A(i)

r

)
x
(i)
t−r

)1/2

≤
p∑

r=0

(
m̄∑

i=1

(
x
(i)′
t−rx

(i)
t−r
)2
)1/4




m̄∑

i=1



q+1∑

ji=1

q+1∑

hi=1

(âji,hi,r − aji,hi,r)
2




2


1/4

≤
p∑

r=0

(
m̄∑

i=1

(
x
(i)′
t−rx

(i)
t−r
)2
)1/4(

(q + 1)3
m̄∑

i=1

∥∥∥Â(i)
r −A(i)

r

∥∥∥
4
)1/4

= OP

(√
n̄ζnT

)

where p = maxs=1,...,m̄ ps, and aji,hi,r and âji,hi,r are the (j, h)th entries of A
(i)
r and of Â

(i)
r , respectively.

See also (D.8) in the proof the Lemma 11 in Forni et al. (2017), which in turn follows from Lemmas 8

through 10, which entail uniformity over i for ‖Â(i)
r −A

(i)
r ‖. �

Lemma 3. Collect the q largest eigenvalues of Γ̃zn :=
Z

′
nTZnT

T in the q × q diagonal matrix Λ̃z
n and the

corresponding normalized eigenvectors in P̃z
n. Then, as n, T → ∞,

(i) 1
n‖Λ̃z

n −Λ
ψ
n‖ = OP

(
max

(
1√
T
, 1n

))
;

(ii) there exists a q × q diagonal matrix Ŵz
1 with entries ±1 such that, for any n̄ ≤ n satis-

fying 1
n̄ + n̄

n → 0 as n→ ∞, ‖P̃z
n̄ −P

ψ
n̄Ŵ

z
1‖ = OP

(
n̄
n max

(
1√
T
, 1n

))
.

Proof. From (28) which, as shown in the paper in Remark 9, follows from Assumption (C-d-i), equation
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(45), and Lemma 1(i), we obtain that, as n, T → ∞,

1

n

∥∥∥Γ̃zn −RnΓ
u
R

′
n

∥∥∥ =
1

n
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TUT
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R

′
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nTΦnT
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u
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TUT
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≤ 2πBφ
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1
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,

which implies
1

n

∥∥∥Λ̃z
n −Λψ

n

∥∥∥ ≤ 1

n

∥∥∥Γ̃zn −RnΓ
u
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n
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(
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T
,
1

n
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,

hence part (i) of the claim. Turning to (ii), by the Davis-Kahn sin-θ Theorem (see also Yu et al., 2015,

Theorem 2) there exists a q × q diagonal matrix Ŵz
1 with entries ±1 such that

∥∥∥P̃z
n −Pψ

nŴ
z
1

∥∥∥ ≤ 23/2
√
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,

where µψnj are the eigenvalues of RnΓ
uR

′
n (satisfying (40) and Assumption (D), µψn0 := ∞,

and µψn,q+1 = 0. Similarly, for n̄ ≤ n,

∥∥∥P̃z
n̄ −P

ψ
n̄Ŵ
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, (77)

which completes the proof. �

Lemma 4. Collect the q largest eigenvalues of Γ̂zn := Ẑ ′
nT ẐnT /T in the q × q diagonal matrix Λ̂z

n and

the corresponding normalized eigenvectors in P̂z
n. Then, as n, T → ∞,

(i) 1
n‖Λ̂z

n − Λ̃z
n‖ = OP(ζnT );

(ii) there exists a q × q diagonal matrix Ŵz
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Proof. It immediately follows from Lemma 2 that 1
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hence part (i) of the claim. Now, from Lemma 3(i), with probability tending to one as n, T → ∞, there
exists a positive real c such that
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Thus, from (40), with probability tending to one as n, T → ∞,

µ̃znj ≥ µψnj − cmax

(
1√
T
,
1

n

)
≥ nµψ

j
− c, j = 1, . . . , q,

and µ̃znj ≤ c, j = q + 1, . . . , n. Therefore, for n ≥ 4c/µψ
j
, with probability tending to one as n, T → ∞,
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it holds that
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Then, by the Davis-Kahn sin-θ Theorem again, there exists a q× q diagonal matrix Ŵz
2 with entries ±1

such that
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where µ̃znj is the jth eigenvalue of Γ̃zn and µ̃zn0 := ∞. It follows that, for any n̄ ≤ n,
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Lemma 5. As n, T → ∞,

(i) 1
n‖Λ̂z

n −Λ
ψ
n‖ = OP(ζnT );

(ii) for any n̄ ≤ n such that 1
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2 in Lemma 4.

Proof. From Lemmas 3(i) and 4(i) it holds that
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Part (i) of the claim follows, since 1√
T

and 1
n are O(ζnT ). From Lemmas 3(ii) and 4(ii) we obtain,

since ‖Ŵz
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nŴ
z
1Ŵ
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Now, 1√
T

and 1
n are O(ζnT ), which concludes the proof. �

Lemma 6. There exists a positive definite q × q diagonal matrix L
u such that

Λ
ψ
n

n
−→P L

u as n→ ∞.

Proof. The Lemma is an immediate consequence of (40). �

Lemma 7. (i)

∥∥∥∥∥∥

(
Λ
ψ
n

n

)−1
∥∥∥∥∥∥
= OP(1) as n→ ∞; (ii)

∥∥∥∥∥∥

(
Λ̂z
n

n

)−1
∥∥∥∥∥∥
= OP(1) as n, T → ∞.

Proof. Part (i) follows from (40), part (ii) from Lemma 5(i) and part (i). �

Lemma 8. Denoting by eni the ith column of In,

max
i=1,...,n

∥∥∥e′niPψ
n

∥∥∥ = OP

(
1√
n

)
as n→ ∞.

Proof. Since P
ψ
n = (RnΓ

uR
′
n)P

ψ
n (Λ

ψ
n)−1, we have

max
i=1,...,n

∥∥∥e′niPψ
n

∥∥∥ ≤ max
i=1,...,n

∥∥e′niRnΓ
u
R

′
n

∥∥
∥∥∥Pψ

n

∥∥∥
∥∥∥(Λψ

n)
−1
∥∥∥ = OP

(
1√
n

)
.
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Indeed, ‖e′niRnΓ
uR

′
n‖ = OP(

√
n), ‖Pψ

n‖ = 1, and ‖(Λψ
n )−1‖ = OP(n

−1), because of Lemma 7(i). �

Lemma 9. For any n̄ ≤ n such that 1
n̄ + n̄

n → 0 as n→ ∞,

(i) ‖Pψ
n̄‖ = OP

(√
n̄

n

)
and (ii) ‖Pψ′

n̄ P
ψ
n̄‖ = OP

( n̄
n

)
.

Proof. It follows from Lemma 8 that

∥∥∥Pψ
n̄

∥∥∥
2
≤
∥∥∥Pψ

n̄

∥∥∥
2

F
=

n̄∑

i=1

∥∥∥e′niPψ
n

∥∥∥
2
≤ n̄ max

i=1,...,n̄

∥∥∥e′niPψ
n

∥∥∥
2
= OP

( n̄
n

)
.

Moreover, ∥∥∥Pψ′
n̄ P

ψ
n̄

∥∥∥ ≤
∥∥∥Pψ

n̄

∥∥∥
2
= OP

( n̄
n

)
.

�

Lemma 10. For any t ∈ Z and any n̄ ≤ n such that 1
n̄ + n̄

n → 0 as n→ ∞,

√
n

n̄
‖Pψ′

n̄ φn̄t‖ = OP(1) as n→ ∞.

Proof. Recall that n
n̄‖P

ψ′
n̄ P

ψ
n̄‖ = OP(1), because of Lemma 9(ii). Therefore, for the kth column of Pψ

n̄ ,

denoted as pψn̄k, it holds that n
n̄p

ψ′
n̄kp

ψ
n̄k = OP(1). Let p̃ψn̄k := p

ψ
n̄k/
√

p
ψ′
n̄kp

ψ
n̄k, so that p̃ψ′n̄kp̃

ψ
n̄k = 1. Let p̃ψik

denote the ith entry of p̃ψn̄k and let P̃ψ
n̄ be the matrix with columns p̃

ψ
n̄1, . . . , p̃

ψ
n̄n̄. Due to normalization

of p̃ψn̄k and Lemma 8, there exists a finite positive real c̄ such that maxi=1,...,nmaxj=1,...,q |p̃ψij | ≤ c̄/
√
n̄

with probability one. Then, denoting by ιn̄ a n̄-dimensional column vector of ones, for any t ∈ Z,

E

[∥∥∥P̃ψ′

n̄ φn̄t

∥∥∥
2
]
= E




q∑

k=1

(
n̄∑

i=1

p̃ψikφit

)2

 =

q∑

k=1

n̄∑

i=1

n̄∑

j=1

E[p̃ψikp̃
ψ
jkφitφjt]

≤
q∑

k=1

n̄∑

i=1

n̄∑

j=1

c̄2

n̄
E[φitφjt]

≤ qc̄2 max
k=1,...,q

ι′n̄√
n̄
E[φn̄tφ

′
n̄t]
ιn̄√
n̄
≤ qc̄2 max

k=1,...,q
max
bn̄

b′n̄bn̄=1

b′n̄Γ
φ
n̄bn̄

≤ qc̄2 max
k=1,...,q

sup
n̄∈N

max
bn̄

b
′
n̄bn̄=1

b′n̄Γ
φ
n̄bn̄ ≤ qc̄22πBφ,

in view of (45). Hence, it follows from Chebychev’s inequality that ‖P̃ψ′

n̄ φn̄t‖ = OP(1) and, there-

fore, ‖Pψ′

n̄ φn̄t‖ is OP

(√
n̄
n

)
. �
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A.2 Proof of Theorem 1

Let xn̄t, ẑn̄t, zn̄t,φn̄t denote the first n̄ elements of xnt, ẑnt, znt,φnt, respectively. Then, from (51)

ût =

((
Λ̂z
n

)1/2
P̂z′
n̄ P̂

z
n̄

(
Λ̂z
n

)1/2)−1 (
Λ̂z
n

)1/2
P̂z′
n̄ ẑn̄t =

(
Λ̂z
n

)−1/2 (
P̂z′
n̄ P̂

z
n̄

)−1
P̂z′
n̄ ẑn̄t

=

((
Λ̂z
n

)−1/2
−
(
Λψ
n

)−1/2
)(

P̂z′
n̄ P̂

z
n̄

)−1
P̂z′
n̄ ẑn̄t

+
(
Λψ
n

)−1/2
((

P̂z′

n̄ P̂
z
n̄

)−1
−
(
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1

)
P̂z′

n̄ ẑn̄t

+
(
Λψ
n

)−1/2 (
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1 (

P̂z′

n̄ − ŴzP
ψ′

n̄

)
ẑn̄t

+
(
Λψ
n

)−1/2
Ŵz

(
P
ψ′

n̄ P
ψ
n̄

)−1
P
ψ′

n̄

(
Ân̄(L)−An̄(L)

)
xn̄t

+
(
Λψ
n

)−1/2
Ŵz

(
P
ψ′

n̄ P
ψ
n̄

)−1
P
ψ′

n̄ zn̄t

= I + II + III + IV + V, say. (78)

For I, since

((
Λ̂z
n

)−1/2
−
(
Λψ
n

)−1/2
)

=

((
Λ̂z
n

)−1
−
(
Λψ
n

)−1
)((

Λ̂z
n

)−1/2
+
(
Λψ
n

)−1/2
)−1

=
(
Λ̂z
n

)−1 (
Λψ
n − Λ̂z

n

)(
Λψ
n

)−1
((

Λ̂z
n

)−1/2
+
(
Λψ
n

)−1/2
)−1

(79)

and because of (79) and Lemmas 5(i) and 7, the norm of I is bounded from above by

∥∥∥∥
(
Λ̂z
n

)−1
∥∥∥∥
∥∥∥Λψ

n − Λ̂z
n

∥∥∥
∥∥∥∥
(
Λψ
n

)−1
∥∥∥∥

∥∥∥∥∥

((
Λ̂z
n

)−1/2
+
(
Λψ
n

)−1/2
)−1

∥∥∥∥∥

∥∥∥∥
(
P̂z′
n̄ P̂

z
n̄

)−1
P̂z
n̄

∥∥∥∥ ‖ẑn̄t‖

= OP

(
1

n2
√
nζnT

√
n

√
n√
n̄

√
n̄

)
(80)

since ‖ẑn̄t‖ = OP(
√
n̄) by Lemma 2, and ‖(P̂z′

n̄ P̂
z
n̄)

−1P̂z
n̄‖ = OP(

√
n/n̄) by Lemma 9(i) and (ii). This

yields I = OP (ζnT /
√
n).

For II, first notice that, from Lemma 5(ii),

∥∥∥Pψ
n̄Ŵ

z − P̂z
n̄

∥∥∥ = OP

( n̄
n
ζnT

)
. (81)

Then,

((
P̂z′

n̄ P̂
z
n̄

)−1
−
(
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1

)

=
(
P̂z′

n̄ P̂
z
n̄

)−1 (
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z − P̂z′

n̄ P̂
z
n̄

)(
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1

=
(
P̂z′

n̄ P̂
z
n̄

)−1 (
ŴzP

ψ′

n̄

(
P
ψ
n̄Ŵ

z − P̂z
n̄

)
+
(
ŴzP

ψ′

n̄ − P̂z′

n̄

)
P̂z
n̄

)(
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1

and, because of (81) and Lemma 9,

∥∥∥∥
((

P̂z′

n̄ P̂
z
n̄

)−1
−
(
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1

)∥∥∥∥ = OP

(√
n

n̄

n̄

n
ζnT

n

n̄

)
= OP

(√
n

n̄
ζnT

)
. (82)
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Because of (82), Lemmas 2, 7(i), and 9(i), the norm of II is bounded from above by

∥∥∥∥
(
Λψ
n

)−1/2
∥∥∥∥
∥∥∥∥
((

P̂z′
n̄ P̂

z
n̄

)−1
−
(
ŴzP

ψ′

n̄ P
ψ
n̄Ŵ

z
)−1

)∥∥∥∥
∥∥∥P̂z′

n̄

∥∥∥ ‖ẑn̄t‖

= OP

(
1√
n

√
n

n̄
ζnT

√
n̄

n

√
n̄

)
= OP

(√
n̄

n
ζnT

)
, (83)

yielding II = OP

(√
n̄
nζnT

)
.

By (81) and Lemmas 2, 7(i), and 9(i), one immediately gets III = OP

(√
n̄
nζnT

)
and IV = OP

(
ζnT√
n

)
.

Finally, consider term V . Recall that, from Assumption (S-d1), (45), (58), and Lemma 1(i), for
any n ∈ N, as T → ∞,

1

T

T∑

t=1

zntz
′
nt −→P RnΓ

u
R

′
n + Γφn = Pψ

nΛ
ψ
nP

ψ′

n + Γφn

(see also the proof of Lemma 3). Considering the upper-left n̄ × n̄ submatrix Rn̄Γ
uR

′
n̄ = P

ψ
n̄Λ

ψ
nP

ψ′

n̄

of RnΓ
uR

′
n, it follows that zn̄t = P

ψ
n̄

(
Λ
ψ
n

)1/2
(Γu)−1/2

ut + φn̄t. Collecting terms,

ût − Ŵz (Γu)−1/2
ut = I + II + III + IV + Ŵz

(
Λψ
n

)−1/2 (
P
ψ′

n̄ P
ψ
n̄

)−1
P
ψ′

n̄ φn̄t. (84)

Recalling that ‖Ŵz‖ = 1, it follows from (84) that, in view of Lemmas 7(i), 9(ii), and 10,

∥∥∥ût − Ŵz (Γu)−1/2
ut

∥∥∥ ≤
∥∥∥∥
(
Λψ
n

)−1/2
∥∥∥∥
∥∥∥∥
(
P
ψ′

n̄ P
ψ
n̄

)−1
∥∥∥∥
∥∥∥Pψ′

n̄ φn̄t

∥∥∥+OP

(√
n̄

n
ζnT

)

= OP

(
1√
n

n

n̄

√
n̄

n

)
+OP

(√
n̄

n
ζnT

)
= OP

(
max

(
1√
n̄
,

√
n̄

n
ζnT

))
.

This proves consistency.
Now, by (40), there exists a q × q positive definite diagonal matrix Lu such that Λ

ψ
n/n →P L

u

as n → ∞. Similarly, by Lemma 9(ii), there exists a q × q positive definite matrix Mu such that,

as n→ ∞, nn̄P
ψ′

n̄ P
ψ
n̄ −→P M

u. Therefore, by Assumption (E), as n, T → ∞,

√
n̄
(
ût − Ŵz (Γu)−1/2

ut

)
=

√
n̄Ŵz

(
Λψ
n

)−1/2 (
P
ψ′

n̄ P
ψ
n̄

)−1
P
ψ′

n̄ φn̄t + oP(1)

= Ŵz

(
Λ
ψ
n

n

)−1/2 (n
n̄
P
ψ′

n̄ P
ψ
n̄

)−1
√
n

n̄

(
P
ψ′
n̄ φn̄t

)
+ oP(1)

−→d N
(
0q,W

u (Lu)−1/2 (Mu)−1
P
u
t (M

u)−1 (Lu)−1/2
Wu

)

since
√
n̄ζnT → 0, because of (60). �

B Proof of Theorem 2

B.1 Preliminary lemmas

Lemma 11. Collect the q largest eigenvalues of G̃z
T := ZnTZ

′
nT /n in L̃zT and the corresponding nor-

malized eigenvectors in Π̃z
T . As n, T → ∞,
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(i) 1
T

∥∥∥L̃zT −LψT
∥∥∥ = OP

(
max

(
1√
n
, 1
T

))
;

(ii) there exists a q × q diagonal matrix Ŵ z
1 with entries ±1 such that, for any T̄ ≤ T for

which 1
T̄
+ T̄

T → 0 as T → ∞,
∥∥∥Π̃z

T̄
−Π

ψ
T̄
Ŵ z

1

∥∥∥ = OP

(
T̄
T max

(
1√
n
, 1
T

))
.

Proof. The claim follows along the same lines as for Lemma 3 but using Assumption (C-d-ii), (29), (46),
and Lemma 1(ii) instead of Assumption (C-d-i), (28), (45), and Lemma 1(i). �

Lemma 12. Collect the q largest eigenvalues of Ĝz
T := ẐnT Ẑ

′
nT /n in the q× q diagonal matrix L̂zT and

the corresponding normalized eigenvectors in Π̂z
T . As n, T → ∞,

(i) 1
T ‖L̂zT − L̃zT ‖ = OP(ζnT );

(ii) there exists a q × q diagonal matrix Ŵ z
1 with entries ±1 such that, for any T̄ ≤ T satis-

fying 1
T̄
+ T̄

T → 0 and T̄ → ∞ as T → ∞, ‖Π̃z
T̄
− Π̂z

T̄
Ŵ z

2 ‖ = OP(
T̄
T ζnT ).

Proof. The claim follows along the same lines as for Lemma 4 but using Lemma 12 and (42). �

Lemma 13. As n, T → ∞,

(i) 1
T ‖L̂zT −LψT ‖ = OP(ζnT );

(ii) for any T̄ ≤ T such that 1
T̄
+ T̄
T → 0 as T → ∞, ‖Π̂z

T̄
−Π

ψ
T̄
Ŵ z‖ = OP(

T̄
T ζnT ), with Ŵ z = Ŵ z

1 Ŵ
z
2 ,

where Ŵ z
1 is defined in Lemma 11 and Ŵ z

2 in Lemma 12.

Proof. Same as Lemma 5 but using Lemmas 11 and 12. �

Lemma 14. There exists a positive definite q × q diagonal matrix LR such that LψT/T −→P LR

as T → ∞.

Proof. This Lemma is an immediate consequence of (42). �

Lemma 15. (i)

∥∥∥∥∥∥

(
L
ψ
T

T

)−1
∥∥∥∥∥∥
= OP(1) as T → ∞; (ii)

∥∥∥∥∥∥

(
L̂zT
T

)−1
∥∥∥∥∥∥
= OP(1) as n, T → ∞.

Proof. Part (i) follows from (42), part (ii) from Lemma 13(i) and part (i). �

Lemma 16. Denoting by eTt the tth column of IT ,

max
t=1,...,T

∥∥∥e′TtΠψ
T

∥∥∥ = OP

(
1√
T

)
as T → ∞.

Proof. Same as the proof of Lemma 8 but using Lemma 15(i). �

Lemma 17. For any T̄ ≤ T such that 1
T̄
+ T̄

T → 0 as T → ∞,

(i) ‖Πψ
T̄
‖ = OP

(√
T̄

T

)
; (ii) ‖Πψ′

T̄
Π
ψ
T̄
‖ = OP

(
T̄

T

)
.

Proof. Same as Lemma 9 but using Lemma 16. �

Lemma 18. For any i ∈ N and any T̄ ≤ T such that 1
T̄
+ T̄

T → 0 as T → ∞,

√
T

T̄
‖Πψ′

T̄
ϕiT̄ ‖ = OP(1).

Proof. Recall that, in view of Lemma 17(ii), (T/T̄ )‖Πψ′
T̄
Π
ψ
T̄
‖ = OP(1). Therefore, for the kth col-

umn of Π
ψ
T̄
, denoted as πψ

T̄k
, it holds that (T/T̄ )πψ′

T̄ k
π
ψ
T̄k

= OP(1). Let π̃ψ
T̄k

:= π
ψ
T̄k
/
√
π
ψ′
T̄ k
π
ψ
T̄k

,
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so that π̃ψ′
T̄ k
π̃
ψ
T̄k

= 1. Let π̃ ψik be the ith entry of π̃ψ
T̄k

and denote by Π̃
ψ
T̄

the T̄ × T̄ matrix with

columns π̃ψ
T̄1
, . . . , π̃ψ

T̄ T̄
. Due to normalization of π̃ψ

T̄k
and Lemma 16, there exists a finite positive real c̄

such that

max
t=1,...,T

max
j=1,...,q

|π̃ ψtj | ≤
c̄√
T̄

with probability one. Then, denoting by ιT̄ the T̄ -dimensional column vector of ones, for any i ∈ N,

E

[∥∥∥Π̃ψ′

T̄
ϕiT̄

∥∥∥
2
]
= E




q∑

k=1




T̄∑

t=1

p̃ψtkφit




2
 =

q∑

k=1

T̄∑

t=1

T̄∑

s=1

E[π̃ ψtkπ̃
ψ
skφitφis]

≤
q∑

k=1

T̄∑

t=1

T̄∑

s=1

c̄2

T̄
E[φitφis] ≤ qc̄2 max

k=1,...,q

ι′
T̄√
T̄
E[ϕiT̄ϕ

i′
T̄ ]
ιT̄√
T̄

≤ qc̄2 max
k=1,...,q

max
cT̄

c′
T̄
cT̄=1

c′T̄E[ϕ
i
T̄ϕ

i′
T̄ ]cT̄

≤ qc̄2 max
k=1,...,q

max
cT̄

c
′
T̄
cT̄=1

sup
n∈N

1

n

n∑

i=1

c′T̄E[ϕ
i
T̄ϕ

i′
T̄ ]cT̄

≤ qc̄2 max
k=1,...,q

sup
T̄∈N

max
cT̄

c
′
T̄
cT̄=1

c′T̄G
φ
T̄
cT̄ ≤ qc̄22πBφ,

because of (46) and sinceGφ
T = limn→∞ 1

n

∑n
i=1 E[ϕ

i
T̄
ϕi′
T̄
]. From Chebychev’s inequality, ‖Π̃ψ′

T̄
ϕi
T̄
‖ = OP(1)

and, therefore, ‖Πψ′

T̄
ϕi
T̄
‖ = OP

(√
T̄
T

)
. �

B.2 Proof of Theorem 2

The proof is entirely the same as for Theorem 1, with Lemmas 11–18 replacing Lemmas 3–10. �

C Proof of Theorem 3

First, from the proof of Theorem 1, R′
i = p

ψ′
i (Λψ

n)1/2(Γu)−1/2 for any i = 1, . . . , n. Therefore, from the
definition of Ř′

i in (49),

Ř′
i −R′

i (Γ
u)1/2 Ŵz = p̂z′i

(
Λ̂z
n

)1/2
− p

ψ′
i

(
Λψ
n

)1/2
Ŵz = p̂z′i

(
Λ̂z
n

)1/2
− p

ψ′
i Ŵz

(
Λψ
n

)1/2

= p
ψ′
i Ŵz

(
Λ̂z
n −Λψ

n

)1/2
+
(
p̂z′i − p

ψ′
i Ŵz

)(
Λψ
n

)1/2
+
(
p̂z′i − p

ψ′
i Ŵz

)(
Λ̂z
n −Λψ

n

)1/2

= I + II + III, say. (85)

Term I is OP(ζnT ) because of Lemmas 5(i) and 8, term II is OP

(√
n̄
nζnT

)
because of of Lemmas 5(ii)

and 8 (see also the arguments in Lemma 6 of Forni et al., 2017), and term III is oP(ζnT ). From (85),
we get ∥∥∥Ř′

i −R′
i (Γ

u)1/2 Ŵz
∥∥∥ = OP(ζnT ) (86)

which, combined with Theorem 1(i), yields

∥∥Ř′
iût −R′

iut
∥∥ = OP

(
max

(
1√
n̄
, ζnT

))
= OP

(
max

(
1√
h̄
, ζnT

))
. (87)

Following a reasoning similar to (85), since, from the proof of Theorem 2, for any t = 1, . . . , T we

49



have u′
t = π

ψ′
t (LψT )

1/2(ΣR)−1/2, the definition of ǔ′
t in (53) and Lemmas 13 and 16 imply that

∥∥∥ǔ′
t − u′

t

(
ΣR
)1/2

Ŵ z
∥∥∥ = OP(ζnT ) (88)

which, combined with Theorem 2(i), yields

∥∥∥ǔ′
tR̂i − u′

tRi

∥∥∥ = OP

(
max

(
1√
n̄
, ζnT

))
= OP

(
max

(
1√
h̄
, ζnT

))
. (89)

Part (i) of the theorem follows from (87) and (89).
Now, from the proof of Theorems 1 and 2 and using (86) and (88),

Ř′
iût = R′

iut +R′
i (Γ

u)1/2 Ŵz
(
ût − Ŵz (Γu)−1/2

ut

)
+
(
Ř′
i −R′

i (Γ
u)1/2 Ŵz

)
ût

= R′
iut +R′

i (Γ
u)1/2 Ŵz

(
Λψ
n

)−1/2 (
P
ψ′
n̄ P

ψ
n̄

)−1
P
ψ′

n̄ φn̄t +
(
Ř′
i −R′

i (Γ
u)1/2 Ŵz

)
ût +OP(ζnT )

= R′
iut +R′

i (Γ
u)1/2 Ŵz

(
Λψ
n

)−1/2 (
P
ψ′
n̄ P

ψ
n̄

)−1
P
ψ′
n̄ φn̄t +OP(ζnT ), (90)

and

ǔ′
tR̂i = u′

tRi + u′
t

(
ΣR
)1/2

Ŵ z
(
R̂i − Ŵ z

(
ΣR
)1/2

Ri

)
+
(
ǔ′
t − u′

t

(
ΣR
)1/2

Ŵ z
)
R̂i

= u′
tRi + u′

t

(
ΣR
)1/2

Ŵ z
(
L
ψ
T

)−1/2 (
Π
ψ′
T̄
Π
ψ
T̄

)−1
Π
ψ′
T̄
ϕiT̄ +

(
ǔ′
t − u′

t

(
ΣR
)1/2

Ŵ z
)
R̂i +OP(ζnT )

= u′
tRi + u′

t

(
ΣR
)1/2

Ŵ z
(
L
ψ
T

)−1/2 (
Π
ψ′
T̄
Π
ψ
T̄

)−1
Π
ψ′
T̄
ϕiT̄ +OP(ζnT ) (91)

since ‖ût‖ = OP(1) and ‖R̂i‖ = OP(1).
From Theorem 1, (90), and because of (69), as n, T → ∞,

√
n̄
(
Ř′
iût −R′

iut
)
=

√
n̄R′

i (Γ
u)1/2 Ŵz

(
Λψ
n

)−1/2 (
P
ψ′
n̄ P

ψ
n̄

)−1
P
ψ′
n̄ φn̄t + oP(1)

= R′
i (Γ

u)1/2 Ŵz

(
Λ
ψ
n

n

)−1/2 (n
n̄
P
ψ′
n̄ P

ψ
n̄

)−1
√
n

n̄

(
P
ψ′
n̄ φn̄t

)
+ oP(1)

−→d N
(
0q,R

′
i (Γ

u)1/2 Wu (Lu)−1/2 (Mu)−1
P
u
t (M

u)−1 (Lu)−1/2
Wu (Γu)1/2 Ri

)
,

where Wu = plimn,T→∞ Ŵz as defined in Theorem 1.
Likewise, from Theorem 2, (91), and because of (69), as n, T → ∞,

√
T̄
(
ǔ′
tR̂i − u′

tRi

)
=
√
T̄ u′

t

(
ΣR
)1/2

Ŵ z
(
L
ψ
T

)−1/2 (
Π
ψ′
T̄
Π
ψ
T̄

)−1
Π
ψ′
T̄
ϕiT̄ + oP(1)

= u′
t

(
ΣR
)1/2

Ŵ z

(
L
ψ
T

T

)−1/2(
T

T̄
Π
ψ′
T̄
Π
ψ
T̄

)−1
√
T

T̄

(
Π
ψ′
T̄
ϕiT̄

)
+ oP(1)

−→d N
(
0q,u

′
t

(
ΣR
)1/2

WR
(
L
R
)−1/2 (

M
R
)−1

P
R
i

(
M

R
)−1 (

L
R
)−1/2

WR
(
ΣR
)1/2

ut

)
,

where WR = plimn,T→∞ Ŵ z as defined in Theorem 2.
Moreover, because of Assumption (G), when n̄ = T̄ = h̄,

√
n

n̄
P
φ′
n̄ φn̄t +

√
T

T̄
Π
φ′
T̄
ϕiT →d N

(
0q,P

u
t +P

R
i +Ωit +Ω′

it

)
as n, T → ∞,
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where

Ωit := lim
n,T→∞

(√
nT

h̄

)
E

[
P
ψ′
n̄ φn̄tϕ

i′
T̄Π

ψ
T̄

]
.

Therefore, as n, T → ∞,

√
h̄
((
ωnT Ř

′
iût + (1− ωnT )ǔ

′
tR̂i

)
−R′

iut

)
→d N

(
0, ω2V u

it + (1− ω)2V R
it + 2ω(1− ω)Cit

)
,

where ω = limn,T→∞ ωnT and

V u
it = R′

i (Γ
u)1/2 Wu (Lu)−1/2 (Mu)−1

P
u
t (M

u)−1 (Lu)−1/2
Wu (Γu)1/2 Ri,

V R
it = u′

t

(
ΣR
)1/2

WR
(
L
R
)−1/2 (

M
R
)−1

P
R
i

(
M

R
)−1 (

L
R
)−1/2

WR
(
ΣR
)1/2

ut,

Cit = R′
i (Γ

u)1/2 Wu (Lu)−1/2 (Mu)−1
Ωit

(
M

R
)−1 (

L
R
)−1/2

WR
(
ΣR
)1/2

ut. �

D Proof of Theorem 4

Let Cn(L) := [An(L)]
−1 and Ĉn(L) := [Ân(L)]

−1. Then, for any i = 1, . . . , n and t = 1, . . . , T ,

χ̂it − χit = e′i
(
Ĉn(L)ψ̂nt −Cn(L)ψnt

)

= e′i
(
Ĉn(L)−Cn(L)

)
ψnt + e′iCn(L)

(
ψ̂nt −ψnt

)
+ e′i

(
Ĉn(L)−Cn(L)

)(
ψ̂nt −ψnt

)

= I + II + III, say, (92)

where ei denotes the ith column of In.
From Proposition 2, we have, for any s = 1, . . . ,m, js = 1, . . . , (q + 1), and hs = 1, . . . , (q + 1),

as n, T → ∞,

max
ℓ=1,...,ps

max
js,hs=1,...,(q+1)

(âjs,hs,ℓ − ajs,hs,ℓ)
2 ≤

∥∥∥Â[s] −A[s]
∥∥∥
2
= OP(ζ

2
n,T ), (93)

where ajs,hs,ℓ and âjs,hs,ℓ are the (j, h)th entries of A
(i)
ℓ and of Â

(i)
ℓ , respectively.

Without loss of generality, let us assume ps = 1 for all s = 1, . . . ,m, so that An(L) = In − AnL
and Ân(L) = In − ÂnL. Thus, Cn(L) =

∑∞
k=0A

k
n and Ĉn(L) =

∑∞
k=0 Â

k
n. Then, for any i = 1, . . . , n,

there exists an s ∈ {1, . . . ,m} such that χit is an element of the sth (q + 1)-dimensional subvector χ
(s)
t

of χnt. Let ci,js,k and ĉi,js,k denote the (i, js)th entries of Ak
n and Âk

n, respectively (here js indicates

the jth column of block s of Ak
n and Âk

n).
Assumption (B-a) implies summability of the autoregressive coefficients, for any i = 1, . . . , n

and t = 1, . . . , T and, for any ǫ > 0 and η > 0, the existence of a constant K = K(ǫ, η) indepen-
dent of i, js, s, and t such that

P



∣∣∣∣∣∣

q+1∑

js=1

∞∑

k=K+1

(ĉi,js,k − ci,js,k) ψjs,t−k

∣∣∣∣∣∣
> η


 ≤ ǫ.

Hence, we can select K such that

∣∣∣∣∣∣

q+1∑

js=1

∞∑

k=K+1

(ĉi,js,k − ci,js,k) ψjs,t−k

∣∣∣∣∣∣
= oP(ζnT ).
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Then, the norm of I is such that

∣∣∣e′i
(
Ĉn(L)−Cn(L)

)
ψnt

∣∣∣ ≤
K∑

k=0




q+1∑

js=1

(ĉi,js,k − ci,js,k)
2 ψ2

js,t−k




1/2

+ oP(ζnT )

≤
K∑

k=0




q+1∑

js=1

ψ4
js,t−k




1/4


q+1∑

js=1

(ĉi,js,k − ci,js,k)
4




1/4

+ oP(ζnT )

= OP(ζnT ), (94)

because of (93) and the continuous mapping theorem.
Similarly, for the norm of II and because of Assumption (B-a), we can select K such that

∣∣∣∣∣∣

q+1∑

js=1

∞∑

k=K+1

ci,js,k

(
ψ̂js,t−k − ψjs,t−k

)
∣∣∣∣∣∣
= oP(ζnT ) (95)

and, therefore, by Theorem 3, when h̄ = n̄ = T̄ ,

∣∣∣e′iCn(L)
(
ψ̂nt −ψnt

)∣∣∣ ≤
K∑

k=0




q+1∑

js=1

c2i,js,k

(
ψ̂js,t−k − ψjs,t−k

)2



1/2

+ oP(ζnT )

≤
K∑

k=0




q+1∑

js=1

c4i,js,k




1/4


q+1∑

js=1

(
ψ̂js,t−k − ψjs,t−k

)4



1/4

+ oP(ζnT )

= OP

(
max

(
1√
h̄
, ζnT

))
+ oP(ζnT ). (96)

Obviously III = oP(ζnT ). Therefore, substituting (94) and (96) into (92), we proved consistency.
Now, from Theorem 1, for any finite k ∈ N such that k < T and any t = k+1, . . . , T , as n, T → ∞,

√
n̄







ût
...

ût−k


−




ut
...

ut−k





 −→d N

(
0qk,V

u
t...t−k

)
, (97)

where

V
u
t...t−k =

{
Ik ⊗

[
Wu (Lu)−1/2 (Mu)−1

]}
P
u
t...t−k

{
Ik ⊗

[
(Mu)−1 (Lu)−1/2

Wu
]}

and

P
u
t...t−k = lim

n→∞
n

n̄
E



{
Ik ⊗P

ψ′
n̄

}



φn̄t
...

φn̄t−k







φn̄t
...

φn̄t−k




′
{
Ik ⊗P

ψ′
n̄

}′


 .

Similarly, from Theorem 2, for any finite ℓ ∈ N such that {i1, . . . , iℓ} ⊂ {1, . . . , n}, as n, T → ∞,

√
T̄







R̂i1
...

R̂iℓ


−




Ri1
...

Riℓ





 −→d N

(
0qℓ,V

R
i1...iℓ

)
, (98)
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where

V
R
i1...iℓ

=
{
Iℓ ⊗

[
WR

(
L
R
)−1/2 (

M
R
)−1
]}

P
R
i1...iℓ

{
Iℓ ⊗

[(
M

R
)−1 (

L
R
)−1/2

WR
]}

and

P
R
i1...iℓ

= lim
T→∞

T

T̄
E



{
Iℓ ⊗Π

ψ′
T̄

}


ϕi1
T̄
...

ϕ
iℓ
T̄






ϕi1
T̄
...

ϕ
iℓ
T̄




′
{
Iℓ ⊗Π

ψ′
T̄

}′


 .

For any i = 1, . . . , n, define the (q + 1)× q(K + 1) matrix

Ci :=




ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,1,K
...

. . .
...

ι′q ⊗ ci,q+1,0 . . . ι′q ⊗ ci,q+1,K


 ,

and the (K + 1)× q(q + 1) matrix

Di :=



ι′q ⊗ ci,1,0 . . . ι′q ⊗ ci,q+1,0

...
. . .

...
ι′q ⊗ ci,1,K . . . ι′q ⊗ ci,q+1,K


 ,

where ιq is a q-dimensional vector of ones. For given i = 1, . . . , n, let R′
ijs

be the row of Rn corresponding

to the jsth series in block s, which is the block to which series i belongs. Then, from (92), (97), (98),
and given K as defined in (95), for any i = 1, . . . , n and t = 1, . . . , T , as n, T → ∞,

√
h̄ (χ̂it − χit) =

√
h̄

K∑

k=0

q+1∑

js=1

ci,js,k

(
ψ̂js,t−k − ψjs,t−k

)
+ oP(1)

=
√
h̄

K∑

k=0

q+1∑

js=1

ci,js,k

(
ωnTR

′
ijs

ût−k + (1− ωnT )u
′
t−kR̂ijs −R′

ijs
ut−k

)
+ oP(1)

=
√
h̄

K∑

k=0

q+1∑

js=1

{
ωnT ci,js,kR

′
ijs

(
ût−k − ut−k

)
+ (1− ωnT ) ci,js,ku

′
t−k
(
R̂ijs −Rijs

)}
+ oP(1)

−→d N
(
0,ω′

(
W u
it Git

Git WR
it

)
ω

)
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where ω = limn,T→∞

(
ωnT

1− ωnT

)
,

W u
it = ι

′
q+1




Ci ⊙


ι′K+1 ⊗




R′
i1
(Γu)1/2

...

R′
iq+1

(Γu)1/2











V
u
t...t−k




Ci ⊙


ι′K+1 ⊗




R′
i1
(Γu)1/2

...

R′
iq+1

(Γu)1/2











′

ιq+1,

WR
it = ι′K+1




Di ⊙


ι′q+1 ⊗




u′
t(Σ

R)1/2

...

u′
t−K(ΣR)1/2











V
R
i1...iq+1




Di ⊙


ι′q+1 ⊗




u′
t(Σ

R)1/2

...

u′
t−K(ΣR)1/2











′

ιK+1,

Git = ι
′
q+1




Ci ⊙


ι′K+1 ⊗




R′
i1
(Γu)1/2

...

R′
iq+1

(Γu)1/2











Oi1...iq+1

t...t−K




Di ⊙


ι′q+1 ⊗




u′
t(Σ

R)1/2

...

u′
t−K(ΣR)1/2











′

ιK+1,

with

Oi1...iq+1

t...t−K
=
{
IK+1 ⊗Wu (Lu)−1/2 (Mu)−1

}
Ωi1...iq+1

t...t−K

{
Iq+1 ⊗WR

(
L
R
)−1/2 (

M
R
)−1
}′
,

Ωi1...iq+1

t...t−K
= lim

n,T→∞

√
nT√
n̄T̄

E



{
IK+1 ⊗P

ψ′
n̄

}



φn̄t
...

φn̄t−K







ϕi1
T̄
...

ϕ
iq+1

T̄




′
{
Iq+1 ⊗Π

ψ′
T̄

}′


 ,

and ιK+1 and ιq+1 denoting the vectors of ones with dimensions K + 1 and q + 1, respectively. �

E A comment on exchangeability

The duality of the static representations (26) and (27) can be motivated if we assume that a stochastically
generated cross-section scheme is adopted. Under that approach, it is assumed that the stochastic
process x is generated via a two-step random mechanism: (Step I) the stochastic selection, via some
unspecified distribution P, of the distributional features of x as a time-indexed stochastic process,
followed by (Step II) a realization over time of the selected process x, of which a finite n×T realization
is observed, and along which time-series asymptotics will be considered as T → ∞.

A rigorous description of Step I can be given as follows. Consider the space

FT := {P : P a probability measure over (RT ,BT )}

of all probability measures over the space (RT ,BT ) of realizations of length T of scalar-valued processes.
Equip that space with the σ-field AT of all Borel (with respect to the topology of weak convergence)
sets. As usual, denote by (Ω,AΩ) some adequate probability space; distributions over (Ω,AΩ) will be

denoted as P. Let P(n), with P(n)(ω) = (P
(n)
1 (ω), . . . ,P

(n)
n (ω)), denote a measurable map from (Ω,AΩ)

to (F⊗n
T ,A⊗n

T ), where F⊗n
T is the n-fold product space FT×. . .×FT and A⊗n

T the corresponding product

σ-field. The map P(n) is called exchangeable if

P

[
(P

(n)
πn(1)

(ω), . . . ,P
(n)
πn(n)

(ω)) ∈ A
(n)
T

]
= P

[
(P

(n)
1 (ω), . . . ,P(n)

n (ω)) ∈ A
(n)
T

]

for any permutation πn of {1, . . . , n} and any A
(n)
T ∈ A⊗n

T .
The distribution P, however, plays the role of a nuisance. Statistical practice in such cases consists

in conducting inference on the realization observed in Step II conditional on the (unobserved) result of
Step I (see, e.g., Chapter 10 of Lehmann and Romano (2006)), so that P needs no further description.
Under such conditional approach, the distributional features of the stochastic process of which the
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observed panel XnT is a finite realization are treated as unknown but fixed, which is precisely what the
deterministic approach is doing. An important feature of Step I, however, is that its result should be a
cross-sectionally exchangeable process: the distributions of any of the resulting n× T subprocesses thus
should remain invariant under cross-sectional permutations. The cross-sectional ordering, indeed, is
completely arbitrary and should not play any role in the analysis. This motivates our Assumption (C-a)
and provides the intuitive justification for it.

This random cross-section approach is the one we are implicitly adopting in the paper; and it
yields, P-a.s. conditionally on Step I the same results as the deterministic approach based on Assump-
tion (A) only. The main benefit of Assumption (C-a), thus, is to provide a justification for Assump-

tions (C-b) and (C-d-ii) which determine the special form of Gφ
T and the linear divergence of exploding

eigenvalues, which otherwise would be “brutally” imposed.
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