Imperial College London

DrPrashantSrivastava

Faculty of MedicineNational Heart & Lung Institute

Lecturer in Cardiovascular Bioinformatics and Medical Statis
 
 
 
//

Contact

 

prashant.srivastava

 
 
//

Location

 

337ICTEM buildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

58 results found

van Vliet EA, Puhakka N, Mills JD, Srivastava PK, Johnson MR, Roncon P, Das Gupta S, Karttunen J, Simonato M, Lukasiuk K, Gorter JA, Aronica E, Pitkänen Aet al., 2017, Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs., Epilepsia, Vol: 58, Pages: 2013-2024, ISSN: 0013-9580

The World Health Organization estimates that globally 2.4 million people are diagnosed with epilepsy each year. In nearly 30% of these cases, epilepsy cannot be properly controlled by antiepileptic drugs. More importantly, treatments to prevent or modify epileptogenesis do not exist. Therefore, novel therapies are urgently needed. In this respect, it is important to identify which patients will develop epilepsy and which individually tailored treatment is needed. However, currently, we have no tools to identify the patients at risk, and diagnosis of epileptogenesis remains as a major unmet medical need, which relates to lack of diagnostic biomarkers for epileptogenesis. As the epileptogenic process in humans is typically slow, the use of animal models is justified to speed up biomarker discovery. We aim to summarize recommendations for molecular biomarker research and propose a standardized procedure for biomarker discovery in rat models of epileptogenesis. The potential of many phylogenetically conserved circulating noncoding small RNAs, including microRNAs (miRNAs), as biomarkers has been explored in various brain diseases, including epilepsy. Recent studies show the feasibility of detecting miRNAs in blood in both experimental models and human epilepsy. However, the analysis of circulating miRNAs in rodent models is challenging, which relates both to the lack of standardized sampling protocols and to analysis of miRNAs. We will discuss the issues critical for preclinical plasma biomarker discovery, such as documentation, blood and brain tissue sampling and collection, plasma separation and storage, RNA extraction, quality control, and RNA detection. We propose a protocol for standardization of procedures for discovery of circulating miRNA biomarkers in rat models of epileptogenesis. Ultimately, we hope that the preclinical standardization will facilitate clinical biomarker discovery for epileptogenesis in man.

Journal article

Papathanassiu AE, Ko JH, Imprialou M, Bagnati M, Srivastava PK, Vu HA, Cucchi D, McAdoo SP, Ananieva EA, Mauro C, Behmoaras JVet al., 2017, BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases, Nature Communications, Vol: 8, ISSN: 2041-1723

Branched-chain aminotransferases (BCAT) are enzymes that initiate the catabolism of branched-chain amino acids (BCAA), such as leucine, thereby providing macromolecule precursors; however, the function of BCATs in macrophages is unknown. Here we show that BCAT1 is the predominant BCAT isoform in human primary macrophages. We identify ERG240 as a leucine analogue that blocks BCAT1 activity. Selective inhibition of BCAT1 activity results in decreased oxygen consumption and glycolysis. This decrease is associated with reduced IRG1 levels and itaconate synthesis, suggesting involvement of BCAA catabolism through the IRG1/itaconate axis within the tricarboxylic acid cycle in activated macrophages. ERG240 suppresses production of IRG1 and itaconate in mice and contributes to a less proinflammatory transcriptome signature. Oral administration of ERG240 reduces the severity of collagen-induced arthritis in mice and crescentic glomerulonephritis in rats, in part by decreasing macrophage infiltration. These results establish a regulatory role for BCAT1 in macrophage function with therapeutic implications for inflammatory conditions.

Journal article

Berghuis B, van der Palen J, de Haan G-J, Lindhout D, Koeleman BPC, Sander JW, EpiPGX Consortiumet al., 2017, Carbamazepine- and oxcarbazepine-induced hyponatremia in people with epilepsy., Epilepsia, Vol: 58, Pages: 1227-1233

OBJECTIVE: To ascertain possible determinants of carbamazepine (CBZ)- and oxcarbazepine (OXC)-induced hyponatremia in a large cohort of people with epilepsy. METHODS: We collected data on serum sodium levels in people with epilepsy who were attending a tertiary epilepsy center while on treatment with CBZ or OXC. We defined hyponatremia as Na+ ≤134 mEq/L and severe hyponatremia as Na+ ≤128 mEq/L. RESULTS: We identified 1,782 people who had used CBZ (n = 1,424) or OXC (n = 358), of whom 50 were treated with both drugs. Data on sodium level measurements were available in 1,132 on CBZ and in 289 on OXC. Hyponatremia occurred in 26% of those taking CBZ and 46% of those taking OXC. This was severe in 7% in the CBZ group and 22% in the OXC group. Hyponatremia was symptomatic in 48% and led to admissions in 3%. Age over 40 years, high serum levels of CBZ and OXC, and concomitant use of other antiepileptic drugs were the main risk factors for hyponatremia in both treatment groups. Female patients on OXC were at a higher risk than male patients of hyponatremia. The risk of hyponatremia on CBZ was significantly associated with the risk of hyponatremia on OXC within a subgroup that used both drugs consecutively. SIGNIFICANCE: Hyponatremia is a common problem in people taking CBZ or OXC. Regular ascertainment of sodium levels in those taking either drug is recommended and results should be acted on.

Journal article

Chen T, Rotival M, Behmoaras JV, Chiu LY, Bagnati M, Jo JH, Srivastava PK, Petretto E, Pusey CD, Lai PC, Aitman TJ, Cook HT, Behmoaras Jet al., 2017, Identification of ceruloplasmin as a gene that affects susceptibility to glomerulonephritis through macrophage function, Genetics, Vol: 206, Pages: 1139-1151, ISSN: 1943-2631

Crescentic glomerulonephritis (Crgn) is a complex disorder where macrophage activity and infiltration are significant effector causes. In previous linkage studies using the uniquely susceptible Wistar Kyoto (WKY) rat strain, we have identified multiple crescentic glomerulonephritis QTL (Crgn) and positionally cloned genes underlying Crgn1 and Crgn2, which accounted for 40% of total variance in glomerular inflammation. Here, we have generated a backcross (BC) population (n = 166) where Crgn1 and Crgn2 were genetically fixed and found significant linkage to glomerular crescents on chromosome 2 (Crgn8, LOD = 3.8). Fine mapping analysis by integration with genome-wide expression QTLs (eQTLs) from the same BC population identified ceruloplasmin (Cp) as a positional eQTL in macrophages but not in serum. Liquid chromatography-tandem mass spectrometry confirmed Cp as a protein QTL in rat macrophages. WKY macrophages overexpress Cp and its downregulation by RNA interference decreases markers of glomerular proinflammatory macrophage activation. Similarly, short incubation with Cp results in a strain-dependent macrophage polarization in the rat. These results suggest that genetically determined Cp levels can alter susceptibility to Crgn through macrophage function and propose a new role for Cp in early macrophage activation.

Journal article

Srivastava PK, Bagnati M, Delahaye-Duriez A, KO J-H, Rotival M, Langley SR, Shkura K, Mazzuferi M, Danis B, Eyll JV, Foerch P, Behmoaras J, Kaminski RM, Petretto E, Johnson MRet al., 2017, Genome-wide analysis of differential RNA editing in epilepsy, Genome Research, Vol: 27, Pages: 440-450, ISSN: 1549-5469

The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.

Journal article

Rackham OJL, Langley SR, Oates T, Vradi E, Harmston N, Srivastava PK, Behmoaras J, Dellaportas P, Bottolo L, Petretto Eet al., 2017, A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies Disease-Associated Changes in DNA Methylation, GENETICS, Vol: 205, Pages: 1443-1458, ISSN: 0016-6731

DNA methylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility remains to be fully understood. Here, we present a novel Bayesian smoothing approach (called ABBA) to detect differentially methylated regions (DMRs) from whole-genome bisulfite sequencing (WGBS). We also show how this approach can be leveraged to identify disease-associated changes in DNA methylation, suggesting mechanisms through which these alterations might affect disease. From a data modeling perspective, ABBA has the distinctive feature of automatically adapting to different correlation structures in CpG methylation levels across the genome while taking into account the distance between CpG sites as a covariate. Our simulation study shows that ABBA has greater power to detect DMRs than existing methods, providing an accurate identification of DMRs in the large majority of simulated cases. To empirically demonstrate the method’s efficacy in generating biological hypotheses, we performed WGBS of primary macrophages derived from an experimental rat system of glomerulonephritis and used ABBA to identify >1000 disease-associated DMRs. Investigation of these DMRs revealed differential DNA methylation localized to a 600 bp region in the promoter of the Ifitm3 gene. This was confirmed by ChIP-seq and RNA-seq analyses, showing differential transcription factor binding at the Ifitm3 promoter by JunD (an established determinant of glomerulonephritis), and a consistent change in Ifitm3 expression. Our ABBA analysis allowed us to propose a new role for Ifitm3 in the pathogenesis of glomerulonephritis via a mechanism involving promoter hypermethylation that is associated with Ifitm3 repression in the rat strain susceptible to glomerulonephritis.

Journal article

Delahaye-Duriez A, Srivastava P, Shkura K, Langley SR, Laaniste L, Moreno-Moral A, Danis B, Foerch P, Gazina EV, Richards K, Petrou S, Kaminski R, Petretto E, Johnson MRet al., 2016, Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery, Genome Biology, Vol: 17, ISSN: 1474-760X

BackgroundThe relationship between monogenic and polygenic forms of epilepsy is poorly understood, and the extent to which the genetic and acquired epilepsies share common pathways is unclear. Here, we use an integrated systems-level analysis of brain gene expression data to identify molecular networks disrupted in epilepsy.ResultsWe identify a co-expression network of 320 genes (M30), which is significantly enriched for non-synonymous de novo mutations ascertained from patients with monogenic epilepsy, and for common variants associated with polygenic epilepsy. The genes in M30 network are expressed widely in the human brain under tight developmental control, and encode physically interacting proteins involved in synaptic processes. The most highly connected proteins within M30 network are preferentially disrupted by deleterious de novo mutations for monogenic epilepsy, in line with the centrality-lethality hypothesis. Analysis of M30 expression revealed consistent down-regulation in the epileptic brain in heterogeneous forms of epilepsy including human temporal lobe epilepsy, a mouse model of acquired temporal lobe epilepsy, and a mouse model of monogenic Dravet (SCN1A) disease. These results suggest functional disruption of M30 via gene mutation or altered expression as a convergent mechanismregulating susceptibility to epilepsy broadly. Using the large collection of drug-induced gene expression data from Connectivity Map, several drugs were predicted to preferentially restore the down-regulation of M30 in epilepsy toward health, most notably valproic acid, whose effect on M30 expression was replicated in neurons.ConclusionsTaken together, our results suggest targeting the expression of M30 as a potential new therapeutic strategy in epilepsy.

Journal article

Johnson MR, Shkura K, Langley SR, Delahaye-Duriez A, Srivastava P, Hill WD, Rackham OJL, Davies G, Harris SE, Moreno-Moral A, Rotival M, Speed D, Petrovski S, Katz A, Hayward C, Porteous DJ, Smith BH, Padmanabhan S, Hocking LJ, Starr JM, Liewald DC, Visconti A, Falchi M, Bottolo L, Rossetti T, Danis B, Mazzuferi M, Foerch P, Grote A, Helmstaedter C, Becker AJ, Kaminski RM, Deary IJ, Petretto Eet al., 2016, Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease, Nature Neuroscience, Vol: 19, Pages: 223-232, ISSN: 1546-1726

Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease–associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

Journal article

Behmoaras J, Diaz AG, Venda L, Ko J-H, Srivastava P, Montoya A, Faull P, Webster Z, Moyon B, Pusey CD, Abraham DJ, Petretto E, Cook TH, Aitman TJet al., 2015, Macrophage Epoxygenase Determines a Profibrotic Transcriptome Signature, Journal of Immunology, Vol: 194, Pages: 4705-4716, ISSN: 1550-6606

Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4−/− macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4−/− rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography–tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.

Journal article

Rotival M, Ko J-H, Srivastava PK, Kerloc'h A, Montoya A, Mauro C, Faull P, Cutillas PR, Petretto E, Behmoaras Jet al., 2015, Integrating phosphoproteome and transcriptome reveals new determinants of macrophage multinucleation, Molecular and Cellular Proteomics, Vol: 14, Pages: 484-498, ISSN: 1535-9476

Macrophage multinucleation (MM) is essential for various biological processes such as osteoclast-mediated bone resorption and multinucleated giant cell-associated inflammatory reactions. Here we study the molecular pathways underlying multinucleation in the rat through an integrative approach combining MS-based quantitative phosphoproteomics (LC-MS/MS) and transcriptome (high-throughput RNA-sequencing) to identify new regulators of MM. We show that a strong metabolic shift toward HIF1-mediated glycolysis occurs at transcriptomic level during MM, together with modifications in phosphorylation of over 50 proteins including several ARF GTPase activators and polyphosphate inositol phosphatases. We use shortest-path analysis to link differential phosphorylation with the transcriptomic reprogramming of macrophages and identify LRRFIP1, SMARCA4, and DNMT1 as novel regulators of MM. We experimentally validate these predictions by showing that knock-down of these latter reduce macrophage multinucleation. These results provide a new framework for the combined analysis of transcriptional and post-translational changes during macrophage multinucleation, prioritizing essential genes, and revealing the sequential events leading to the multinucleation of macrophages.

Journal article

Feuerborn A, Mathow D, Srivastava PK, Gretz N, Gröne H-Jet al., 2015, Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity., Oncogene, Vol: 34, Pages: 1185-1195

Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine and critically involved in the progression of a variety of cancers. TGF-β1 signaling can impair tumor development by its anti-proliferative and pro-apoptotic features. In contrast, it may actively promote tumor progression and cancer cell dissemination by inducing a gradual switch from epithelial towards mesenchymal-like cell features (EMT-like), including decreased intercellular adhesion. Here, we show that expression of the transcription factor Basonuclin-1 (Bnc1) modulates TGF-β1-induced epithelial dedifferentiation of mammary epithelial cells. RNAi-mediated repression of Bnc1 resulted in enhanced intercellular adhesion and strongly impaired TGF-β1-dependent sheet disintegration and cell scattering. In contrast, forced expression of Bnc1 modifies plasma membrane/cytoskeletal dynamics and seemingly interferes with the initiation of sustainable cell-cell contacts. Follow-up analyses revealed that Bnc1 affects the expression of numerous TGF-β1-responsive genes including distinct EMT-related transcription factors, some of which modulate the expression of Bnc1 themselves. These results suggest that Bnc1 is part of a transcription factor network related to epithelial plasticity with reciprocal feedback-loop connections on which Smad-factors integrate TGF-β1 signaling. Our study demonstrates that Bnc1 regulates epithelial plasticity of mammary epithelial cells and influences outcome of TGF-β1 signaling.

Journal article

Johnson MR, Behmoaras J, Bottolo L, Krishnan ML, Pernhorst K, Santoscoy PL, Rossetti T, Speed D, Srivastava PK, Chadeau-Hyam M, Hajji N, Dabrowska A, Rotival M, Razzaghi B, Kovac S, Wanisch K, Grillo FW, Slaviero A, Langley SR, Shkura K, Roncon P, De T, Mattheisen M, Niehusmann P, O'Brien TJ, Petrovski S, von Lehe M, Hoffmann P, Eriksson J, Coffey AJ, Cichon S, Walker M, Simonato M, Danis B, Mazzuferi M, Foerch P, Schoch S, De Paola V, Kaminski RM, Cunliffe VT, Becker AJ, Petretto Eet al., 2015, Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus, Nature Communications, Vol: 6, ISSN: 2041-1723

Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo.

Journal article

Johnson MD, Mueller M, Adamowicz-Brice M, Collins MJ, Gellert P, Maratou K, Srivastava PK, Rotival M, Butt S, Game L, Atanur SS, Silver N, Norsworthy PJ, Langley SR, Petretto E, Pravenec M, Aitman TJet al., 2014, Genetic Analysis of the Cardiac Methylome at Single Nucleotide Resolution in a Model of Human Cardiovascular Disease, PLOS GENETICS, Vol: 10, ISSN: 1553-7404

Journal article

Lai P-C, Chiu L-Y, Srivastava P, Trento C, Dazzi F, Petretto E, Cook HT, Behmoaras Jet al., 2014, Unique Regulatory Properties of Mesangial Cells Are Genetically Determined in the Rat, PLOS One, Vol: 9, ISSN: 1932-6203

Mesangial cells are glomerular cells of stromal origin. During immune complex mediated crescentic glomerulonephritis (Crgn), infiltrating and proliferating pro-inflammatory macrophages lead to crescent formation. Here we have hypothesised that mesangial cells, given their mesenchymal stromal origin, show similar immunomodulatory properties as mesenchymal stem cells (MSCs), by regulating macrophage function associated with glomerular crescent formation. We show that rat mesangial cells suppress conA-stimulated splenocyte proliferation in vitro, as previously shown for MSCs. We then investigated mesangial cell-macrophage interaction by using mesangial cells isolated from nephrotoxic nephritis (NTN)-susceptible Wistar Kyoto (WKY) and NTN-resistant Lewis (LEW) rats. We first determined the mesangial cell transcriptome in WKY and LEW rats and showed that this is under marked genetic control. Supernatant transfer results show that WKY mesangial cells shift bone marrow derived macrophage (BMDM) phenotype to M1 or M2 according to the genetic background (WKY or LEW) of the BMDMs. Interestingly, these effects were different when compared to those of MSCs suggesting that mesangial cells can have unique immunomodulatory effects in the kidney. These results demonstrate the importance of the genetic background in the immunosuppressive effects of cells of stromal origin and specifically of mesangial cell-macrophage interactions in the pathophysiology of crescentic glomerulonephritis.

Journal article

Kang H, Kerloc'h A, Rotival M, Xu X, Zhang Q, D'Souza Z, Kim M, Scholz JC, Ko J-H, Srivastava PK, Genzen JR, Cui W, Aitman TJ, Game L, Melvin JE, Hanidu A, Dimock J, Zheng J, Souza D, Behera AK, Nabozny G, Cook HT, Bassett JHD, Williams GR, Li J, Vignery A, Petretto E, Behmoaras Jet al., 2014, Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease, Cell Reports, Vol: 8, Pages: 1210-1224, ISSN: 2211-1247

Macrophages can fuse to form osteoclasts in boneor multinucleate giant cells (MGCs) as part of theimmune response. We use a systems geneticsapproach in rat macrophages to unravel their geneticdeterminants of multinucleation and investigate theirrole in both bone homeostasis and inflammatory disease.We identify a trans-regulated gene networkassociated with macrophage multinucleation andKcnn4 as being the most significantly trans-regulatedgene in the network and induced at the onsetof fusion. Kcnn4 is required for osteoclast andMGC formation in rodents and humans. Geneticdeletion of Kcnn4 reduces macrophage multinucleationthrough modulation of Ca2+ signaling, increasesbone mass, and improves clinical outcomein arthritis. Pharmacological blockade of Kcnn4reduces experimental glomerulonephritis. Our dataimplicate Kcnn4 in macrophage multinucleation,identifying it as a potential therapeutic target for inhibitionof bone resorption and chronic inflammation.

Journal article

Srivastava PK, Moturu T, Pandey P, Baldwin IT, Pandey SPet al., 2014, A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction, BMC Genomics, Vol: 15, Pages: 348-348, ISSN: 1471-2164

Journal article

Srivastava P, Mangal M, Agarwal SM, 2014, Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set., Gene, Vol: 535, Pages: 233-238

Cervical cancer, the malignant neoplasm of the cervix uteri is the second most common cancer among women worldwide and the top-most cancer in India. Several factors are responsible for causing cervical cancer, which alter the expression of oncogenic genes resulting in up or down-regulation of gene expression and inactivation of tumor-suppressor genes/gene products. Gene expression is regulated by interactions between transcription factors (TFs) and specific regulatory elements in the promoter regions of target genes. Thus, it is important to decipher and analyze TFs that bind to regulatory regions of diseased genes and regulate their expression. In the present study, computational methods involving the combination of gene expression data from microarray experiments and promoter sequence analysis of a curated gene set involved in the cervical cancer causation have been utilized for identifying potential regulatory elements. Consensus predictions of two approaches led to the identification of twelve TFs that might be crucial to the regulation of cervical cancer progression. Subsequently, TF enrichment and oncomine expression analysis suggested that the transcription factor family E2F played an important role for the regulation of genes involve in cervical carcinogenesis. Our results suggest that E2F possesses diagnostic/prognostic value and can act as a potential drug target in cervical cancer.

Journal article

Srivastava PK, Hull RP, Behmoaras J, Petretto E, Aitman TJet al., 2013, JunD/AP1 regulatory network analysis during macrophage activation in a rat model of crescentic glomerulonephritis, BMC Systems Biology, Vol: 7, ISSN: 1752-0509

Background:Function and efficiency of a transcription factor (TF) are often modulated by interactions with other proteins or TFs to achieve finely tuned regulation of target genes. However, complex TF interactions are often not taken into account to identify functionally active TF-targets and characterize their regulatory network. Here, we have developed a computational framework for integrated analysis of genome-wide ChIP-seq and gene expression data to identify the functional interacting partners of a TF and characterize the TF-driven regulatory network. We have applied this methodology in a rat model of macrophage dependent crescentic glomerulonephritis (Crgn) where we have previously identified JunD as a TF gene responsible for enhanced macrophage activation associated with susceptibility to Crgn in the Wistar-Kyoto (WKY) strain.Results:To evaluate the regulatory effects of JunD on its target genes, we analysed data from two rat strains (WKY and WKY.LCrgn2) that show 20-fold difference in their JunD expression in macrophages. We identified 36 TFs interacting with JunD/Jun and JunD/ATF complexes (i.e., AP1 complex), which resulted in strain-dependent gene expression regulation of 1,274 target genes in macrophages. After lipopolysaccharide (LPS) stimulation we found that 2.4 fold more JunD/ATF-target genes were up-regulated as compared with JunD/Jun-target genes. The enriched 314 genes up-regulated by AP1 complex during LPS stimulation were most significantly enriched for immune response (P = 6.9 × 10-4) and antigen processing and presentation functions (P = 2.4 × 10-5), suggesting a role for these genes in macrophage LPS-stimulated activation driven by JunD interaction with Jun/ATF.Conclusions:In summary, our integrated analyses revealed a large network of TFs interacting with JunD and their regulated targets. Our data also suggest a previously unappreciated contribution of the ATF complex to Jun

Journal article

Ferreiros-Vidal I, Carroll T, Taylor B, Terry A, Liang Z, Bruno L, Dharmalingam G, Khadayate S, Cobb BS, Smale ST, Spivakov M, Srivastava P, Petretto E, Fisher AG, Merkenschlager Met al., 2013, Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation, BLOOD, Vol: 121, Pages: 1769-1782, ISSN: 0006-4971

Journal article

Hull RP, Srivastava PK, D'Souza Z, Atanur SS, Mechta-Grigoriou F, Game L, Petretto E, Cook HT, Aitman TJ, Behmoaras Jet al., 2013, Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesis in macrophages, BMC GENOMICS, Vol: 14, ISSN: 1471-2164

Journal article

Sanchez-Cabo F, Torroja C, Benguria A, Buchan R, Srivastava P, Martinez F, Barton P, Cook S, Dopazo A, Lara-Pezzi Eet al., 2012, Regulation of alternative splicing in the infarcted heart, 2nd Congress of the European-Society-of-Cardiology Council on Basic Cardiovascular Science - Frontiers in Cardiovascular Biology, Publisher: OXFORD UNIV PRESS, Pages: S10-S10, ISSN: 0008-6363

Conference paper

Maratou K, Behmoaras J, Fewings C, Srivastava P, D'Souza Z, Smith J, Game L, Cook T, Aitman Tet al., 2011, Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains, GENES AND IMMUNITY, Vol: 12, Pages: 78-89, ISSN: 1466-4879

Journal article

Feuerborn A, Srivastava PK, Küffer S, Grandy WA, Sijmonsma TP, Gretz N, Brors B, Gröne H-Jet al., 2011, The Forkhead factor FoxQ1 influences epithelial differentiation., J Cell Physiol, Vol: 226, Pages: 710-719

The Forkhead family of transcription factors comprises numerous members and is implicated in various cellular functions, including cell growth, apoptosis, migration, and differentiation. In this study, we identified the Forkhead factor FoxQ1 as increased in expression during TGF-β1 induced changes in epithelial differentiation, suggesting functional roles of FoxQ1 for epithelial plasticity. The repression of FoxQ1 in mammary epithelial cells led to a change in cell morphology characterized by an increase in cell size, pronounced cell-cell contacts, and an increased expression of several junction proteins (e.g., E-cadherin). In addition, FoxQ1 knock-down cells revealed rearrangements in the actin-cytoskeleton and slowed down cell cycle G1-phase progression. Furthermore, repression of FoxQ1 enhanced the migratory capacity of coherent mammary epithelial cells. Gene expression profiling of NM18 cells indicated that FoxQ1 is a relevant downstream mediator of TGF-β1-induced gene expression changes. This included the differential expression of transcription factors involved in epithelial plasticity, for example, Ets-1, Zeb1, and Zeb2. In summary, this study has elucidated the functional impact of FoxQ1 on epithelial differentiation.

Journal article

Desai DK, Nandi S, Srivastava PK, Lynn AMet al., 2011, ModEnzA: Accurate Identification of Metabolic Enzymes Using Function Specific Profile HMMs with Optimised Discrimination Threshold and Modified Emission Probabilities., Adv Bioinformatics, Vol: 2011

Various enzyme identification protocols involving homology transfer by sequence-sequence or profile-sequence comparisons have been devised which utilise Swiss-Prot sequences associated with EC numbers as the training set. A profile HMM constructed for a particular EC number might select sequences which perform a different enzymatic function due to the presence of certain fold-specific residues which are conserved in enzymes sharing a common fold. We describe a protocol, ModEnzA (HMM-ModE Enzyme Annotation), which generates profile HMMs highly specific at a functional level as defined by the EC numbers by incorporating information from negative training sequences. We enrich the training dataset by mining sequences from the NCBI Non-Redundant database for increased sensitivity. We compare our method with other enzyme identification methods, both for assigning EC numbers to a genome as well as identifying protein sequences associated with an enzymatic activity. We report a sensitivity of 88% and specificity of 95% in identifying EC numbers and annotating enzymatic sequences from the E. coli genome which is higher than any other method. With the next-generation sequencing methods producing a huge amount of sequence data, the development and use of fully automated yet accurate protocols such as ModEnzA is warranted for rapid annotation of newly sequenced genomes and metagenomic sequences.

Journal article

Agarwal SM, Srivastava PK, 2009, Human intronless disease associated genes are slowly evolving., BMB Rep, Vol: 42, Pages: 356-360, ISSN: 1976-6696

In the present study we have examined human-mouse homologous intronless disease and non-disease genes alongside their extent of sequence conservation, tissue expression, domain and gene ontology composition to get an idea regarding evolutionary and functional attributes. We show that selection has significantly discriminated between the two groups and the disease associated genes in particular exhibit lower K(a) and K(a)/K(s) while K(s) although smaller is not significantly different. Our analyses suggest that majority of disease related intronless human genes have homology limited to eukaryotic genomes and their expression is localized. Also we observed that different classes of intronless disease related genes have experienced diverse selective pressures and are enriched for higher level functionality that is essentially needed for developmental processes in complex organisms. It is expected that these insights will enhance our understanding of the nature of these genes and also improve our ability to identify disease related intronless genes.

Journal article

Pandey P, Brors B, Srivastava PK, Bott A, Boehn SNE, Groene H-J, Gretz Net al., 2008, Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease., BMC Genomics, Vol: 9

BACKGROUND: MicroRNAs (miRNAs) play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD). Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. RESULTS: Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. CONCLUSION: We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD.

Journal article

Srivastava PK, Küffer S, Brors B, Shahi P, Li L, Kenzelmann M, Gretz N, Gröne HJet al., 2008, A cut-off based approach for gene expression analysis of formalin-fixed and paraffin-embedded tissue samples., Genomics, Vol: 91, Pages: 522-529

Microarray analysis of formalin-fixed and paraffin-embedded (FFPE) tissue seems to be of importance for the detection of molecular marker sets in prostate cancer (PC). The compromised RNA integrity of FFPE tissue results in a high degree of variability at the probe level of microarray data as shown by degradation plot. We tested methods that reduce the variability by including all probes within 300 nucleotides, within 600 nucleotides, or up to a calculated breakpoint with reference to the 3'-end. Accepted PC pathways such as the Wnt signaling pathway could be observed to be significantly regulated within FFPE microarray datasets. The best representation of PC gene expression, as well as better comparability to meta-analysis and fresh-frozen microarray data, could be obtained with a 600-nucleotide cutoff. Beyond the specific impact for PC microarray data analysis we propose a cutoff of 600 nucleotides for samples for which the integrity of the RNA cannot be guaranteed.

Journal article

Srivastava PK, Desai DK, Nandi S, Lynn AMet al., 2007, HMM-ModE--improved classification using profile hidden Markov models by optimising the discrimination threshold and modifying emission probabilities with negative training sequences., BMC Bioinformatics, Vol: 8

BACKGROUND: Profile Hidden Markov Models (HMM) are statistical representations of protein families derived from patterns of sequence conservation in multiple alignments and have been used in identifying remote homologues with considerable success. These conservation patterns arise from fold specific signals, shared across multiple families, and function specific signals unique to the families. The availability of sequences pre-classified according to their function permits the use of negative training sequences to improve the specificity of the HMM, both by optimizing the threshold cutoff and by modifying emission probabilities to minimize the influence of fold-specific signals. A protocol to generate family specific HMMs is described that first constructs a profile HMM from an alignment of the family's sequences and then uses this model to identify sequences belonging to other classes that score above the default threshold (false positives). Ten-fold cross validation is used to optimise the discrimination threshold score for the model. The advent of fast multiple alignment methods enables the use of the profile alignments to align the true and false positive sequences, and the resulting alignments are used to modify the emission probabilities in the original model. RESULTS: The protocol, called HMM-ModE, was validated on a set of sequences belonging to six sub-families of the AGC family of kinases. These sequences have an average sequence similarity of 63% among the group though each sub-group has a different substrate specificity. The optimisation of discrimination threshold, by using negative sequences scored against the model improves specificity in test cases from an average of 21% to 98%. Further discrimination by the HMM after modifying model probabilities using negative training sequences is provided in a few cases, the average specificity rising to 99%. Similar improvements were obtained with a sample of G-Protein coupled receptors sub-classified with respe

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00766987&person=true&page=2&respub-action=search.html