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This Online Appendix is structured as follows. Section IA.1 contains the proofs of the propositions

and theorems in the paper. In Section IA.2, we analyze how the assumption of random betas affects

our results. In Section IA.3, we study the properties of alternative risk premia estimators in the

traded-factor case. In Section IA.4, we present Monte Carlo simulation results. Section IA.5 is for

the unbalanced panel case. Finally, Section IA.6 contains a set of figures that complements those

in the paper. We refer to the paper for the notation used here. When we do not use the IA prefix,

it means that we are referring to the main paper.

IA.1. Proofs

We start with a few preliminary lemmas and then use them to prove the propositions and theorems

in the paper.

IA.1.1 Preliminary Lemmas

Lemma 1 Under assumptions 3–5,
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by assumption 5(i). Moreover,
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As for the second term on the right-hand side of Equation (IA.3), we have
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As for the first term on the right-hand side of Equation (IA.3), we have
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where ıt,T is a T -vector with one in the t-th position and zeros elsewhere, dt is the t-th row of

D � �1T , F �, and pt � dt �D�D��1
D�. Since Equation (IA.5) has a zero mean, we only need to

consider its variance to determine the rate of convergence. We have
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Moreover, we have
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It follows that
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by assumptions 5(ii), 5(iii), 5(iv), and 5(viii), which implies that the first term on the right-hand

side of Equation (IA.3) is Op � 1º
N
�. Putting the pieces together concludes the proof. Ì

Lemma 2 Let

Λ � � 0 0�K
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Then,
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Under assumptions 4–5,
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Using assumption 2, we have
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Using similar arguments as for Equation (IA.15),
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For P � �PNi�1 εiεi
��P, consider its central part and take the norm of its expectation. Using

assumptions 4–5,
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Then, we have

P � � NQ
i�1

εiεi
��P � Op �N

T
� (IA.22)

and

B̂�B̂ � Op
�
�N � �N

T
�

1
2

�
N

T

�
� � Op�N�. (IA.23)

This concludes the proof of part (i).

(ii) Using part (i) and under assumptions 3–6, we have
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Assumption 2 concludes the proof of part (ii).

(iii) Note that
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As in part (ii) we can write
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Assumptions 5(i) and 6(ii) conclude the proof since
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Lemma 3 Under assumptions 2–5,
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Proof. We have
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Moreover, using assumptions 2 and 5(ii),
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Putting the pieces together, X �ε̄ � Op �ºN�. Ì
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Lemma 4 Under assumptions 3–5,
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Using similar arguments to Equation (IA.15) concludes the proof. Ì

Lemma 5 Under assumptions 3–5,
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by assumption 5. Ì

Lemma 6 Under assumption 5 and the identification assumption κ4 � 0, we have
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where ε̂it � ı
�

t,TMεi and M � �mts� for t, s � 1, . . . , T . Note that
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where ptt is the �t, t�-element of P . Then, we have
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By setting κ4 � 0, it follows that

E �σ̂4� � σ4. (IA.41)

This concludes the proof of part (i).
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(ii) As for the variance of σ̂4, we have
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(IA.42)

where κ4 ���, κ6 ���, and κ8 ��� denote the fourth-, sixth-, and eighth-order mixed cumulants,

respectively. By P�ν1,ν2,...,νk� we denote the sum over all possible partitions of a group of

K random variables into k subgroups of size ν1, ν2, . . . , νk, respectively. As an example,

consider P�6,2�. P�6,2� defines the sum over all possible partitions of the group of eight

random variables �εiu1 , εiu2 , εiu3 , εiu4 , εjv1 , εjv2 , εjv3 , εjv4� into two subgroups of size six and

two, respectively. Moreover, since E �εit� � E �ε3it� � 0, we do not need to consider further

partitions in the relation above.1 Then, under assumptions 5(i), 5(ii), 5(v), and 5(viii), it

follows that
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� (IA.43)

and Var �σ̂4� � O � 1
N
�. This concludes the proof of part (ii). Ì

1According to the theory on cumulants (see Brillinger 2001), evaluation of Cov �εiu1εiu2εiu3εiu4 , εjv1εjv2εjv3εjv4�
requires considering the indecomposable partitions of the two sets, �εiu1 , εiu2 , εiu3 , εiu4� and �εjv1 , εjv2 , εjv3 , εjv4�,
meaning that there must be at least one subset that includes an element of both sets.

9



Lemma 7 Let w � �w1, . . . ,wT �� and s � �s1, . . . , sT �� be two arbitrary T -vectors. Then, under

Equation (64) and assumptions 2–7,
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For the first term of Equation (IA.45),
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For the second and third terms of Equation (IA.45), we obtain
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Lemma 8 Let τ̂Φ �
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τ̂Φ �
1

N�T �K�
N

Q
i�1

ε̂�iε̂iê
P
i �

1

N�T �K�
N

Q
i�1

ε�iMMεiêi

�
1

N�T �K�
N

Q
i�1

tr�Mε�iεi��ei � ε̄i � �X̂i �Xi��Γ̃P � X̂ �

i�Γ̂�
� Γ̃P ��

�
1

N�T �K�
N

Q
i�1

tr�Mε�iεiei� � op�1� p
�

1

�T �K�tr �MτΦ� � τΦ.Ì (IA.52)

Lemma 9 Let

τ̂Ω �
1

N�T �K�
N

Q
i�1

ε̂�iε̂i�êPi �2
�
σ4

T
�1 �

2tr�M1T 1�T �
T �T �K� � � tr�MSF ��T �K� � 2

tr�MCF �
T �T �K� , (IA.53)

where

SF � σ4

<@@@@@@@@>

A� �3f̃1f̃
�

1 �PTtx1 f̃tf̃
�

t�A 2A�f̃1f̃
�

2A � 2A�f̃1f̃
�

TA

2A�f̃2f̃
�

1A A� �3f̃2f̃
�

2 �PTtx2 f̃tf̃
�

t� � 2A�f̃2f̃
�

TA

� � � �

2A�f̃T f̃
�

1A 2A�f̃T f̃
�

2A � A� �3f̃1f̃
�

1 �PTtxT f̃T f̃ �T �A

=AAAAAAAA?
(IA.54)

and

CF � σ4

<@@@@@@@@@@@>

3f̃ �1A �PTtx1 f̃
�

tA �f̃1 � f̃2��A � �f̃1 � f̃T ��A
�f̃2 � f̃1��A 3f̃ �2A �PTtx2 f̃

�

tA � �f̃2 � f̃T ��A
� � � �

�f̃T � f̃1��A �f̃T � f̃2��A � 3f̃ �TA �PTtxT f̃ �tA

=AAAAAAAAAAA?
, (IA.55)
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with A � �F̃ �F̃ ��1γ̃P1 . Then, under Equation (64) and assumptions 2–7,

τ̂Ω
p
� τΩ. (IA.56)

Proof: By Equation (IA.51), we have

�êPi �2
� e2

i � ε̄
2
i � ��β̂i � βi��γ̃P1 �2

� ��1, β̂�i��Γ̂�
� Γ̃P ��2

� 2ei �ε̄i � �β̂i � βi��γ̃P1 � �1, β̂�i��Γ̂�
� Γ̃P ��

� 2ε̄i ���β̂i � βi��γ̃P1 � �1, β̂�i��Γ̂�
� Γ̃P ��

� 2�β̂i � βi��γ̃P1 �1, β̂�i��Γ̂�
� Γ̃P �. (IA.57)

Then,

τ̂Ω �
1

N�T �K�
N

Q
i�1

ε̂�iε̂i�êPi �2

�
1

N�T �K�
N

Q
i�1

ε̂�iε̂ie
2
i �

1

N�T �K�
N

Q
i�1

ε̂�iε̂iε̄
2
i �

1

N�T �K�
N

Q
i�1

ε̂�iε̂i ��β̂i � βi��γ̃P1 �2

� 2
1

N�T �K�
N

Q
i�1

ε̂�iε̂iε̄i�β̂i � βi��γ̃P1 � op�1�, (IA.58)

where all terms involving �Γ̂�
� Γ̃P � are condensed into the op�1� term. By assumption 7, the first

term in Equation (IA.58) satisfies

1

N�T �K�
N

Q
i�1

ε̂�iε̂ie
2
i �

1

�T �K�tr�M 1

N

N

Q
i�1

εiε
�

i.e
2
i � p
�

1

�T �K�tr�MτΩ� � τΩ. (IA.59)

For the second term in Equation (IA.58), we have

1

N�T �K�
N

Q
i�1

ε̂�iε̂iε̄
2
i �

1

T 2

1

N�T �K�
N

Q
i�1

ε̂�iε̂i
T

Q
t�1

εit
T

Q
s�1

εis. (IA.60)

Then, applying Lemma 7 with w � s � �1, . . . ,1��, we have

1

T 2

1

N�T �K�
N

Q
i�1

ε̂�iε̂i
T

Q
t�1

εit
T

Q
s�1

εis
p
�

σ4

T
�1 �

2tr�M1T 1�T �
T �T �K� � . (IA.61)
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For the third term in Equation (IA.58), we have

1

N�T �K�
N

Q
i�1

ε̂�iε̂i ��β̂i � βi��γ̃P1 �2
�

1

N�T �K�
N

Q
i�1

ε̂�iε̂i
T

Q
t�1

γ̃P
�

1 �F̃ �F̃ ��1ftεit
T

Q
s�1

γ̃P
�

1 �F̃ �F̃ ��1fsεis,

(IA.62)

and by Lemma 7 with w � s � �γ̃P �

1 �F̃ �F̃ ��1f1, . . . , γ̃
P �

1 �F̃ �F̃ ��1fT ��, one obtains

1

N�T �K�
N

Q
i�1

ε̂�iε̂i ��β̂i � βi��γ̃P1 �2 p
�

tr�MSF ��T �K� . (IA.63)

Finally, for the fourth term in Equation (IA.58), rewriting it as

�2
1

N�T �K�
N

Q
i�1

ε̂�iε̂iε̄i�β̂i � βi��γ̃P1 � �2
1

NT �T �K�
N

Q
i�1

ε̂�iε̂i
T

Q
t�1

εit
T

Q
s�1

εisf̃
�

s�F̃ �F̃ ��1γ̃P1 ,

(IA.64)

and applying again Lemma 7 with w � �1, . . . ,1�� and s � �A�f̃1, . . . ,A
�f̃T ��, we obtain

�2
1

N�T �K�
N

Q
i�1

ε̂�iε̂iε̄i�β̂i � βi��γ̃P1 p
� �2

tr�MCF �
T �T �K� .Ì (IA.65)

IA.1.2 Proofs of Propositions and Theorems

Proof of Proposition 1. Consider the class of additive bias-adjusted estimators Γ̂bias�adj for ΓP :

Γ̂bias�adj � Γ̂ � �X̂ �X̂

N
��1Λ̂Γ̂prelim � �X̂ �X̂��1X̂ �R̄ � �X̂ �X̂

N
��1Λ̂Γ̂prelim, (IA.66)

where Γ̂prelim denotes any preliminary
º
N -consistent estimator of ΓP . Setting Γ̂bias�adj � Γ̂prelim

and rearranging terms, we obtain

<@@@@>
IK�1 � �X̂ �X̂

N
�
�1

� 0 0�K
0K σ̂2�F̃ �F̃ ��1 	

=AAAA?
Γ̂bias�adj � �X̂ �X̂��1X̂ �R̄, (IA.67)

which implies that

Γ̂bias�adj � �Σ̂X � Λ̂��1 X̂ �R̄

N
� Γ̂�.Ì (IA.68)

Proof of Proposition 2. By means of simple calculations, Σ � λλ� � σ2
ηIN . Thus, PNi�1 σ

2
i ~N �

PNi�1�λ2
i � σ

2
η�~N � σ2

η because PNi�1 λ
2
i B �PNi�1 SλiS�2

� O�N2δ� � o�N�. Therefore, setting σ2
� σ2

η,

one obtains PNi�1�σ2
i � σ

2�~N � PNi�1 λ
2
i ~N � �λ2

1 � � � λ2
q�~N �PNi�q�1 λ

2
i ~N � O�N2δ�1

�N2δ�1� �
o�1~ºN� since δ @ 1~4. It follows that assumption 5(i) is satisfied.
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Next, given that σij � λiλj for i x j, we obtain PNixj�1 Sσij S B �PNi�1 SλiS�2
� O�N2δ� � o�N�, thus

satisfying assumption 5(ii).

The maximum eigenvalue of Σ is bounded from below by the maximum eigenvalue of λλ�, which

equals λ�λ (all the other N � 1 eigenvalues of λλ� are zero), where λ2
1 � � � λ2

q B λ
�λ � O�N2δ�.

Therefore, the maximum eigenvalue diverges at least at rate o�ºN�. Ì
Proof of Proposition 3. The Fama and MacBeth (1973) standard errors with the Shanken (1992)

correction are given by

SEFMk � ��1� ĉ��Ŵk�1�kA0�σ̂2
k��1�kA0�σ̂2

k~T�
1
2

and SEFM,P
k � ��1� ĉ��Wk�1�kA0�σ̂2

k��
1
2
, (IA.69)

for k � 0, . . . ,K, where Ŵk � ı�k�1,K�1PTt�1�Γ̂t � ¯̂
Γ��Γ̂t � ¯̂

Γ��ık�1,K�1~�T � 1�, Γ̂t � �X̂ �X̂��1X̂ �Rt

with sample mean
¯̂
Γ, ıj,J denotes the j-th column, for j � 1, . . . , J, of the identity matrix IJ ,

ĉ � γ̂�1 �F̃ �F̃ ~T��1
γ̂1, 1�� is the indicator function, and σ̂2

k denotes the �k, k�-th element of F̃ �F̃ ~T.
Consider the numerator of the t-ratios first. By Lemma 2(ii) and Lemmas 4 and 5, we obtain

Γ̂ � �γ̂0, γ̂
�

1�� � �ΣX � Λ��1ΣXΓP �Op � 1º
N
�. By the blockwise formula of the inverse of a matrix

(Magnus and Neudecker 2007, Section 1-11),

�ΣX �Λ��1ΣXΓP � � 1 µ�β
µβ Σβ �C

��1� 1 µ�β
µβ Σβ

�ΓP

� � 1 � µ�βA
�1µβ �µ�βA

�1

�A�1µβ A�1 �� 1 µ�β
µβ Σβ

�ΓP

� � 1 µ�β � µ
�

βA
�1�Σβ � µβµ

�

β�
0 A�1�Σβ � µβµ

�

β� �ΓP . (IA.70)

Then,

�ΣX �Λ��1ΣXΓP � Γ � � 1 µ�β � µ
�

βA
�1�Σβ � µβµ

�

β�
0 A�1�Σβ � µβµ

�

β� �ΓP � Γ

� � 0 µ�β�IK �A�1�Σβ � µβµ
�

β��
0 ��IK �A�1�Σβ � µβµ

�

β�� �Γ
� � 1 µ�β�IK �A�1�Σβ � µβµ

�

β��
0 A�1�Σβ � µβµ

�

β� �� 0
f̄ �E�ft� �. (IA.71)

Hence, plim γ̂0�γ0 � µ
�

β�IK�A�1�Σβ�µβµ
�

β��γP1 � µ�βA
�1CγP1 and, for every j � 1, . . . ,K, plim γ̂1j�

γ1j � �ı
�

j,K�IK �A�1�Σβ �µβµ
�

β��γ1� ı
�

j,KA
�1�Σβ �µβµ

�

β��f̄ �E�ft�� and plim γ̂1j �γ
P
1j � �ı

�

j,K�IK �
A�1�Σβ � µβµ

�

β��γP1 . Consider now the behavior of the denominator of the t-ratios. It is easy to
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see that Ŵ �
1

T�1 PTt�1�Γt � Γ̄��Γt � Γ̄�� � Ŵa � Ŵb � Ŵc, where

Ŵa � �X̂ �X̂��1X̂ � � 1

T � 1

T

Q
t�1

�εt � ε̄��εt � ε̄��	 X̂�X̂ �X̂��1, (IA.72)

Ŵb � �X̂ �X̂��1X̂ �B �� 1

T � 1

T

Q
t�1

�ft � f̄��ft � f̄��	B�X̂�X̂ �X̂��1 and (IA.73)

Ŵc � �X̂ �X̂��1X̂ � �PTt�1�εt � ε̄��ft � f̄��
T � 1

	B�X̂�X̂ �X̂��1

��X̂ �X̂��1X̂ �B �PTt�1�ft � f̄��εt � ε̄��
T � 1

	 X̂�X̂ �X̂��1. (IA.74)

Based on Lemmas 2-4 (details are available upon request), we obtain

Ŵ �pW �Wa �Wb �Wc � �ΣX �Λ��1 � 0 0�K
0K

σ4

�T�1��F̃ �F̃ ��1 	 �ΣX �Λ��1

� �ΣX �Λ��1 � µ�β
Σβ

	 � F̃ �F̃

T � 1
	 �µβ,Σβ� �ΣX �Λ��1

� �ΣX �Λ��1 σ2

T � 1
� 0 µ�β
µβ 2Σβ

	 �ΣX �Λ��1. (IA.75)

W � � 0 0�K

0K
�F̃ �F̃ �
T�1

	 . (IA.76)

Therefore, since Ŵk � ı
�

k�1,K�1Ŵ ık�1,K�1 for k � 0, . . . ,K, we have �1 � ĉ��Ŵk � 1�kA0�σ̂2
k� �p 0 for

any value of ĉ. It follows that SEFMk �p σ̂k~ºT and SEFM,P
k �p 0. The proof of parts (i) and (ii)

follows from dividing γ̂0 � γ0, γ̂1k � γ1k, and γ̂1k � γ
P
1k by SEFMk and SEFM,P

k , for the ex ante and

ex post risk premia, respectively, and then taking the limit as N �ª. Ì

Proof of Theorem 1. For part (i), starting from Equation (12), we have

Γ̂�
� �Σ̂X � Λ̂��1 X̂ �R̄

N

� �Σ̂X � Λ̂��1 X̂ �

N
�X̂ΓP � ε̄ � �X̂ �X�ΓP �

� �Σ̂X � Λ̂��1 �X̂ �X̂

N
ΓP �

X̂ �

N
ε̄ �

X̂ �

N
�X̂ �X�ΓP 	

� �Σ̂X � Λ̂��1 �X̂ �X̂

N
�
<@@@@>
ΓP � �X̂ �X̂

N
�
�1
X̂ �

N
ε̄ � �X̂ �X̂

N
�
�1
X̂ �

N
�X̂ �X�ΓP

=AAAA?
�

<@@@@>
IK�1 � �X̂ �X̂

N
�
�1

Λ̂

=AAAA?
�1 <@@@@>

ΓP � �X̂ �X̂

N
�
�1
X̂ �

N
ε̄ � �X̂ �X̂

N
�
�1
X̂ �

N
�X̂ �X�ΓP

=AAAA?
.

(IA.77)
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Hence,

Γ̂�
� ΓP � �X̂ �X̂

N
� Λ̂�

�1

�X̂ �

N
ε̄ �

X̂ �

N
�X̂ �X�ΓP � Λ̂ΓP 	

� �Σ̂X � Λ̂��1 �X̂ �

N
ε̄ � �X̂ �

N
�X̂ �X� � Λ̂�ΓP 	

� �Σ̂X � Λ̂��1 �X̂ �

N
ε̄ � � 1�N

ε�

NPγ
P
1

B�ε�

N PγP1 �P � εε�

N Pγ
P
1 � σ̂2�F̃ �F̃ ��1γP1

		 . (IA.78)

By Lemmas 1 and 2(i), �Σ̂X � Λ̂� � Op�1�. In addition, Lemmas 3 and 5 imply that

X̂ �ε̄

N
�

1

N
�X̂ �X��ε̄ � 1

N
X �ε̄

� Op � 1º
N

� , (IA.79)

and assumption 6(i) implies that

P �

N

Q
i�1

εi � Op �ºN� . (IA.80)

Note that

P �
εε�

N
PγP1 � σ̂2�F̃ �F̃ ��1γP1 (IA.81)

can be rewritten as

P � �εε�
N

�
1

N

N

Q
i�1

σ2
i IT�PγP1 � ��σ̂2

� σ2� � � 1

N

N

Q
i�1

σ2
i � σ

2�	 �F̃ �F̃ ��1γP1 . (IA.82)

Assumption 6(ii) implies that

P � �εε�
N

�
PNi�1 σ

2
i

N
IT�PγP1 � Op � 1º

N
� . (IA.83)

Using Lemma 1 and assumption 5(i) concludes the proof of part (i) since σ̂2
� σ2

� Op � 1º
N
� and

1
N PNi�1 σ

2
i � σ

2
� o � 1º

N
�.
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For part (ii), starting from (IA.78), we have

º
N�Γ̂�

� ΓP � � �Σ̂X � Λ̂��1 � X̂ �ε̄º
N

� � X̂ �º
N

�X̂ �X�ΓP� �º
N Λ̂ΓP 	

� �Σ̂X � Λ̂��1 � X̂ �ε̄º
N

� � 1�N
B̂�

	 �0N ,
ε�Pº
N

	ΓP �
º
N Λ̂ΓP 	

� �Σ̂X � Λ̂��1
<@@@@>
X �ε̄º
N

�
1º
N

� 0�N
P �ε

	 ε�1T
T

�
1º
N

� 1�N ε
�P

B̂�ε�P
	γP1 �

º
N Λ̂ΓP

=AAAA?
� �Σ̂X � Λ̂��1

<@@@@>
� 1�N
B�

	 ε�1T

T
º
N

�

<@@@@>
�1�N

ε�Pº
N
γP1

P � εε�º
N

1T
T �B� ε�Pº

N
γP1 �P � εε�º

N
PγP1

=AAAA?
�

º
Nσ̂2�F̃ �F̃ ��1γP1 	

� �Σ̂X � Λ̂��1
<@@@@>

1�Nº
N
ε� �1T

T �PγP1 �
B�ε�º
N
�1T
T �PγP1 � �P � εε�º

N
�1T
T �PγP1 � � tr�Mεε��º

N�T�K�1�P
�PγP1

=AAAA?
� �Σ̂X � Λ̂��1

<@@@@>
<@@@@>

1�N ε
�

º
N
Q

B�ε�º
N
Q

=AAAA?
�

<@@@@>
0

P � εε�º
N
Q �

tr�Mεε��º
N�T�K�1�P

�PγP1

=AAAA?
=AAAA?

� �Σ̂X � Λ̂��1 �I1 � I2� . (IA.84)

Using Lemmas 1 and 2(ii), we have

�Σ̂X � Λ̂� p
� �� 1 µ�β

µβ Σβ � σ
2�F̃ �F̃ ��1 	 � � 0 0�K

0K σ2�F̃ �F̃ ��1 	� � ΣX . (IA.85)

Consider now the terms I1 and I2. Both terms have a zero mean and, under assumption 5(vi), they

are asymptotically uncorrelated. Assumptions 2, 5(i), 6(i), and 6(iii) imply that

Var�I1� � E

<@@@@>
Q� 1º

N
PNi�1 εi

1º
N
PNj�1 ε

�

jQ Q� 1º
N
PNi�1 εi

1º
N
PNj�1 ε

�

j�Qa β�j�
1º
N
PNi�1�Q�

a βi�εi 1º
N
PNj�1 ε

�

jQ
1º
N
PNi�1�Q�

a βi�εi 1º
N
PNj�1 ε

�

j�Qa β�j�
=AAAA?

� � Q� 1
N PNi�1E�εiε�i�Q Q� 1

N PNi�1E�εiε�i��Qa β�i�
1
N PNi�1�Q�

a βi�E�εiε�i�Q 1
N PNi�1�Q�

a βi�E�εiε�i��Qa β�i� 	 � o�1�
� � σ2Q�Q σ2Q��Qa µ�β�

σ2�Q�
a µβ�Q σ2�Q�QaΣβ� 	

� σ2Q�QΣX �
σ2

T
�1 � γP1 � �F̃ �F̃ ~T��1

γP1 �ΣX . (IA.86)

Next, consider I2. Since P � 1º
N
PNi�1 σ

2
iQ �

1
T�K�1tr �M 1º

N
PNi�1 σ

2
i �P �PγP1 � 0K , we have

I2 �

<@@@>
0

�Q�
a P ��vec � 1º

N
PNi�1�εiε�i � σ2

i IT �� � 1
T�K�1tr �M 1º

N
PNi�1�εiε�i � σ2

i IT ��P �PγP1

=AAA?
� � 0

I22
	 . (IA.87)
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Therefore, Var�I2� has the following form:

Var�I2� � � 0 0�K
0K E �I22I

�

22� 	 . (IA.88)

Under assumptions 5(i) and 6(ii), we have

E �I22I
�

22� � E

<@@@@>
�Q�

aP �� 1º
N

N

Q
i�1

vec�εiε�i � σ2
i IT � 1º

N

N

Q
j�1

vec�εjε�j � σ2
j IT ���QaP�
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Defining Z � ��QaP� � vec�M�
T�K�1γ

P
1
�P �P� concludes the proof of part (ii). Ì

Proof of Theorem 2. By Theorem 1(i), γ̂�1
p
� γP1 . Lemma 1 implies that Λ̂ is a consistent

estimator of Λ. Hence, using Lemma 2(ii), we have �Σ̂X � Λ̂� p
� ΣX , which implies that V̂

p
� V. A

consistent estimator of W requires a consistent estimate of the matrix Uε, which can be obtained

using Lemma 6. This concludes the proof of Theorem 2. Ì
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Proof of Theorem 3. Writing
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with
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P
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and

� 0
P �εε�

N ıt,T
	�p � 0

σ2P �ıt,T
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	 (IA.92)

yields part (i).

Next,
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The part of
º
N�Γ̂�

t�1 � ΓPt�1� that depends on εε� can be written as

�Σ̂X � Λ̂��1��Q�

t�1 a P
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and the result follows along the proof of Theorem 1(ii). Ì

Proof of Theorem 4. We first establish a simpler, asymptotically equivalent, expression forº
N � êP �êP

N � σ̂2Q̂�Q̂�. Then, we derive the asymptotic distribution of this approximation. Consider

the sample ex post pricing errors,

êP � R̄ � X̂Γ̂�. (IA.95)

Starting from R̄ � X̂ΓP � ηP with ηP � ε̄ � �X̂ �X�ΓP , we have
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Then,
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and, by Lemma 2(iii),
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Using Lemmas 3 and 5 and Theorem 1, we have
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and
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In addition, using Lemmas 2(i), 2(iii), 4 and Theorem 1, we have
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and
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It follows that
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Collecting terms and rewriting explicitly only the ones that are Op � 1º
N
�, we have
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Consider the sum of the three terms in Equations (IA.104)–(IA.106). Under assumption 5(i), we

have
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where the o � 1º
N
� term comes from �σ̄2

� σ2�Q�Q. As for the term in Equation (IA.107), define

�Σ̂X � Λ̂��1
� � Σ̂11 Σ̂12

Σ̂21 Σ̂22
	 , (IA.110)
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where every block of �Σ̂X�Λ̂��1
is Op�1� by the nonsingularity of ΣX and Slutsky’s theorem. Using

the same arguments as for Theorem 2, we have
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where the two approximations on the right-hand side of the previous expression refer to
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respectively. Therefore, we have
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It follows that
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Note that
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where σ2�γ̂�1 �γP1 ���F̃ �F̃ ��1�γ̂�1 �γP1 ��2 �σ̂2
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where, for simplicity, we have condensed Op� 1

N
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implying that the asymptotic distribution of
º
N� ê�êN � σ̂2Q̂�Q̂� is equivalent to the asymptotic

distribution of
º
NZ �

Qvec� εε�N � σ̄2IT �. Finally, by assumption 6(ii), we have
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Proof of Theorem 5. For part (i), in view of Equation (64), we obtain R̄ � XΓ̃P � e � ε̄, where

Γ̃P � Γ̃ � f̄ �E�ft�. Using the same arguments as for Theorem 1,
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with � X̂�X̂
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since P �ε e � Op��P �PNi,j�1 σijeiejP� 1
2 � � Op�ºN� by assumption 7(i)-(ii). Next,
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As for terms I1 and I2, Theorem 1 applies, that is, �Σ̂X � Λ̂� p
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where Cov�I1, I2� � 0�K�1���K�1�. Consider now the term I3 and note that it has a zero mean. Its
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and the covariance term satisfies
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while Cov�I2, I3� � 0�K�1���K�1� by the assumption of zero third moment of the error term. Using

Lemmas 8 and 9, the proof of part (ii) becomes very similar to the proof of Theorem 2 and is

omitted. Ì

Proof of Theorem 6. For part (i), rewrite
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As for the bias associated with Γ̂� (see the proof of Theorem 1), we have
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As for the bias associated with δ̂�, we have
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by assumption 8.

For part (ii), by straightforward generalizations of Lemmas 1 and 2(ii), we have
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We now prove that L is positive-definite. Using the blockwise formula for the inverse of a matrix, the

invertibility of L follows from ΣCC being positive-definite (see assumption 8(i)) and the invertibility

of � 1 µ�β
µβ Σβ

	 � � µ�C
Σ�

CB
	Σ�1

CC �µC ΣCB� . In turn, this holds if

D � Σβ �Σ�

CBΣ�1
CCΣCB (IA.129)

is positive-definite and

1 � µ�CΣ�1
CCµC � �µ�β � µ�CΣ�1

CCΣCB�D�1�µβ �Σ�

CBΣ�1
CCµC� (IA.130)
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is nonzero. The last equation can be rewritten as

1 � �µ�C µ�β� �ΣCC ΣCB

Σ�

CB Σβ
	�1 �µC

µβ
	 . (IA.131)

The positiveness of Equation (IA.131) and the positive-definiteness of D follow from assump-

tion 8(i). Next, following the proof of Theorem 1,

º
N �Γ̂�

� ΓP

δ̂� � δ
	 �

<@@@@>
X̂�X̂
N � Λ̂ X̂�C

N
C�X̂
N

C�C
N

=AAAA?
�1

�
�
�
<@@@@@@>

1�N ε
�

º
N
Q

B�ε�º
N
Q

0Kc

=AAAAAA?
�

<@@@@@@>

0

P � εε�º
N
Q �

tr�Mεε��º
N�T�K�1�P

�PγP1

0Kc

=AAAAAA?
�

<@@@@@>
0

0K
C�ε�º
N
Q

=AAAAA?
�
�

�

<@@@@>
X̂�X̂
N � Λ̂ X̂�C

N
C�X̂
N

C�C
N

=AAAA?
�1

�I1 � I2 � I3� . (IA.132)

We now derive Var�I3� and Cov�I1, I
�

3� because the other terms can be directly obtained from

Theorem 1 and Cov�I2, I
�

3� � 0�K�Kc�1���K�Kc�1�. We have

Var�I3� �

<@@@>
0��K�1���K�1� 0��K�1��Kc

0Kc��K�1�
Q�Q
N PNi�1 σij�cic�j�

=AAA?� �0��K�1���K�1� 0��K�1��Kc
0Kc��K�1� σ2Q�QΣCC

	 (IA.133)

and, by Theorem 1,

Cov�I1, I
�

3� �

<@@@@@>
0�K�1���K�1�

Q�Q
N PNi�1 σij �� 1

βi
	 c�j�

0Kc��K�1� 0Kc�Kc

=AAAAA?
�

<@@@@@>
0�K�1���K�1� σ2Q�Q � µ�C

Σ�

CB
	

0Kc��K�1� 0Kc�Kc

=AAAAA?
.

(IA.134)

This concludes the proof. Ì

IA.2. Random Betas

In this section, we discuss the modifications of the analysis that are necessary to accommodate

random betas.2 First, consider the case where the random betas are mutually independent of the

innovations in individual asset returns. In this scenario, the asymptotic properties of the bias-

adjusted Shanken (1992) estimator, Γ̂�, are not affected. The only changes involve assumptions 1

2Dealing with random betas requires a different specification of the sampling scheme. (See, for example, Gagliar-
dini, Ossola, and Scaillet 2016.) In the interest of space, we do not provide the full details of the analysis here.
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and 2. In particular, Equation (3) in assumption 1 must be replaced with E�RtSX� �XΓ. Moreover,

Equations (17) and (18) in assumption 2 must be stated in terms of convergence in probability,

instead of conventional convergence, which is applicable to non-random sequences only. All the

other assumptions remain unchanged, except that now Equation (38) involves random betas. As

N �ª, we have

lim Var� 1º
N

N

Q
i�1

�C �

T a �1, β�i�� �εi� � lim
1

N

N

Q
i,j�1

E ��C �

T a �1, β�i��� εiε�j �CT a �1, β�j���

� �C �

TCT � lim
1

N

N

Q
i�1

σ2
iE� �1, β�i�� �1, β�i� � � �C �

TCT � lim
1

N

N

Q
ixj�1

σijE� � 1
βi
	 �1 β�j� �

� �C �

TCT �σ2ΣX . (IA.135)

The second term in the second line of Equation (IA.135) converges to zero under our assumptions

since EYβiβ�jY B E�β�iβi� 1
2E�β�jβj� 1

2 B C @ ª and PNixj�1 Sσij S � o�N�. Equation (IA.135) coincides

with the asymptotic covariance matrix in Equation (38), which holds for non-random βi.

Consider now the case in which the βi are potentially cross-sectionally correlated with the εi.

When T is fixed, such covariance structure cannot be identified based on the OLS estimators β̂i

and ε̂i (either for a finite or an arbitrarily large N). Therefore, the possibility of cross-correlation

between the βi and the εi needs to be ruled out. By inspection of the proof of Theorem 1, the

asymptotic covariance of
º
N�Γ̂�

� ΓP � depends on, among other things, N�
1
2 PNi�1 βiε

�

iQ, where

Q �
1T
T �PγP1 . Letting the K-vector ωi � E�βiεit� � Cov�βi, εit�, we have

E�βiε�i� � Ωi � ωi1
�

T , (IA.136)

where the second equality follows from the i.i.d. assumption over time for the εit (see assumption 3).

Then,

1º
N

N

Q
i�1

βiε
�

iQ �
1º
N

N

Q
i�1

�βiε�i �Ωi�Q �
1º
N

N

Q
i�1

ΩiQ. (IA.137)

A straightforward generalization of assumption 6 (iii) implies that the first term of Equation (IA.137)

converges to a normal distribution as N �ª. Given Equation (IA.136), the second term of Equa-

tion (IA.137) can be re-written as
º
N

�1PNi�1 ΩiQ �

º
N

�1PNi�1 ωi1
�

TQ �

º
N

�1PNi�1 ωi because

1�TQ � 1. As we show below, this latter term cannot be consistently estimated by OLS when T is

fixed. Therefore, in order to avoid lack of identification in the asymptotic covariance of Γ̂�, the ωi

must satisfy the restriction
º
N

�1PNi�1 ωi � o�1�, which contains ωi � 0K as a special case.
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We now illustrate how this restriction is needed when considering the OLS estimator of the

second term of Equation (IA.137). Starting with a fixed N, the OLS estimator of
º
N

�1PNi�1 ΩiQ �º
N

�1PNi�1E�βiε�i�Q is
º
N

�1PNi�1 Ω̂iQ̂ with Ω̂iQ̂ � β̂iε̂
�

iQ̂. Since ε̂i and Q̂ are orthogonal for any

finite T and N, the estimated term
º
N

�1PNi�1 Ω̂iQ̂ is a zero vector and
º
N

�1PNi�1 ΩiQ cannot

be identified. Next, when N diverges, even without post-multiplying by Q̂, it can be shown that

N�1PNi�1 Ω̂i �p 0K�T , and once again ω � limN�ªN�1PNi�1 ωi cannot be identified.3

Therefore, under our fixed-T sampling scheme, the assumption ωi � Cov�βi, εit� � 0K or, al-

ternatively, the slightly more general assumption
º
N

�1PNi�1 ωi � o�1� is needed for identification

purposes.

IA.3. Nonparametric Estimation of Risk Premia on Traded Factors

Under Equation (48) and assuming that the factors are traded, it is well-known that the time-

varying risk premia are given by

γ1,t � Et�ft�1� � 1Kγ0,t. (IA.138)

Moreover, when a risk-free asset with one-period return rf,t is available for investment and we

assume that the zero-beta rate is equal to the risk-free rate, the latter expression simplifies to

γ1,t � Et�ft�1��1Krf,t, that is, the risk premia coincide with the conditional expected excess factor

returns. This suggests that any estimator of the conditional mean can be used for risk premia

estimation. A popular estimator of Et�ft�1� is the sample mean of T consecutive observations, that

is,

f̄t �
1

T

T ~2�1

Q
h��T ~2

ft�1�h or f̃t �
1

T

T

Q
h�1

ft�1�h. (IA.139)

Typically, the estimators in Equation (IA.139) are evaluated over consecutive rolling samples. In

the absence of time variation, the risk premia are given by γ1 � E�ft�1��1Krf , and the unconditional

mean E�ft�1� is consistently estimated (as T diverges) by the sample mean of ft�1 over the full

sample.

We now summarize the statistical properties of the risk premia estimators in Equation (IA.139)

as T diverges. It is convenient to simplify the exposition by setting K � 1 and assuming that the

3In particular, recalling that M � IT �D�D�D��1D� with D � �1T , F �, under our assumptions N�1
P
N
i�1 Ω̂i �p

�ω1�T � σ2
P
��M � 0K�T because M is orthogonal to both 1T and P.

28



risk-free rate is constant over time. In addition, assume that the realized factor return, ft�1, can

be written as

ft�1 � rf � γ1,t � ut�1 for some i.i.d. error ut�1 � �0, σ2�. (IA.140)

Finally, assume that the T observations used to compute the estimators above represent a subset

of a possibly larger number of observations, T0 C T. Then, we consider two alternative sampling

schemes. First, we evaluate the estimators’ behavior under the conventional scheme T � T0, that

is, using all the available data. Next, we consider a scheme where, even though T diverges with T0,

T ~T0 � 0. The latter is the sampling scheme adopted in nonparametric kernel estimation, and it

implies that the estimators f̄t and f̃t are evaluated over a shrinking time interval (around period t)

of relative length T ~T0 as T0 diverges. Typically, samples of size T are rolled over the entire length

T0.

Theorem IA.1 Under Equation (IA.140),

(i) When T � T0, f̄t � rf is an unbiased estimator of γ̄1,t � T
�1
0 PT0~2�1

h��T0~2 γ1,t�h for any T0. Moreover,

when T0 �ª,

f̄t � rf � γ̄1,t � Op�T�
1
2

0 �, (IA.141)

T
1
2

0 �f̄t � rf � γ̄1,t� �d N �0, σ2�. (IA.142)

Finally, σ2 can be consistently estimated by means of T�1
0 PT0~2�1

h��T0~2�ft�1�h�f̄t�h�2 under the smooth-

ness assumption T�1
0 PT0~2�1

s��T0~2�γ1,t�s � γ̄1,t�s�2
� op�1�.

The same properties apply to f̃t with respect to γ̃1,t � T
�1
0 PT0h�1 γ1,t�h.

(ii) When T @ T0, the estimators in Equation (IA.139) are special cases of the kernel regression

estimator

γ̂κ1,t �
T0

Q
h�1

fhw
κ
h � rf ,with wκh �

κ � �h�t�T�1 �
PT0s�1 κ � �s�t�T�1 � , (IA.143)

where κ�u� � 1� 1
T�1

�
0.5T
T�1

BuB 0.5T
T�1

� and κ�u� � 1��1BuB0� for f̄t and f̃t, respectively, and 1��� denotes

the indicator function.

When a) T�1
� T

1~2
0 �T ~T0�1.5

� 0; b) the kernel κ��� integrates to unity and is differentiable, and

both κ��� and κ���� go to zero faster than O��1 � u2��1� for u large; and c) the true risk premium
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satisfies γ1,t � γ1� TT0 � for a differentiable function γ1���, then

γ̂κ1,t � γ1,t � Op�T�
1
2 �, (IA.144)

T
1
2 �γ̂κ1,t � γ1,t� �d N�0, σ2S

ª

�ª

κ2�u�du�. (IA.145)

Finally, σ2 can be consistently estimated by means of T�1
0 PT0h�1�fh�1�rf � γ̂

κ
1,h�2 under the assump-

tions above.

The proof is available upon request. Part (i) follows from noting that

f̄t � rf � γ̄1,t � T
�1
0

T0~2�1

Q
h��T0~2

ut�1�h, (IA.146)

and exploiting the properties of the sample mean of i.i.d. random variables. The proof of part (ii)

follows from Robinson (1997), where the more general framework with non-i.i.d. innovations ut�1

is considered.

Part (i) of Theorem IA.1 indicates that the rolling estimators accurately estimate the average

risk premia over a given time interval, but they will not converge to the true risk premia at

some specific time t. In particular, note that the rolling estimators converge to the integrated risk

premium γ1 � limT0�ª γ̄1,t � limT0�ª
1
T0 R

T0~2
�T0~2 γ1,sds (assuming that γ1 is bounded). For inference,

a smoothness condition that limits the degree of time variation in the true risk premia is required.

Part (ii) shows how the traditional rolling sample mean estimators in Equation (IA.139) can be

obtained as special cases of the nonparametric Nadaraya-Watson estimator by suitably choosing the

kernel function.4 Although inference can be conducted for the t-th risk premium, the rate of conver-

gence is slower than the usual “square-root” speed. For example, condition T �1
�T

1~2
0 �T ~T0�1.5

� 0

is satisfied when T is not larger than T
2~3
0 . It follows that the rolling sample mean estimators

will converge at rate O�T�1~3�. For instance, when T0 � 100, only about T � 20 observations are

available for inference on the time-varying risk premia. This small T implies that the confidence

interval for the time-varying risk premium will be quite large. Therefore, not only T must diverge

for the asymptotic theory to be valid, but T needs to be larger than what is required by the usual

parametric rate.5 Notice how the results in parts (i) and (ii) require additional smoothness assump-

4For the estimator f̄t we provide the appropriate kernel function but a simpler, yet asymptotically equivalent,
expression can be obtained by noting that 1 1

T�1
�

0.5T
T�1

BuB 0.5T
T�1

� 1SuSB0.5 for T large.
5As emphasized by Robinson (1997), the above results can be extended to non-i.i.d. errors by replacing σ2 with

2πfu�0�, the spectral density of ut�1 at frequency zero (multiplied by 2π), and assuming boundedness of fu���.
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tions on the form and degree of time variation in the true risk premia. Using high-frequency data,

Ang and Kristensen (2012) rely on similar nonparametric techniques to develop tests of conditional

beta-pricing models.

IA.4. Monte Carlo Simulations

In this section, we undertake a Monte Carlo simulation experiment to study the empirical rejection

rates of the specification test and t-ratios of the bias-adjusted estimator of Shanken (1992). The

return-generating process under the null of a correctly specified asset-pricing model is given by

Rt � γ01N �B �γ1 � ft �E�ft�� � εt, (IA.147)

where εt � N �0, Σ�. To study the power of the specification test, we generate the returns on the

test assets as in Equation (2), that is, we do not impose the asset-pricing restriction.

In all of our simulation experiments, we consider balanced panels with a time-series dimension

of T � 36 and T � 72 observations. Specifically, ft in Equation (IA.147) is the excess market

return (from Kenneth French’s website) from January 2008 to December 2010 for T � 36, and the

excess market return from January 2008 to December 2013 for T � 72. In our simulation designs,

the factor realizations are taken as given and kept fixed throughout. This is consistent with the

fact that our analysis of the ex post risk premia is conditional on the realizations of the factors.

In addition, E�ft� in Equation (IA.147) is set equal to the time-series mean of ft over the 2008–

2010 sample when performing the analysis for T � 36 and to the time-series mean of ft over the

2008–2013 sample when performing the analysis for T � 72. To obtain representative values for the

parameters γ0, γ1, B, and Σ in Equation (IA.147) and Equation (2), we employ a cross-section of

3,000 stocks from CRSP in addition to the excess market return. Based on this balanced panel of

3,000 stock returns and the excess market return, for each time-series sample size, we compute the

OLS estimates of B, γ0, and γ1. Then, we set the B, γ0, and γ1 parameters in Equation (IA.147)

and in Equation (2) equal to these OLS estimates. The calibration of Σ is a more delicate task

and is described below. In the simulations, we consider cross-sections of N � 100, 500, 1,000, and

3,000 stocks. All results are based on 10,000 Monte Carlo replications. Our econometric approach,

designed for large N and fixed T, should be able to handle this large number of assets over relative

short time spans. The rejection rates of the various tests are computed using our asymptotic results
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in the paper.

IA.4.1 Percentage errors and root mean squared errors of the estimates

We start from the case in which Σ is a spherical matrix, that is, Σ � σ2IT . In the simulations,

we set σ2 equal to the cross-sectional average (over the 3,000 stocks) of the σ2
i estimated from the

data. Table IA.1 reports the percentage error (Bias) and root mean squared error (RMSE), all in

percent, of the OLS estimator and of the bias-adjusted estimator of Shanken (1992). Panels A and

B are for T � 36 and T � 72, respectively.

Table IA.1 about here

Panel A shows that the bias of the OLS estimator is substantial. For γ̂0, the bias ranges from

28.8% for N � 100 to 22.9% for N=3,000, while for γ̂1 the bias ranges from �24.8% for N � 100 to

�17.8% for N=3,000. For Γ̂�, the bias is small for N � 100 (�2.3% for γ̂�0 and 1.8% for γ̂�1 ) and

becomes negligible for N C 500. As for the RMSE, the typical bias-variance trade-off emerges up to

N � 500, with the OLS estimator exhibiting a smaller RMSE than the OLS bias-adjusted estimator.

When N A 500, the RMSE of the bias-adjusted estimator of Shanken (1992) becomes substantially

smaller than the one of the OLS estimator. Panel B for T � 72 conveys a similar message. As

expected from the theoretical analysis, the larger time-series dimension helps in reducing the bias

and RMSE associated with the OLS estimator. However, the bias for the OLS estimator is still

substantial and ranges from �18.5% for N � 100 to �11.7% for N=3,000. For the bias-adjusted

estimator, the bias becomes negligible, even for N � 100 when T � 72.

Next, we consider the case in which the Σ matrix is either diagonal or full. As emphasized

above, our theoretical results hinge upon the assumption that the model disturbances are weakly

cross-sectionally correlated. In order to generate shocks under a weak factor structure, we consider

the following data-generating process (DGP). Define

ε�1� � η �
º
θ

N δ
� c� �º

1 � θZ, (IA.148)

where η and c are T and N -vectors of i.i.d. standard normal random variables, respectively, Z

is a T �N matrix of i.i.d. standard normal random variables, 0 B θ B 1 is a shrinkage parameter

that controls the weight assigned to the diagonal and extra-diagonal elements of Σ, and δ is a

32



parameter that controls the strength of the cross-sectional dependence of the shocks (the bigger δ

is, the weaker the dependence). Our T �N matrix of shocks is then generated as

ε � ε�1�

<@@@@@@@>

σ2
1

σ2
2

�

σ2
N

=AAAAAAA?

0.5 <@@@@@@@@>

θ
N2δ c

2
1 � �1 � θ�

θ
N2δ c

2
2 � �1 � θ�

�

θ
N2δ c

2
N � �1 � θ�

=AAAAAAAA?

�0.5

,

(IA.149)

where ci is the i-th element of c. Given this specification for the shocks, for our theoretical results

to hold, we require δ A 0.

As discussed in the paper, the factor structure in Equations (IA.148)–(IA.149) induces a sub-

stantial degree of cross-correlation between the εit. We demonstrate this by means of a simple

numerical example. For each Monte Carlo replication, we compute the following quantity for the

data generating process above:

A�δ,N� � 1

N

N

Q
j�1

���
PNi�1

ixj

Sσij S
σ2
j �PNi�1

ixj

Sσij S
��� . (IA.150)

For the case of zero cross-correlation, that is, σij � 0 when i x j, A�δ,N� � 0. In contrast, when

the cross-correlations become big, A�δ,N� approaches 1. As we vary δ and N (average across 1,000

Monte Carlo iterations), we obtain

A�δ,N� value

A(0.25, 100) 0.8585
A 0.25, 500) 0.9268
A(0.25, 3,000) 0.9628

A(0.255, 100) 0.8560
A(0.255, 500) 0.9235
A(0.255, 3,000) 0.9606

A(0.5, 100) 0.5418
A(0.5, 500) 0.5680
A(0.5, 3,000) 0.5612

This simple numerical example shows that for every value of δ (which measures the degree of

dependence), the sum of the cross-covariances tends to increase with N in relative terms.

In Table IA.2, we report results for the diagonal case, that is, we set θ � 0 in the above data-

generating process. To obtain representative values of the shock variances, while accounting for
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the fact that Σ̂ is ill conditioned when T is small and N is large, we first estimate the residual

variances from the historical data. Then, at each Monte Carlo iteration, we generate a string

of Beta�p, q�-distributed random variables with the p and q parameters calibrated to the cross-

sectional mean and variance of the σ̂2
i . This resampling procedure is used to minimize the impact

of an ill-conditioned Σ̂ on the simulation results.

Table IA.2 about here

Overall, we find that the OLS estimator exhibits a slightly higher bias compared to the spherical

Σ case. The bias-adjusted estimator of Shanken (1992) continues to perform very well in terms

of bias for all the time-series and cross-sectional dimensions considered. The RMSEs of both

estimators are now a bit higher than in the spherical case, and the bias-adjusted estimator still

outperforms the OLS estimator for N C 500.

Finally, in Tables IA.3 and IA.4, we allow for weak cross-sectional dependence of the model

disturbances by setting θ � 0.5 in the above DGP.

Tables IA.3 and IA.4 about here

In Table IA.3, we consider the situation in which δ, the parameter that regulates the strength

of the cross-sectional dependence, is equal to 0.5. Consistent with our theoretical results, the bias-

adjusted estimator continues to perform very well in this scenario. Setting δ � 0.25 in Table IA.4

has only a modest effect on the bias and RMSEs of the two estimators. Overall, the first four tables

reveal a superiority of the bias-adjusted estimator of Shanken (1992) over the OLS estimator, not

only in terms of bias, but also in terms of RMSE when N A 500. Furthermore, the bias-adjusted

estimator shows little sensitivity to changes in the length of the time-series, consistent with the

idea that this estimator should perform well for any given T .

IA.4.2 Rejection rates of the t-tests

In Tables IA.5 through IA.8, we consider the empirical rejection rates of the centered t-tests of

statistical significance. The null hypothesis is that the parameter of interest is equal to its true value.

The results are reported for different levels of significance (10%, 5%, and 1%) and for different values
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of the number of time-series and cross-sectional observations using 10,000 simulations, assuming

that the model disturbances are generated from a multivariate normal distribution with covariance

matrix calibrated as in Tables IA.1 through IA.4. The t-statistics are compared with the critical

values from a standard normal distribution. We consider three t-statistics. For the OLS estimator

of the ex post risk premia, the first t-statistic is the one that uses the traditional Fama and

MacBeth (1973) standard error (tFM ), while the second t-statistic (tEIV ) is the one that uses the

EIV-adjusted standard error in Theorem 1(ii) of Shanken (1992). Both of these t-statistics were

developed in a large-T and fixed-N framework. We report them here to determine how misleading

inference can be when using these t-statistics in a large-N and fixed-T setup. Finally, the third

t-statistic is the one associated with the bias-adjusted estimator of Shanken (1992) and is based on

the asymptotic distribution in part (ii) of our Theorem 1.

Table IA.5 about here

Starting from the spherical Σ case, Table IA.5 shows that the t-statistics associated with the

OLS estimator only slightly overreject the null hypothesis for N � 100. However, as N increases,

the performance of these t-statistics substantially deteriorates. For example, when N=3,000, the

rejections rate of the Fama and MacBeth (1973) t-statistic associated with γ̂1 is either 41.6% for

T � 36 or 33.3% for T � 72 at the 5% nominal level. The strong size distortions of the Fama

and MacBeth (1973) t-test do not show any improvement when accounting for the EIV bias, due

to the estimation of the betas in the first stage. In contrast, our proposed t-statistic, based on

Theorems 1 and 2, performs extremely well for all T and N . A similar picture emerges in the Σ full

case (Tables IA.6 and IA.7), with the rejection rates of our proposed t-test being always aligned

with the critical values from a standard normal distribution.

Tables IA.6 and IA.7 about here

In Table IA.8, we increase the strength of the cross-sectional dependence of the residuals by

setting δ � 0.25.

Table IA.8 about here
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In this situation, we start to notice some slight over-rejections for the t-test associated with the

bias-adjusted estimator of Shanken (1992). For example, when T � 36 and N=3,000, the rejection

rate for the t-test associated with γ̂�1 is 6.8% at the 5% level, and when T � 72 and N=3,000, the

rejection rate for the t-test associated with γ̂�1 is 5.8% at the 5% level. Overall, these results suggest

that our proposed t-test is relatively well behaved even when moving toward a fairly strong factor

structure in the residuals. Furthermore, using the standard tools that were developed in a large-T

and fixed-N framework can lead to strong over-rejections of the null hypothesis, with the likely

consequence that a factor will be found to be priced even when it does not help in explaining the

cross-sectional variation in individual stock returns.

IA.4.3 Rejection rates of the specification test

In Tables IA.9 and IA.10, we investigate the size and power properties of our specification test S�

based on the results in Theorem 4. Table IA.9 refers to T � 36, while Table IA.10 is for T � 72.

Tables IA.9 and IA.10 about here

Since our test statistic S� has a standard normal distribution, we consider two-sided p-values

in the computation of the rejection rates. The results in the two tables suggest that the rejection

rates of our test under the null that the model is correctly specified are excellent for the spherical

and diagonal cases. When simulating with Σ full, the specification test is very well sized when

δ � 0.5 but it over-rejects a bit too much when δ � 0.25. The power properties of our specification

test are fairly good when N � 100 and excellent when N C 500. As expected, power increases when

the number of assets becomes large and the rejection rates are similar across time-series sample

sizes. Overall, these simulation results suggest that our test S� should be fairly reliable for the

time-series and cross-sectional dimensions encountered in our empirical work.
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Table IA.1
Bias and root mean squared error of the OLS and bias-adjusted Shanken (1992)
estimators in a one-factor model (Σ spherical)

Statistics N � 100 N � 500 N=1,000 N=3,000

Panel A: T � 36

Bias�γ̂0� 28.8% 26.2% 24.6% 22.9%
Bias�γ̂�0 � �2.3% �0.3% 0.3% �0.2%
RMSE�γ̂0� 0.3675 0.1875 0.1427 0.1066
RMSE�γ̂�0 � 0.4509 0.1892 0.1255 0.0699
Bias�γ̂1� �24.8% �20.0% �18.8% �17.8%
Bias�γ̂�1 � 1.8% 0.1% �0.2% 0.2%
RMSE�γ̂1� 0.3539 0.1642 0.1277 0.1,000
RMSE�γ̂�1 � 0.4529 0.1655 0.1098 0.0609

Panel B: T � 72

Bias�γ̂0� 11.6% 9.8% 8.7% 7.9%
Bias�γ̂�0 � �0.8% �0.0% �0.0% �0.1%
RMSE�γ̂0� 0.2504 0.1198 0.0877 0.0628
RMSE�γ̂�0 � 0.2881 0.1165 0.0766 0.0426
Bias�γ̂1� �18.5% �14.1% �12.4% �11.7%
Bias�γ̂�1 � 1.0% �0.0% 0.2% 0.1%
RMSE�γ̂1� 0.2437 0.1063 0.0787 0.0597
RMSE�γ̂�1 � 0.2868 0.1026 0.0674 0.0379

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000
simulated data sets, for the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
� and the bias-adjusted estimator Γ̂�

� �γ̂�0 , γ̂
��

1 ��.
The model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12.
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Table IA.2
Bias and root mean squared error of the OLS and bias-adjusted Shanken (1992)
estimators in a one-factor model (Σ diagonal)

Statistics N � 100 N � 500 N=1,000 N=3,000

Panel A: T � 36

Bias�γ̂0� 30.1% 25.8% 24.8% 23.0%
Bias�γ̂�0 � �0.7% �0.8% 0.4% �0.1%
RMSE�γ̂0� 0.4047 0.1976 0.1495 0.1100
RMSE�γ̂�0 � 0.5027 0.2054 0.1364 0.0763
Bias�γ̂1� �25.5% �19.6% �18.7% �17.9%
Bias�γ̂�1 � 0.9% 0.6% �0.1% 0.1%
RMSE�γ̂1� 0.3949 0.1733 0.1339 0.1033
RMSE�γ̂�1 � 0.5104 0.1815 0.1208 0.0681

Panel B: T � 72

Bias�γ̂0� 11.2% 10.0% 8.6% 8.0%
Bias�γ̂�0 � �1.2% 0.2% �0.1% 0.0%
RMSE�γ̂0� 0.2673 0.1246 0.0899 0.0643
RMSE�γ̂�0 � 0.3116 0.1223 0.0804 0.0446
Bias�γ̂1� �18.1% �14.3% �12.3% �11.8%
Bias�γ̂�1 � 1.5% �0.3% 0.3% �0.0%
RMSE�γ̂1� 0.2621 0.1112 0.0809 0.0612
RMSE�γ̂�1 � 0.3120 0.1087 0.0711 0.0400

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000
simulated data sets, for the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
� and the bias-adjusted estimator Γ̂�

� �γ̂�0 , γ̂
��

1 ��.
The model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12.
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Table IA.3
Bias and root mean squared error of the OLS and bias-adjusted Shanken (1992)
estimators in a one-factor model (Σ full, δ � 0.5)

Statistics N � 100 N � 500 N=1,000 N=3,000

Panel A: T � 36

Bias�γ̂0� 28.8% 26.0% 24.6% 22.7%
Bias�γ̂�0 � �2.6% �0.6% 0.3% �0.4%
RMSE�γ̂0� 0.4065 0.1960 0.1506 0.1089
RMSE�γ̂�0 � 0.5081 0.2031 0.1385 0.0760
Bias�γ̂1� �24.2% �19.6% �18.9% �17.7%
Bias�γ̂�1 � 2.7% 0.7% �0.3% 0.3%
RMSE�γ̂1� 0.3963 0.1727 0.1352 0.1028
RMSE�γ̂�1 � 0.5159 0.1806 0.1220 0.0681

Panel B: T � 72

Bias�γ̂0� 11.8% 9.4% 8.6% 8.0%
Bias�γ̂�0 � �0.5% �0.5% �0.1% �0.0%
RMSE�γ̂0� 0.2671 0.1227 0.0910 0.0642
RMSE�γ̂�0 � 0.3099 0.1225 0.0820 0.0447
Bias�γ̂1� �19.0% �13.6% �12.4% �11.7%
Bias�γ̂�1 � 0.5% 0.6% 0.1% 0.1%
RMSE�γ̂1� 0.2614 0.1104 0.0819 0.0611
RMSE�γ̂�1 � 0.3096 0.1100 0.0720 0.0405

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000
simulated data sets, for the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
� and the bias-adjusted estimator Γ̂�

� �γ̂�0 , γ̂
��

1 ��.
The model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12.
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Table IA.4
Bias and root mean squared error of the OLS and bias-adjusted Shanken (1992)
estimators in a one-factor model (Σ full, δ � 0.25)

Statistics N � 100 N � 500 N=1,000 N=3,000

Panel A: T � 36

Bias�γ̂0� 28.8% 26.6% 24.2% 23.5%
Bias�γ̂�0 � �2.5% 0.1% �0.3% 0.5%
RMSE�γ̂0� 0.4191 0.2053 0.1536 0.1135
RMSE�γ̂�0 � 0.5254 0.2152 0.1450 0.0809
Bias�γ̂1� �24.8% �19.9% �18.5% �18.3%
Bias�γ̂�1 � 2.0% 0.2% 0.2% �0.4%
RMSE�γ̂1� 0.4116 0.1824 0.1380 0.1072
RMSE�γ̂�1 � 0.5355 0.1935 0.1288 0.0731

Panel B: T � 72

Bias�γ̂0� 12.2% 9.7% 8.8% 7.9%
Bias�γ̂�0 � �0.1% �0.2% 0.1% �0.1%
RMSE�γ̂0� 0.2795 0.1287 0.0939 0.0645
RMSE�γ̂�0 � 0.3252 0.1292 0.0853 0.0459
Bias�γ̂1� �19.3% �13.9% �12.6% �11.7%
Bias�γ̂�1 � 0.0% 0.2% �0.1% 0.2%
RMSE�γ̂1� 0.2761 0.1155 0.0854 0.0615
RMSE�γ̂�1 � 0.3279 0.1158 0.0763 0.0416

The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000
simulated data sets, for the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
� and the bias-adjusted estimator Γ̂�

� �γ̂�0 , γ̂
��

1 ��.
The model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12.
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Table IA.5
Size of t-tests in a one-factor model (Σ spherical)

Panel A: T � 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.128 0.074 0.021 0.141 0.078 0.022
500 0.186 0.113 0.040 0.213 0.132 0.047

1,000 0.243 0.156 0.059 0.290 0.197 0.075
3,000 0.438 0.324 0.153 0.538 0.416 0.219

tEIV �γ̂0� tEIV �γ̂1�
100 0.127 0.073 0.020 0.140 0.077 0.022
500 0.185 0.113 0.039 0.211 0.132 0.047

1,000 0.243 0.156 0.059 0.289 0.197 0.075
3,000 0.437 0.323 0.152 0.537 0.415 0.218

t�γ̂�0 � t�γ̂�1 �
100 0.097 0.051 0.010 0.100 0.048 0.010
500 0.105 0.053 0.011 0.107 0.055 0.012

1,000 0.103 0.052 0.010 0.105 0.054 0.011
3,000 0.098 0.051 0.011 0.100 0.049 0.010
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Table IA.5 (Continued)
Size of t-tests in a one-factor model (Σ spherical)

Panel B: T � 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.123 0.063 0.016 0.124 0.066 0.016
500 0.167 0.099 0.030 0.181 0.109 0.033

1,000 0.211 0.133 0.041 0.237 0.154 0.053
3,000 0.378 0.263 0.109 0.449 0.333 0.150

tEIV �γ̂0� tEIV �γ̂1�
100 0.122 0.063 0.015 0.123 0.065 0.016
500 0.166 0.099 0.030 0.181 0.108 0.033

1,000 0.210 0.132 0.040 0.236 0.153 0.052
3,000 0.377 0.261 0.108 0.448 0.331 0.149

t�γ̂�0 � t�γ̂�1 �
100 0.096 0.047 0.009 0.100 0.048 0.009
500 0.097 0.049 0.010 0.098 0.049 0.010

1,000 0.100 0.047 0.009 0.103 0.048 0.009
3,000 0.103 0.054 0.010 0.106 0.054 0.010

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM���
denotes the t-statistic associated with the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the traditional Fama

and MacBeth (1973) standard error, tEIV ��� denotes the t-statistic associated with the OLS estimator
Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the EIV-adjusted standard error in Theorem 1(ii) of Shanken (1992) and t���

denotes the t-statistic associated with the Shanken estimator Γ̂�
� �γ̂�0 , γ̂

��

1 ��, which uses the standard error
formulae of Theorem 2. Finally, the rejection rates for the t-test associated with the bias-adjusted estimator
of Shanken (1992) are based on the asymptotic distribution in part (ii) of Theorem 1. The t-statistics are
compared with the critical values from a standard normal distribution.
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Table IA.6
Size of t-tests in a one-factor model (Σ diagonal)

Panel A: T � 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.122 0.066 0.019 0.125 0.072 0.018
500 0.163 0.104 0.033 0.179 0.112 0.036

1,000 0.226 0.141 0.050 0.248 0.166 0.060
3,000 0.398 0.292 0.128 0.474 0.362 0.174

tEIV �γ̂0� tEIV �γ̂1�
100 0.120 0.065 0.018 0.124 0.070 0.017
500 0.163 0.103 0.033 0.179 0.111 0.036

1,000 0.225 0.141 0.050 0.247 0.165 0.060
3,000 0.397 0.291 0.127 0.473 0.362 0.173

t�γ̂�0 � t�γ̂�1 �
100 0.093 0.045 0.011 0.091 0.044 0.010
500 0.102 0.051 0.010 0.096 0.049 0.011

1,000 0.099 0.048 0.009 0.101 0.051 0.009
3,000 0.099 0.053 0.012 0.099 0.051 0.010
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Table IA.6 (Continued)
Size of t-tests in a one-Factor model (Σ diagonal)

Panel B: T � 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.115 0.060 0.015 0.121 0.064 0.015
500 0.157 0.089 0.027 0.165 0.096 0.030

1,000 0.199 0.121 0.036 0.219 0.137 0.044
3,000 0.353 0.250 0.103 0.416 0.302 0.134

tEIV �γ̂0� tEIV �γ̂1�
100 0.114 0.059 0.014 0.119 0.063 0.015
500 0.157 0.089 0.027 0.163 0.096 0.029

1,000 0.198 0.120 0.036 0.218 0.136 0.044
3,000 0.351 0.248 0.102 0.414 0.301 0.132

t�γ̂�0 � t�γ̂�1 �
100 0.097 0.048 0.010 0.096 0.048 0.007
500 0.095 0.046 0.010 0.093 0.047 0.010

1,000 0.097 0.049 0.011 0.095 0.049 0.010
3,000 0.103 0.052 0.010 0.102 0.051 0.010

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM���
denotes the t-statistic associated with the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the traditional Fama

and MacBeth (1973) standard error, tEIV ��� denotes the t-statistic associated with the OLS estimator
Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the EIV-adjusted standard error in Theorem 1(ii) of Shanken (1992) and t���

denotes the t-statistic associated with the Shanken estimator Γ̂�
� �γ̂�0 , γ̂

��

1 ��, which uses the standard error
formulae of Theorem 2. Finally, the rejection rates for the t-test associated with the bias-adjusted estimator
of Shanken (1992) are based on the asymptotic distribution in part (ii) of Theorem 1. The t-statistics are
compared with the critical values from a standard normal distribution.
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Table IA.7
Size of t-tests in a one-factor model (Σ full, δ � 0.5)

Panel A: T � 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.126 0.069 0.020 0.125 0.070 0.021
500 0.166 0.097 0.030 0.181 0.109 0.034

1,000 0.227 0.143 0.049 0.258 0.170 0.063
3,000 0.393 0.282 0.123 0.472 0.354 0.168

tEIV �γ̂0� tEIV �γ̂1�
100 0.124 0.068 0.019 0.123 0.068 0.021
500 0.166 0.096 0.030 0.180 0.109 0.034

1,000 0.227 0.142 0.049 0.257 0.170 0.063
3,000 0.392 0.281 0.122 0.470 0.353 0.167

t�γ̂�0 � t�γ̂�1 �
100 0.097 0.045 0.012 0.094 0.046 0.011
500 0.094 0.045 0.009 0.095 0.045 0.010

1,000 0.106 0.051 0.011 0.102 0.050 0.010
3,000 0.100 0.051 0.011 0.100 0.053 0.011
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Table IA.7 (Continued)
Size of t-tests in a one-factor model (Σ full, δ � 0.5)

Panel B: T � 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.113 0.062 0.014 0.119 0.061 0.014
500 0.150 0.086 0.025 0.165 0.096 0.029

1,000 0.202 0.127 0.041 0.228 0.141 0.047
3,000 0.353 0.246 0.102 0.417 0.302 0.137

tEIV �γ̂0� tEIV �γ̂1�
100 0.112 0.062 0.014 0.117 0.060 0.014
500 0.149 0.085 0.025 0.164 0.096 0.029

1,000 0.201 0.126 0.041 0.227 0.141 0.047
3,000 0.352 0.244 0.100 0.415 0.301 0.136

t�γ̂�0 � t�γ̂�1 �
100 0.094 0.046 0.010 0.091 0.044 0.009
500 0.095 0.047 0.010 0.094 0.050 0.011

1,000 0.105 0.052 0.011 0.102 0.052 0.010
3,000 0.102 0.052 0.012 0.102 0.053 0.013

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM���
denotes the t-statistic associated with the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the traditional Fama

and MacBeth (1973) standard error, tEIV ��� denotes the t-statistic associated with the OLS estimator
Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the EIV-adjusted standard error in Theorem 1(ii) of Shanken (1992) and t���

denotes the t-statistic associated with the Shanken estimator Γ̂�
� �γ̂�0 , γ̂

��

1 ��, which uses the standard error
formulae of Theorem 2. Finally, the rejection rates for the t-test associated with the bias-adjusted estimator
of Shanken (1992) are based on the asymptotic distribution in part (ii) of Theorem 1. The t-statistics are
compared with the critical values from a standard normal distribution.
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Table IA.8
Size of t-tests in a one-factor model (Σ full, δ � 0.25)

Panel A: T � 36

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.125 0.068 0.017 0.124 0.068 0.018
500 0.163 0.095 0.034 0.174 0.109 0.039

1,000 0.215 0.131 0.046 0.241 0.155 0.057
3,000 0.389 0.280 0.125 0.459 0.343 0.164

tEIV �γ̂0� tEIV �γ̂1�
100 0.123 0.067 0.017 0.123 0.067 0.017
500 0.162 0.095 0.033 0.174 0.109 0.039

1,000 0.214 0.130 0.046 0.240 0.155 0.057
3,000 0.388 0.278 0.124 0.458 0.341 0.163

t�γ̂�0 � t�γ̂�1 �
100 0.109 0.060 0.015 0.112 0.059 0.015
500 0.115 0.062 0.018 0.117 0.064 0.019

1,000 0.122 0.065 0.016 0.119 0.066 0.017
3,000 0.121 0.069 0.018 0.124 0.068 0.018
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Table IA.8 (Continued)
Size of t-tests in a one-factor model (Σ full, δ � 0.25)

Panel B: T � 72

N 0.10 0.05 0.01 0.10 0.05 0.01

tFM�γ̂0� tFM�γ̂1�
100 0.119 0.060 0.014 0.123 0.066 0.015
500 0.155 0.091 0.025 0.163 0.098 0.030

1,000 0.199 0.126 0.042 0.222 0.138 0.050
3,000 0.334 0.229 0.092 0.390 0.280 0.124

tEIV �γ̂0� tEIV �γ̂1�
100 0.117 0.059 0.014 0.122 0.065 0.015
500 0.155 0.090 0.025 0.162 0.098 0.030

1,000 0.198 0.125 0.042 0.222 0.138 0.049
3,000 0.333 0.228 0.091 0.388 0.278 0.123

t�γ̂�0 � t�γ̂�1 �
100 0.108 0.057 0.012 0.110 0.059 0.015
500 0.114 0.062 0.015 0.119 0.065 0.015

1,000 0.121 0.063 0.015 0.122 0.067 0.016
3,000 0.111 0.057 0.012 0.114 0.058 0.014

The table presents the size properties of t-tests of statistical significance. The null hypothesis is that the
parameter of interest is equal to its true value. The results are reported for different levels of significance
(10%, 5%, and 1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming
that the model disturbances are generated from a multivariate normal distribution with a covariance matrix
calibrated to 3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12. tFM���
denotes the t-statistic associated with the OLS estimator Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the traditional Fama

and MacBeth (1973) standard error, tEIV ��� denotes the t-statistic associated with the OLS estimator
Γ̂ � �γ̂0, γ̂

�

1�
�, which uses the EIV-adjusted standard error in Theorem 1(ii) of Shanken (1992) and t���

denotes the t-statistic associated with the Shanken estimator Γ̂�
� �γ̂�0 , γ̂

��

1 ��, which uses the standard error
formulae of Theorem 2. Finally, the rejection rates for the t-test associated with the bias-adjusted estimator
of Shanken (1992) are based on the asymptotic distribution in part (ii) of Theorem 1. The t-statistics are
compared with the critical values from a standard normal distribution.
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Table IA.9
Rejection rates of the specification test in a one-factor model (T � 36)

Size Power

N 10% 5% 1% 10% 5% 1%

Panel A: Σ spherical

100 0.103 0.049 0.009 0.882 0.823 0.675
500 0.098 0.050 0.009 1.000 1.000 0.998

1,000 0.101 0.052 0.011 1.000 1.000 1.000
3,000 0.101 0.050 0.009 1.000 1.000 1.000

Panel B: Σ diagonal

100 0.085 0.037 0.010 0.634 0.529 0.340
500 0.093 0.046 0.010 0.983 0.967 0.894

1,000 0.099 0.050 0.009 1.000 1.000 0.996
3,000 0.097 0.046 0.011 1.000 1.000 1.000

Panel C: Σ full (δ � 0.5)

100 0.084 0.040 0.011 0.639 0.534 0.332
500 0.101 0.050 0.012 0.982 0.965 0.887

1,000 0.095 0.049 0.011 1.000 1.000 0.997
3,000 0.108 0.056 0.011 1.000 1.000 1.000

Panel D: Σ full (δ � 0.25)

100 0.110 0.060 0.021 0.621 0.522 0.336
500 0.145 0.084 0.029 0.977 0.956 0.874

1,000 0.145 0.088 0.029 1.000 0.999 0.993
3,000 0.146 0.087 0.030 1.000 1.000 1.000

The table presents the size and power properties of our test S� of correct model specification. The null hy-
pothesis is that the model is correctly specified. The alternative hypothesis is that the model is misspecified.
The results are reported for different levels of significance (10%, 5%, and 1%) and for different values of the
number of stocks (N) using 10,000 simulations, assuming that the model disturbances are generated from a
multivariate normal distribution with a covariance matrix calibrated to 3,000 NYSE-AMEX-NASDAQ indi-
vidual stock returns over the period 2008:1–2010:12 (T � 36). Finally, the rejection rates for the specification
test are based on the asymptotic distribution in Theorem 4. The rejection rates of the test are based on
two-sided p-values.
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Table IA.10
Rejection rates of the specification test in a one-factor model (T � 72)

Size Power

N 10% 5% 1% 10% 5% 1%

Panel A: Σ spherical

100 0.095 0.045 0.009 0.929 0.891 0.781
500 0.101 0.047 0.009 1.000 1.000 1.000

1,000 0.104 0.055 0.010 1.000 1.000 1.000
3,000 0.099 0.048 0.010 1.000 1.000 1.000

Panel B: Σ diagonal

100 0.085 0.041 0.010 0.771 0.676 0.480
500 0.098 0.046 0.010 1.000 1.000 0.997

1,000 0.101 0.049 0.012 1.000 1.000 1.000
3,000 0.102 0.051 0.011 1.000 1.000 1.000

Panel C: Σ full (δ � 0.5)

100 0.085 0.039 0.011 0.770 0.681 0.482
500 0.092 0.046 0.009 1.000 0.999 0.996

1,000 0.094 0.049 0.010 1.000 1.000 1.000
3,000 0.097 0.047 0.010 1.000 1.000 1.000

Panel D: Σ full (δ � 0.25)

100 0.120 0.063 0.023 0.749 0.660 0.470
500 0.140 0.083 0.029 1.000 0.999 0.994

1,000 0.149 0.086 0.030 1.000 1.000 1.000
3,000 0.153 0.093 0.034 1.000 1.000 1.000

The table presents the size and power properties of our test S
� of correct model specification presented

in Theorem 3. The null hypothesis is that the model is correctly specified. The alternative hypothesis is
that the model is misspecified. The results are reported for different levels of significance (10%, 5%, and
1%) and for different values of the number of stocks (N) using 10,000 simulations, assuming that the model
disturbances are generated from a multivariate normal distribution with a covariance matrix calibrated to
3,000 NYSE-AMEX-NASDAQ individual stock returns over the period 2008:1–2013:12 (T � 72). Finally,
the rejection rates for the specification test are based on the asymptotic distribution in Theorem 4. The
rejection rates of the test are based on two-sided p-values.
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IA.5. Unbalanced Panels

In this section, we extend our methodology to the case of an unbalanced panel, focusing for simplic-

ity on the base case of correctly specified models with constant risk premia. Following Gagliardini,

Ossola, and Scaillet (2016), we assume a missing at random design (see, for example, Rubin 1976),

that is, independence between unobservability and return generating process. This allows us to

keep the factor structure linear. In the following analysis, we explicitly account for the randomness

of Ti, the time-series sample size for asset i. Define the following T � T matrix

Ji � diag�Ji1�Jit�JiT � i � 1, . . . ,N, (IA.151)

where PTt�1 Jit � Ti and Jit � 1 if the return on asset i is observed by the econometrician at date t,

and zero otherwise. In addition, let Ri,u � JiRi, Fi,u � JiF , and εi,u � Jiεi, and assume that asset

returns are governed by the multifactor model

JitRit � Jitαi � Jitf
�

tβi � Jitεit, (IA.152)

that is, the same data generating process of Section 1 pre-multiplied by Jit. Let R̄i,u �
1
Ti
PTt�1 JitRit,

f̄i,u �
1
Ti
PTt�1 Jitft, and ε̄i,u �

1
Ti
PTt�1 Jitεit. Averaging Equation (IA.152) over time, imposing the

asset-pricing restriction, and noting that E�Rit� � αi � β�iE�ft� yields

R̄i,u � γ0 � β̂
�

i,uγ
P
1i,u � η

P
i,u, (IA.153)

where γP1i,u � γ1 � f̄i,u �E�ft�, ηPi,u � ε̄i,u � �β̂i,u � βi��γP1i,u, β̂i,u � βi � P
�

i,uεi, Pi,u � F̃i,u�F̃ �

i,uF̃i,u��1,

and F̃i,u � Fi,u � Ji1T f̄
�

i,u. Since the panel is unbalanced, there is now a sequence of ex post risk

premia, one for each asset i.

In matrix form, we have

R̄u � γ01N �

<@@@@@@>

β̂�1,u 0�K��N�1�
� � �

0�K��N�1� β̂�N,u

=AAAAAA?

<@@@@@>
γP11,u

�

γP1N,u

=AAAAA?
�

<@@@@@>
ηP1,u
�

ηPN,u

=AAAAA?
, (IA.154)

where R̄u � �R̄1,u, . . . , R̄N,u��. Define the N�K matrix X̂u � �1N , B̂u�, where B̂u � �β̂1,u, . . . , β̂N,u��.
Denote by ε̂i,u the T -vector of residuals from the first-pass (unbalanced) OLS regressions in

Ri,u � αiJi1T � Fi,uβi � εi,u, i � 1, . . . ,N. (IA.155)
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The modified estimator of the ex post risk premia in the unbalanced panel case is

Γ̂�

u �

<@@@>
γ̂�0,u

γ̂�1,u

=AAA? � �Σ̂X,u � Λ̂u��1 X̂ �

uR̄u
N

, (IA.156)

where Σ̂X,u �
X̂�

uX̂u
N , Λ̂u �

<@@@>
0 0�K

0K σ̂2
uF̂u

=AAA? with σ̂2
u �

1
N PNi�1 � 1

Ti�K�1tr �ε̂i,uε̂�i,u��
and F̂u �

1
N PNi�1 �F̃ �

i,uF̃i,u��1
.

The estimator Γ̂�

u in Equation (IA.156) generalizes the bias-adjusted estimator of Shanken (1992)

to the unbalanced panel case and coincides with the Shanken’s estimator when the panel is bal-

anced. Let ΣX,i � � 1 β�i
βi βiβ

�

i
	 , ΣFβ � plim 1

N PNi�1 β
�

i F
�F βiΣX,i, Fu � plim 1

N PNi�1P
�

i,uPi,u, and

Qi,u �
Ji1T
Ti

� Pi,uγ
P
1 . Finally, define Zi,u � ��Qi,u aPi,u� � vec�Mi,u�

Ti�K�1 γP1
�P �

i,uPi,u	 and Mi,u �

�IT � JiD�D�JiD��1D�Ji�Ji.
The following additional assumptions are required for the asymptotic analysis in the unbalanced

panel case.

Assumption IA.1

sup
i

SSβiSS B C @ª, (IA.157)

where C is a generic constant.

Assumption IA.2 Jit is i.i.d. across i and t. Let C be a generic constant, and assume that

Ti AK � 1, for every i � 1, . . . ,N. Then, we have

(i)

τ � E � 1

Ti
� B C @ª and θ � Var�Jit

Ti
� B C @ª. (IA.158)

(ii)

WE �Jit
T 4
i

	W B C @ª. (IA.159)

(iii)

E � Jit�Ti �K � 1�2
	 B C @ª. (IA.160)
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(iv) Let dt be the t-th row of D and define pit,u � Jitdt �D�JiD��1
D�Ji. Then, we have

E � pit,up
�

it,u�Ti �K � 1�2
	 B C @ª. (IA.161)

(v) Let F̃i,u � Fi,u � Ji1T
1�T JiF

Ti
, where Fi,u � JiF . Then,

E ��F̃ �

i,uF̃i,u��1� B C @ª (IA.162)

and

E TT�F̃ �

i,uF̃i,u��1TT4 B C @ª. (IA.163)

(vi) Let mu
ts,i be the �t, s�-th element of the matrix Mi,u � �IT � JiD�D�JiD��1D�Ji�Ji, and define

M
�2�
i,u �Mi,u bMi,u, where b denotes the Hadamard product operator. Then,

sup
i
E �Smu

ts,iS8� B C @ª (IA.164)

and

1

N

N

Q
i�1

tr �M �2�
i,u � p

� C A 0. (IA.165)

Assumption IA.1 is a boundedness assumption. In assumption IA.2, we assume a missing

at random design, that is, independence between unobservability and return generating process.

Assumptions IA.2(i)–(iv) are ruling out that the distribution of the Ti is too concentrated around

zero. Assumption IA.2(v) is essentially extending the non-singularity of the covariance matrix

of the factors to the missing-at-random design, and assumption IA.2(vi) is technical in nature.

The consistency and asymptotic normality of the proposed estimator are provided in the following

theorem. The proofs of the theorems in this section are available upon request.

Theorem IA.2 Under assumptions 1–6 and assumptions IA.1–IA.2, as N �ª, we have

(i)

Γ̂�

u � ΓP � Op � 1º
N

� . (IA.166)
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(ii)

º
N �Γ̂�

u � ΓP � d
� N �0K�1, Vu �Σ�1

X �Wu �Θ�Σ�1
X � , (IA.167)

where

Vu � σ
2 �τ � γP �

1 Fuγ
P
1 �Σ�1

X , Wu �

<@@@@@>
0 0�K

0K plim 1
N PNi�1Z

�

i,uUεZi,u

=AAAAA?
, Θ � θΣFβ � σ

2Ψ,

with Ψ � � 0 γP1
�Fγ

F �

γγ
P
1 Fγβ

	 , Fγ � plim 1
N PNi�1P

�

i,uPi,u�f̄i,u�f̄��βi, and Fγβ � plim 1
N PNi�1�βiβ�i�f̄i,u�

f̄�γP1 �P �

i,uPi,u �P
�

i,uPi,uγ
P
1 �f̄i,u � f̄��βiβ�i � �f̄i,u � f̄��βiβ�i�f̄i,u � f̄�P �

i,uPi,u�.
It should be noted that the asymptotic covariance matrix in Theorem IA.2 is similar to the

one for the balanced panel case provided in Theorem 1. The additional terms in part (ii) of

Theorem IA.2 account for the randomness of the sample size Ti. When the panel is balanced,

Theorem IA.2 reduces to Theorem 1 since Ti � T , Jit � 1, f̄i,u � f̄ , which implies that τ � 1~T , θ � 0,

Ψ � Θ � 0�K�1���K�1�, and all the relevant quantities do not depend on i anymore.

For statistical inference, we need a consistent estimator of the asymptotic covariance ma-

trix of Γ̂�

u, as illustrated in the next theorem. Let τ̂ �
1
N PNi�1

1
Ti

, Σ̂a
X,i �

<@@@@>
1 β̂�i,u
β̂i,u Σ̂a

β̂i,u

=AAAA?
, where

Σ̂a
β̂i,u

� β̂i,uβ̂
�

i,u � σ̂
2
uP

�

i,uPi,u, b̂i � tr�F �F Σ̂a
β̂i,u

�, and Ai � P
�

i,uPi,uF
�F . Also, let Ûi � PTt�1�P �

i,u a

f �tP
�

i,u�Ûε�Pi,uaPi,uft�, where Ûε (as in the balanced panel case) is a plug-in estimator of Uε that de-

pends only on σ̂4,u �

1
N P

T
t�1P

N
i�1 ε̂

4
it,u

3 1
N P

N
i�1 tr�M�2�

i,u � , with ε̂it,u being the t-th element of ε̂i,u and M
�2�
i,u �Mi,ubMi,u.

Finally, let Σ̂Fβ �
1
N PNi�1 b̂iΣ̂

a
X,i � Υ̂, where Υ̂ �

1
N PNi�1

<@@@@>
0 2σ̂2

uβ̂
�

i,uA
�

i

2σ̂2
uAiβ̂i,u 2σ̂2

u�AiΣ̂a
β̂i,u

� Σ̂a
β̂i,u

A�

i� � Ûi
=AAAA?
,

θ̂ �
1
NT PTt�1PNi�1

Jit
T 2
i
�

1
T 2 , and Ẑi,u � ��Q̂i,u aPi,u� � vec�Mi,u�

Ti�K�1 γ̂
�
�

1,uP
�

i,uPi,u�, where Q̂i,u �
Ji1T
Ti

�

Pi,uγ̂
�

1,u.

Theorem IA.3 Under assumptions 2–6 and assumptions IA.1–IA.2, setting κ4 � 0, as N �ª, we

have

V̂u � �Σ̂X,u � Λ̂u��1 �Ŵu � Θ̂� �Σ̂X,u � Λ̂u��1 p
� Vu �Σ�1

X �Wu �Θ�Σ�1
X , (IA.168)

where

V̂u � �σ̂2
u �τ̂ � γ̂��1,uF̂uγ̂

�

1,u�� �Σ̂X,u � Λ̂u��1
, Ŵu �

<@@@@@>
0 0�K

0K
1
N PNi�1 Ẑ

�

i,uÛεẐi,u

=AAAAA?
, Θ̂ � θ̂Σ̂Fβ�σ̂

2
uΨ̂,
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with Ψ̂ � � 0 γ̂�
�

1,uF̂γ

F̂ �

γ γ̂
�

1,u F̂γβ
	 , F̂γ �

1
N PNi�1P

�

i,uPi,u�f̄i,u � f̄��β̂i,u, and F̂γβ �
1
N PNi�1 Σ̂a

β̂i,u
�f̄i,u �

f̄�γ̂��1,uP
�

i,uPi,u �
1
N PNi�1P

�

i,uPi,uγ̂
�

1,u�f̄i,u � f̄��Σ̂a
β̂i,u

�
1
N PNi�1�f̄i,u � f̄��Σ̂a

β̂i,u
�f̄i,u � f̄�P �

i,uPi,u.

Turning to specification testing, let

êPu � R̄u � X̂uΓ̂�

u (IA.169)

be the N -vector of ex post sample pricing errors. Define Q̂u �
êP

�

u êPu
N as the sum of squared ex post

sample pricing errors and denote by Σ̂a
β̂u

� � B̂�

uB̂u
N � σ̂2

uF̂u�, b̂ � tr�F �F Σ̂a
β̂u
�,

ωN �
1
N PNi�1PTt�1 �JitTi � 1

T �2
tr �Pi,uftf �tP �

i,u�, and ZQi,u � ��Q�

i,u aQ
�

i,u� � Q�

i,uQi,uvec�Mi,u��
Ti�K�1 ��. Fi-

nally, consider the centered statistic

Su �
º
N �Q̂u � σ̂2

u�τ̂ � γ̂��1,uF̂uγ̂
�

1,u� � θ̂ b̂� . (IA.170)

Theorem IA.4 Under assumptions 2–6 and assumptions IA.1–IA.2, as N �ª, we have

Su
d
� N �0,Vu �Wu� , (IA.171)

where Vu � plim 1
N PNi�1 Z̃

�

Qi,u
UεZ̃Qi,u and Wu � 4σ2plim 1

N PNi�1W
�

iWi, with

Z̃Qi,u � ZQi,u � �ωN �vec�Mi,u�
Ti �K � 1

� � T

Q
t�1

�Jit
Ti

�
1

T
�2

vec �Pi,uftf �tP �

i,u��
and

Wi � ��γP1i,u � γP1 ��βiQ�

i,u �

T

Q
t�1

�Jit
Ti

�
1

T
�2

β�iftf
�

tP
�

i,u	
�

.

Note that when the panel is balanced, Theorem IA.4 reduces to Theorem 4 since Jit
Ti

�
1
T

and f̄i,u � f̄ , which implies that Wu � 0, Qi,u � Q, and Z̃Qi,u � ZQi,u � ZQ. This variance

can be consistently estimated. Let ẐQi,u � ��Q̂�

i,u a Q̂
�

i,u� � Q̂�

i,uQ̂i,uvec�Mi,u��
Ti�K�1 �� and ˆ̃ZQi,u � ẐQi,u �

�ωN �vec�Mi,u�
Ti�K�1 � �PTt�1 �JitTi � 1

T �2
vec �Pi,uftf �tP �

i,u��. Then, the estimators of Vu and Wu are given

by

V̂u �
1

N

N

Q
i�1

ˆ̃Z �

Qi,uÛε,u
ˆ̃ZQi,u (IA.172)
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and

Ŵu � 4σ̂2
u

1

N

N

Q
i�1

�
�Q̂�

i,uQ̂i,u�f̄i,u � f̄��Σ̂a
β̂i,u

�f̄i,u � f̄���
�4σ̂2

u

1

N

N

Q
i�1

�
�
T

Q
t�1

�Jit
Ti

�
1

T
�4

tr�ftf �tP �

i,uPi,uftf
�

t Σ̂
a
β̂i,u

�

�2Q̂�

i,uPi,u

T

Q
t�1

�Jit
Ti

�
1

T
�2

ftf
�

t Σ̂
a
β̂i,u

�f̄i,u � f̄���.
(IA.173)

IA.6. Empirical Application: CAPM, Fama and French (1993) Three-Factor Model,

and Fama and French (2015) Five-Factor Model

This section contain several figures for the CAPM and the Fama and French (1993) three-factor

model (FF3). We also report further results for the Fama and French (2015) five-factor model

(FF5). We first consider specification testing. Then, we present the risk and characteristic premia

estimates for these three beta-pricing models. All figures are formatted as in the paper.
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Figure IA.1
Specification testing for CAPM

The figure presents the time series of p-values (black line) of S� for CAPM. Rolling time windows of three
(top panel) and 10 years (bottom panel) are used. The dashed dotted red line denotes the 5% significance
level of the test. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s website from January 1966 to December 2013.
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Figure IA.2
Specification testing for the liquidity-augmented CAPM

The figure presents the time series of p-values (black line) of S� for the liquidity-augmented CAPM. Rolling
time windows of three (top panel) and 10 years (bottom panel) are used. The dashed dotted red line denotes
the 5% significance level of the test. We use monthly return data on individual stocks from CRSP and factor
data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to December 2013.
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Figure IA.3
Specification testing for CAPM using the Gibbons, Ross, and Shanken (1989) and
Gungor and Luger (2016) tests

The figure presents the time series of p-values of the GRS (blue line) and GL (green line) tests for CAPM.
Rolling time windows of three (top panel) and 10 years (bottom panel) are used. The dashed dotted red
line denotes the 5% significance level of the tests. The gray bars are for the periods in which the GL test is
inconclusive. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s website from January 1966 to December 2013.
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Figure IA.4
Estimates and confidence intervals for the market risk premium in CAPM

The figure presents the estimates and the associated confidence intervals for the market risk premium in
CAPM. The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents
the 95% confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS
CSR estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based
on the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample
mean. We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s
website from January 1966 to December 2013.
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Figure IA.5
Estimates and confidence intervals for the time-varying market risk premium in
CAPM

The figure presents the estimates and the associated confidence intervals for the time-varying market risk
premium in CAPM. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the
market excess return (dashed dotted red line) and the corresponding 95% confidence interval (orange band).
The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding 95%
confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We use
monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website from
January 1966 to December 2013. The daily data on the market excess return is from Kenneth French’s
website. The light gray bands correspond to the NBER recession dates and to various economic and financial
crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-
1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10]
1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-
2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.6
Estimates and confidence intervals for the liquidity risk premium in the
liquidity-augmented CAPM

The figure presents the estimates and the associated confidence intervals for the liquidity risk premium in
the liquidity-augmented CAPM. The bold black line is for the Shanken (1992) estimator. The corresponding
gray band represents the 95% confidence intervals based on the large-N standard errors of Theorem 5. We
also report the OLS CSR estimator (dotted red line) and the corresponding 95% confidence interval (striped
orange band) based on the traditional large-T standard errors. Finally, the dashed black line is for the
mimicking portfolio rolling factor sample mean. We use monthly return data on individual stocks from
CRSP and factor data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to December
2013.
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Figure IA.7
Estimates and confidence intervals for the time-varying liquidity risk premium in the
liquidity-augmented CAPM

The figure presents the estimates and the associated confidence intervals for the time-varying liquidity risk
premium in the liquidity-augmented CAPM. The top panel reports the Shanken (1992) large-N estimates,
expressed in terms of a single line (black line) and in terms of horizontal bars of length T � 36 observations
(blue line), with the corresponding 95% confidence intervals based on the large-N standard errors of The-
orem 5 (gray band). We also report the rolling sample mean (using fixed rolling windows of six months)
of the corresponding mimicking portfolio excess return (dashed dotted red line) and the corresponding 95%
confidence interval (orange band). The bottom panel reports the modified Shanken (1992) estimator (black
line) and the corresponding 95% confidence interval (gray band) based on the large-N standard errors of
part (ii) of Theorem 3. We use monthly return data on individual stocks from CRSP and factor data from
Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to December 2013. The light gray bands
correspond to the NBER recession dates and to various economic and financial crises. They are numbered
as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-1980:7, [5] 1981:7-1982:11,
[6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10] 1991:8-1992:12, [11] 1994:7-
1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-2001:11, [16] 2005:8-2005:11,
[17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.8
Specification testing for the Fama and French (1993) (FF3) three-factor model

The figure presents the time series of p-values (black line) of S� for FF3. Rolling time windows of three (top
panel) and 10 years (bottom panel) are used. The dashed dotted red line denotes the 5% significance level
of the test. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s website from January 1966 to December 2013.
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Figure IA.9
Specification testing for the liquidity-augmented Fama and French (1993) (FF3)
three-factor model

The figure presents the time series of p-values (black line) of S� for the liquidity-augmented FF3 model.
Rolling time windows of three (top panel) and 10 years (bottom panel) are used. The dashed dotted red line
denotes the 5% significance level of the test. We use monthly return data on individual stocks from CRSP
and factor data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to December 2013.
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Figure IA.10
Specification testing for the Fama and French (1993) (FF3) three-factor model using
the Gibbons, Ross, and Shanken (1989) and Gungor and Luger (2016) tests

The figure presents the time series of p-values of the GRS (blue line) and GL (green line) tests for FF3.
Rolling time windows of three (top panel) and 10 years (bottom panel) are used. The dashed dotted red
line denotes the 5% significance level of the tests. The gray bars are for the periods in which the GL test is
inconclusive. We use monthly return data on individual stocks from CRSP and factor data from Kenneth
French’s website from January 1966 to December 2013.
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Figure IA.11
Estimates and confidence intervals for the market risk premium in the Fama and
French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the market risk premium in
FF3. The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the
95% confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.12
Estimates and confidence intervals for the size risk premium in the Fama and French
(1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the size risk premium in FF3.
The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the 95%
confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.13
Estimates and confidence intervals for the value risk premium in the Fama and
French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the value risk premium in FF3.
The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the 95%
confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.14
Estimates and confidence intervals for the liquidity risk premium in the
liquidity-augmented Fama and French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the liquidity risk premium in the
liquidity-augmented FF3 model. The bold black line is for the Shanken (1992) estimator. The corresponding
gray band represents the 95% confidence intervals based on the large-N standard errors of Theorem 5. We
also report the OLS CSR estimator (dotted red line) and the corresponding 95% confidence interval (striped
orange band) based on the traditional large-T standard errors. Finally, the dashed black line is for the
mimicking portfolio rolling factor sample mean. We use monthly return data on individual stocks from
CRSP and factor data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to December
2013.
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Figure IA.15
Estimates and confidence intervals for the time-varying market risk premium in the
Fama and French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying market risk
premium in FF3. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the
market excess return (dashed dotted red line) and the corresponding 95% confidence interval (orange band).
The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding 95%
confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We use
monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website from
January 1966 to December 2013. The daily data on the market excess return is from Kenneth French’s
website. The light gray bands correspond to the NBER recession dates and to various economic and financial
crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-
1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10]
1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-
2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.16
Estimates and confidence intervals for the time-varying size risk premium in the
Fama and French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying size risk
premium in FF3. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the size
factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange band).
The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding 95%
confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We use
monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website from
January 1966 to December 2013. The daily data on the size factor return spread is from Kenneth French’s
website. The light gray bands correspond to the NBER recession dates and to various economic and financial
crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-
1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10]
1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-
2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.17
Estimates and confidence intervals for the time-varying value risk premium in the
Fama and French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying value risk
premium in FF3. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the
value factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange
band). The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding
95% confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We
use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013. The daily data on the value factor return spread is from Kenneth
French’s website. The light gray bands correspond to the NBER recession dates and to various economic and
financial crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11,
[4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-
1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4,
[15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.18
Estimates and confidence intervals for the time-varying liquidity risk premium in the
liquidity-augmented Fama and French (1993) (FF3) three-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying liquidity
risk premium in the liquidity-augmented FF3 model. The top panel reports the Shanken (1992) large-
N estimates, expressed in terms of a single line (black line) and in terms of horizontal bars of length
T � 36 observations (blue line), with the corresponding 95% confidence intervals based on the large-N
standard errors of Theorem 5 (gray band). We also report the rolling sample mean (using fixed rolling
windows of six months) of the corresponding mimicking portfolio excess return (dashed dotted red line)
and the corresponding 95% confidence interval (orange band). The bottom panel reports the modified
Shanken (1992) estimator (black line) and the corresponding 95% confidence interval (gray band) based on
the large-N standard errors of part (ii) of Theorem 3. We use monthly return data on individual stocks
from CRSP and factor data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to
December 2013. The light gray bands correspond to the NBER recession dates and to various economic and
financial crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11,
[4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-
1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4,
[15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.19
Estimates and confidence intervals for the market risk premium in the Fama and
French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the market risk premium in
FF5. The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the
95% confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.20
Estimates and confidence intervals for the size risk premium in the Fama and French
(2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the size risk premium in FF5.
The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the 95%
confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.21
Estimates and confidence intervals for the value risk premium in the Fama and
French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the value risk premium in FF5.
The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the 95%
confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.22
Estimates and confidence intervals for the profitability risk premium in the Fama
and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the profitability risk premium
in FF5. The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents
the 95% confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS
CSR estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based
on the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample
mean. We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s
website from January 1966 to December 2013.
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Figure IA.23
Estimates and confidence intervals for the investment risk premium in the Fama and
French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the investment risk premium in
FF5. The bold black line is for the Shanken (1992) estimator. The corresponding gray band represents the
95% confidence intervals based on the large-N standard errors of Theorem 5. We also report the OLS CSR
estimator (dotted red line) and the corresponding 95% confidence interval (striped orange band) based on
the traditional large-T standard errors. Finally, the dashed black line is for the rolling factor sample mean.
We use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013.
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Figure IA.24
Estimates and confidence intervals for the liquidity risk premium in the
liquidity-augmented Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the liquidity risk premium in the
liquidity-augmented FF5 model. The bold black line is for the Shanken (1992) estimator. The corresponding
gray band represents the 95% confidence intervals based on the large-N standard errors of Theorem 5. We
also report the OLS CSR estimator (dotted red line) and the corresponding 95% confidence interval (striped
orange band) based on the traditional large-T standard errors. Finally, the dashed black line is for the
mimicking portfolio rolling factor sample mean. We use monthly return data on individual stocks from
CRSP and factor data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to December
2013.
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Figure IA.25
Estimates and confidence intervals for the time-varying market risk premium in the
Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying market risk
premium in FF5. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the
size factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange
band). The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding
95% confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We
use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013. The daily data on the market excess return is from Kenneth French’s
website. The light gray bands correspond to the NBER recession dates and to various economic and financial
crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-
1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10]
1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-
2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.26
Estimates and confidence intervals for the time-varying size risk premium in the
Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying size risk
premium in FF5. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the size
factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange band).
The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding 95%
confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We use
monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website from
January 1966 to December 2013. The daily data on the size factor return spread is from Kenneth French’s
website. The light gray bands correspond to the NBER recession dates and to various economic and financial
crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11, [4] 1980:1-
1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-1991:3, [10]
1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4, [15] 2001:3-
2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.27
Estimates and confidence intervals for the time-varying value risk premium in the
Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying value risk
premium in FF5. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of a
single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band).
We also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the
value factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange
band). The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding
95% confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We
use monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website
from January 1966 to December 2013. The daily data on the value factor return spread is from Kenneth
French’s website. The light gray bands correspond to the NBER recession dates and to various economic and
financial crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11,
[4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-
1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4,
[15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.28
Estimates and confidence intervals for the time-varying profitability risk premium in
the Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying profitability
risk premium in FF5. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of
a single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band). We
also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the profitability
factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange band).
The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding 95%
confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We use
monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website from
January 1966 to December 2013. The daily data on the profitability factor return spread is from Kenneth
French’s website. The light gray bands correspond to the NBER recession dates and to various economic and
financial crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11,
[4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-
1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4,
[15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.29
Estimates and confidence intervals for the time-varying investment risk premium in
the Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying investment
risk premium in FF5. The top panel reports the Shanken (1992) large-N estimates, expressed in terms of
a single line (black line) and in terms of horizontal bars of length T � 36 observations (blue line), with the
corresponding 95% confidence intervals based on the large-N standard errors of Theorem 5 (gray band). We
also report the rolling sample mean (using fixed rolling windows of six months of daily data) of the investment
factor return spread (dashed dotted red line) and the corresponding 95% confidence interval (orange band).
The bottom panel reports the modified Shanken (1992) estimator (black line) and the corresponding 95%
confidence interval (gray band) based on the large-N standard errors of part (ii) of Theorem 3. We use
monthly return data on individual stocks from CRSP and factor data from Kenneth French’s website from
January 1966 to December 2013. The daily data on the investment factor return spread is from Kenneth
French’s website. The light gray bands correspond to the NBER recession dates and to various economic and
financial crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11,
[4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-
1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4,
[15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.30
Estimates and confidence intervals for the time-varying liquidity risk premium in the
liquidity-augmented Fama and French (2015) (FF5) five-factor model

The figure presents the estimates and the associated confidence intervals for the time-varying liquidity
risk premium in the liquidity-augmented FF5 model. The top panel reports the Shanken (1992) large-
N estimates, expressed in terms of a single line (black line) and in terms of horizontal bars of length
T � 36 observations (blue line), with the corresponding 95% confidence intervals based on the large-N
standard errors of Theorem 5 (gray band). We also report the rolling sample mean (using fixed rolling
windows of six months) of the corresponding mimicking portfolio excess return (dashed dotted red line)
and the corresponding 95% confidence interval (orange band). The bottom panel reports the modified
Shanken (1992) estimator (black line) and the corresponding 95% confidence interval (gray band) based on
the large-N standard errors of part (ii) of Theorem 3. We use monthly return data on individual stocks
from CRSP and factor data from Kenneth French’s and Ľuboš Pástor’s websites from January 1966 to
December 2013. The light gray bands correspond to the NBER recession dates and to various economic and
financial crises. They are numbered as follows: [1] 1969:10-1970:11, [2] 1973:11-1975:3, [3] 1977:8-1977:11,
[4] 1980:1-1980:7, [5] 1981:7-1982:11, [6] 1986:10-1986:12, [7] 1987:9-1987:11, [8] 1989:9-1989:12, [9] 1990:7-
1991:3, [10] 1991:8-1992:12, [11] 1994:7-1994:10, [12] 1997:5-1997:9, [13] 1998:8-1998:10, [14] 2000:2-2000:4,
[15] 2001:3-2001:11, [16] 2005:8-2005:11, [17] 2007:12-2009:6, [18] 2010:8-2010:10, [19] 2012:5-2012:7.
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Figure IA.31
Estimates and confidence intervals for the characteristic premia in CAPM

The figure presents estimates (blue line) of the characteristic premia on the book-to-market ratio (B/M),
asset growth (ASSGR), operating profitability (OPERPROF), market capitalization (MCAPIT), and six-
month momentum (MOM6), and the associated confidence intervals based on Theorem 7 (light blue band),
for the CAPM. The data is from DeMiguel et al. (forthcoming) and Kenneth French’s website (from January
1980 to December 2015).
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Figure IA.32
Estimates and confidence intervals for the characteristic premia in the Fama and
French (1993) (FF3) three-factor model

The figure presents estimates (blue line) of the characteristic premia on the book-to-market ratio (B/M),
asset growth (ASSGR), operating profitability (OPERPROF), market capitalization (MCAPIT), and six-
month momentum (MOM6), and the associated confidence intervals based on Theorem 7 (light blue band),
for the FF3 model. The data is from DeMiguel et al. (forthcoming) and Kenneth French’s website (from
January 1980 to December 2015).
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