Imperial College London

Dr Qingyang Lin

Faculty of EngineeringDepartment of Earth Science & Engineering

Visiting Researcher
 
 
 
//

Contact

 

+44 (0)20 7594 9982q.lin11 Website

 
 
//

Location

 

RSM 440/7Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

56 results found

Lin Q, Bijeljic B, Raeini AQ, Rieke H, Blunt MJet al., 2021, Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone, Geophysical Research Letters, Vol: 48, Pages: 1-11, ISSN: 0094-8276

We applied three-dimensional X-ray microtomography to image a capillary drainage process (0–1,000 kPa) in a cm-scale heterogeneous laminated sandstone containing three distinct regions with different pore sizes to study the capillary pressure. We used differential imaging to distinguish solid, macropore, and five levels of subresolution pore phases associated with each region. The brine saturation distribution was computed based on average CT values. The nonwetting phase displaced the wetting phase in order of pore size and connectivity. The drainage capillary pressure in the highly heterogeneous rock was dependent on the capillary pressures in the individual regions as well as distance to the boundary between regions. The complex capillary pressure distribution has important implications for accurate water saturation estimation, gas and/or oil migration and the capillary rise of water in heterogeneous aquifers.

Journal article

Mularczyk A, Lin Q, Niblett D, Vasile A, Blunt MJ, Niasar V, Marone F, Schmidt TJ, Büchi FN, Eller Jet al., 2021, Operando liquid pressure determination in polymer electrolyte fuel cells., ACS Applied Materials and Interfaces, Vol: 13, Pages: 34003-34011, ISSN: 1944-8244

Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase. This made it possible to observe the increase in capillary pressure when the advancing water front had to overcome a throat between two neighboring pores and the nuanced interactions of volume and pressure evolution during the droplet formation and its feeding path instability. A 2 kPa higher breakthrough pressure compared to static ex situ capillary pressure versus saturation evaluations was observed, which suggests a rethinking of the dynamic liquid water invasion process in polymer electrolyte fuel cell gas diffusion layers.

Journal article

Lin Q, Bijeljic B, Foroughi S, Berg S, Blunt MJet al., 2021, Pore-scale imaging of displacement patterns in an altered-wettability carbonate, Chemical Engineering Science, Vol: 235, Pages: 1-12, ISSN: 0009-2509

High-resolution X-ray imaging combined with a steady-state flow experiment is used to demonstrate how pore-scale displacement affects macroscopic properties in an altered-wettability microporous carbonate, where porosity and fluid saturation can be directly obtained from the grey-scale micro-CT images. The resolvable macro pores are largely oil-wet with an average thermodynamic contact angle of 120°. The pore-by-pore analysis shows locally either oil or brine almost fully occupied the macro pores, with some oil displacement in the micro-porosity. We observed a typical oil-wet behaviour consistent with the contact angle measurement. The brine tended to occupy the larger macro pores, leading to a higher brine relative permeability, lower residual oil saturation, than under water-wet conditions and in a mixed-wet sandstone. The capillary pressure was negative and seven times larger in the carbonate than the sandstone, despite having a similar average pore size. These different displacement patterns are principally determined by the difference in wettability.

Journal article

Zhang Y, Bijeljic B, Gao Y, Lin Q, Blunt MJet al., 2021, Quantification of non‐linear multiphase flow in porous media, Geophysical Research Letters, Vol: 48, Pages: 1-7, ISSN: 0094-8276

We measure the pressure difference during two‐phase flow across a sandstone sample for a range of injection rates and fractional flows of water, the wetting phase, during an imbibition experiment. We quantify the onset of a transition from a linear relationship between flow rate and pressure gradient to a nonlinear power‐law dependence. We show that the transition from linear (Darcy) to nonlinear flow and the exponent in the power‐law is a function of fractional flow. We use energy balance to accurately predict the onset of intermittency for a range of fractional flows, fluid viscosities, and different rock types.

Journal article

Alhosani A, Lin Q, Scanziani A, Andrews E, Zhang K, Bijeljic B, Blunt MJet al., 2021, Pore-scale characterization of carbon dioxide storage at immiscible and near-miscible conditions in altered-wettability reservoir rocks, International Journal of Greenhouse Gas Control, Vol: 105, Pages: 1-15, ISSN: 1750-5836

Carbon dioxide storage combined with enhanced oil recovery (CCS-EOR) is an important approach for reducing greenhouse gas emissions. We use pore-scale imaging to help understand CO2 storage and oil recovery during CCS-EOR at immiscible and near-miscible CO2 injection conditions. We study in situ immiscible CO2 flooding in an oil-wet reservoir rock at elevated temperature and pressure using X-ray micro-tomography. We observe the predicted, but hitherto unreported, three-phase wettability order in strongly oil-wet rocks, where water occupies the largest pores, oil the smallest, while CO2 occupies pores of intermediate size. We investigate the pore occupancy, existence of CO2 layers, recovery and CO2 trapping in the oil-wet rock at immiscible conditions and compare to the results obtained on the same rock type under slightly more weakly oil-wet near-miscible conditions, with the same wettability order. CO2 spreads in connected layers at near-miscible conditions, while it exists as disconnected ganglia in medium-sized pores at immiscible conditions. Hence, capillary trapping of CO2 by oil occurs at immiscible but not at near-miscible conditions. Moreover, capillary trapping of CO2 by water is not possible in both cases since CO2 is more wetting to the rock than water. The oil recovery by CO2 injection alone is reduced at immiscible conditions compared to near-miscible conditions, where low gas-oil capillary pressure improves microscopic displacement efficiency. Based on these results, to maximize the amount of oil recovered and CO2 stored at immiscible conditions, a water-alternating-gas injection strategy is suggested, while a strategy of continuous CO2 injection is recommended at near-miscible conditions.

Journal article

Blunt MJ, Alhosani A, Lin Q, Scanziani A, Bijeljic Bet al., 2021, Determination of contact angles for three-phase flow in porous media using an energy balance, Journal of Colloid and Interface Science, Vol: 582, Pages: 283-290, ISSN: 0021-9797

HYPOTHESIS: We define contact angles, θ, during displacement of three fluid phases in a porous medium using energy balance, extending previous work on two-phase flow. We test if this theory can be applied to quantify the three contact angles and wettability order in pore-scale images of three-phase displacement. THEORY: For three phases labelled 1, 2 and 3, and solid, s, using conservation of energy ignoring viscous dissipation (Δa1scosθ12-Δa12-ϕκ12ΔS1)σ12=(Δa3scosθ23+Δa23-ϕκ23ΔS3)σ23+Δa13σ13, where ϕ is the porosity, σ is the interfacial tension, a is the specific interfacial area, S is the saturation, and κ is the fluid-fluid interfacial curvature. Δ represents the change during a displacement. The third contact angle, θ13 can be found using the Bartell-Osterhof relationship. The energy balance is also extended to an arbitrary number of phases. FINDINGS: X-ray imaging of porous media and the fluids within them, at pore-scale resolution, allows the difference terms in the energy balance equation to be measured. This enables wettability, the contact angles, to be determined for complex displacements, to characterize the behaviour, and for input into pore-scale models. Two synchrotron imaging datasets are used to illustrate the approach, comparing the flow of oil, water and gas in a water-wet and an altered-wettability limestone rock sample. We show that in the water-wet case, as expected, water (phase 1) is the most wetting phase, oil (phase 2) is intermediate wet, while gas (phase 3) is most non-wetting with effective contact angles of θ12≈48° and θ13≈44°, while θ23=0 since oil is always present in spreading layers. In contrast, for the altered-wettability case, oil is most wetting, gas is intermediate-wet, while water is most non-wetting with contact angles of θ12=134°±~10°,θ13=119°&p

Journal article

Lin Q, Akai T, Blunt MJ, Bijeljic B, Iwama H, Takabayashi K, Onaka Y, Yonebayashi Het al., 2021, Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks, Fuel, Vol: 283, ISSN: 0016-2361

We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing asphaltene induces the precipitation of asphaltene in the pore space. The degree of precipitation is controlled by the measurement of differential pressure across the sample. After precipitation, doped heptane is injected to replace the fluid to enhance the contrast between precipitated asphaltene and doped heptane. The micro-CT images are segmented into three phases: void, precipitated asphaltene, and rock. In the experiment, we observed that the precipitated asphaltene which occupied 39.1% of the pore volume caused a 29-fold reduction in permeability. Furthermore, we analyze the spatial distribution of precipitated asphaltene which showed that the asphaltene tended to clog the larger pores. We also computed the flow field numerically on the images and obtained good agreement between simulated and measured permeability. The distribution of local velocity showed that after precipitation the flow was confined to narrow channels in the pore space. This method can be applied to any type of porous system with precipitation.

Journal article

Alhosani A, Scanziani A, Lin Q, Selem A, Pan Z, Blunt MJ, Bijeljic Bet al., 2020, Three-phase flow displacement dynamics and Haines jumps in a hydrophobic porous medium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 476, ISSN: 1364-5021

We use synchrotron X-ray micro-tomography to investigate the displacement dynamics during three-phase—oil, water and gas—flow in a hydrophobic porous medium. We observe a distinct gas invasion pattern, where gas progresses through the pore space in the form of disconnected clusters mediated by double and multiple displacement events. Gas advances in a process we name three-phase Haines jumps, during which gas re-arranges its configuration in the pore space, retracting from some regions to enable the rapid filling of multiple pores. The gas retraction leads to a permanent disconnection of gas ganglia, which do not reconnect as gas injection proceeds. We observe, in situ, the direct displacement of oil and water by gas as well as gas–oil–water double displacement. The use of local in situ measurements and an energy balance approach to determine fluid–fluid contact angles alongside the quantification of capillary pressures and pore occupancy indicate that the wettability order is oil–gas–water from most to least wetting. Furthermore, quantifying the evolution of Minkowski functionals implied well-connected oil and water, while the gas connectivity decreased as gas was broken up into discrete clusters during injection. This work can be used to design CO2 storage, improved oil recovery and microfluidic devices.

Journal article

Akai T, Lin Q, Bijeljic B, Blunt MJet al., 2020, Using energy balance to determine pore-scale wettability, Journal of Colloid and Interface Science, Vol: 576, Pages: 486-495, ISSN: 0021-9797

HypothesisBased on energy balance during two-phase displacement in porous media, it has recently been shown that a thermodynamically consistent contact angle can be determined from micro-tomography images. However, the impact of viscous dissipation on the energy balance has not been fully understood. Furthermore, it is of great importance to determine the spatial distribution of wettability. We use direct numerical simulation to validate the determination of the thermodynamic contact angle both in an entire domain and on a pore-by-pore basis.SimulationsTwo-phase direct numerical simulations are performed on complex 3D porous media with three wettability states: uniformly water-wet, uniformly oil-wet, and non-uniform mixed-wet. Using the simulated fluid configurations, the thermodynamic contact angle is computed, then compared with the input contact angles.FindingsThe impact of viscous dissipation on the energy balance is quantified; it is insignificant for water flooding in water-wet and mixed-wet media, resulting in an accurate estimation of a representative contact angle for the entire domain even if viscous effects are ignored. An increasing trend in the computed thermodynamic contact angle during water injection is shown to be a manifestation of the displacement sequence. Furthermore, the spatial distribution of wettability can be represented by the thermodynamic contact angle computed on a pore-by-pore basis.

Journal article

Scanziani A, Alhosani A, Lin Q, Spurin C, Garfi G, Blunt MJ, Bijeljic Bet al., 2020, In situ characterization of three‐phase flow in mixed‐wet porous media using synchrotron imaging, Water Resources Research, Vol: 56, ISSN: 0043-1397

We use fast synchrotron X‐ray microtomography to understand three‐phase flow in mixed‐wet porous media to design either enhanced permeability or capillary trapping. The dynamics of these phenomena are of key importance in subsurface hydrology, carbon dioxide storage, oil recovery, food and drug manufacturing, and chemical reactors. We study the dynamics of a water‐gas‐water injection sequence in a mixed‐wet carbonate rock. During the initial waterflooding, water displaced oil from pores of all size, indicating a mixed‐wet system with local contact angles both above and below 90°. When gas was injected, gas displaced oil preferentially with negligible displacement of water. This behavior is explained in terms of the gas pressure needed for invasion. Overall, gas behaved as the most nonwetting phase with oil as the most wetting phase; however, pores of all size were occupied by oil, water, and gas, as a signature of mixed‐wet media. Thick oil wetting layers were observed, which increased oil connectivity and facilitated its flow during gas injection. A chase waterflooding resulted in additional oil flow, while gas was trapped by oil and water. Furthermore, we quantified the evolution of the surface areas and both Gaussian and the total curvature, from which capillary pressure could be estimated. These quantities are related to the Minkowski functionals which quantify the degree of connectivity and trapping. The combination of water and gas injection, under mixed‐wet immiscible conditions, leads to both favorable oil flow and significant trapping of gas, which is advantageous for storage applications.

Journal article

Alhosani A, Scanziani A, Lin Q, Foroughi S, Alhammadi AM, Blunt MJ, Bijeljic Bet al., 2020, Dynamics of water injection in an oil-wet reservoir rock at subsurface conditions: Invasion patterns and pore-filling events, Physical Review E, Vol: 102, Pages: 023110 – 1-023110 – 15, ISSN: 2470-0045

We use fast synchrotron x-ray microtomography to investigate the pore-scale dynamics of water injection in an oil-wet carbonate reservoir rock at subsurface conditions. We measure, in situ, the geometric contact angles to confirm the oil-wet nature of the rock and define the displacement contact angles using an energy-balance-based approach. We observe that the displacement of oil by water is a drainagelike process, where water advances as a connected front displacing oil in the center of the pores, confining the oil to wetting layers. The displacement is an invasion percolation process, where throats, the restrictions between pores, fill in order of size, with the largest available throats filled first. In our heterogeneous carbonate rock, the displacement is predominantly size controlled; wettability has a smaller effect, due to the wide range of pore and throat sizes, as well as largely oil-wet surfaces. Wettability only has an impact early in the displacement, where the less oil-wet pores fill by water first. We observe drainage associated pore-filling dynamics including Haines jumps and snap-off events. Haines jumps occur on single- and/or multiple-pore levels accompanied by the rearrangement of water in the pore space to allow the rapid filling. Snap-off events are observed both locally and distally and the capillary pressure of the trapped water ganglia is shown to reach a new capillary equilibrium state. We measure the curvature of the oil-water interface. We find that the total curvature, the sum of the curvatures in orthogonal directions, is negative, giving a negative capillary pressure, consistent with oil-wet conditions, where displacement occurs as the water pressure exceeds that of the oil. However, the product of the principal curvatures, the Gaussian curvature, is generally negative, meaning that water bulges into oil in one direction, while oil bulges into water in the other. A negative Gaussian curvature provides a topological quantification of th

Journal article

Foroughi S, Bijeljic B, Lin Q, Raeini AQ, Blunt MJet al., 2020, Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol: 102, Pages: 023302 – 1-023302 – 15, ISSN: 1539-3755

A pore-network model is an upscaled representation of the pore space and fluid displacement, which is used to simulate two-phase flow through porous media. We use the results of pore-scale imaging experiments to calibrate and validate our simulations, and specifically to find the pore-scale distribution of wettability. We employ energy balance to estimate an average, thermodynamic, contact angle in the model, which is used as the initial estimate of contact angle. We then adjust the contact angle of each pore to match the observed fluid configurations in the experiment as a nonlinear inverse problem. The proposed algorithm is implemented on two sets of steady state micro-computed-tomography experiments for water-wet and mixed-wet Bentheimer sandstone. As a result of the optimization, the pore-by-pore error between the model and experiment is decreased to less than that observed between repeat experiments on the same rock sample. After calibration and matching, the model predictions for capillary pressure and relative permeability are in good agreement with the experiments. The proposed algorithm leads to a distribution of contact angle around the thermodynamic contact angle. We show that the contact angle is spatially correlated over around 4 pore lengths, while larger pores tend to be more oil-wet. Using randomly assigned distributions of contact angle in the model results in poor predictions of relative permeability and capillary pressure, particularly for the mixed-wet case.

Journal article

Scanziani A, Lin Q, Alhosani A, Blunt MJ, Bijeljic Bet al., 2020, Dynamics of fluid displacement in mixed-wet porous media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 476, Pages: 1-16, ISSN: 1364-5021

We identify a distinct two-phase flow invasion pattern in a mixed-wet porous medium. Time-resolved high-resolution synchrotron X-ray imaging is used to study the invasion of water through a small rock sample filled with oil, characterized by a wide non-uniform distribution of local contact angles both above and below 90°. The water advances in a connected front, but throats are not invaded in decreasing order of size, as predicted by invasion percolation theory for uniformly hydrophobic systems. Instead, we observe pinning of the three-phase contact between the fluids and the solid, manifested as contact angle hysteresis, which prevents snap-off and interface retraction. In the absence of viscous dissipation, we use an energy balance to find an effective, thermodynamic, contact angle for displacement and show that this angle increases during the displacement. Displacement occurs when the local contact angles overcome the advancing contact angles at a pinned interface: it is wettability which controls the filling sequence. The product of the principal interfacial curvatures, the Gaussian curvature, is negative, implying well-connected phases which is consistent with pinning at the contact line while providing a topological explanation for the high displacement efficiencies in mixed-wet media.

Journal article

Jackson SJ, Lin Q, Krevor S, 2020, Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow From the Pore to Continuum Scale, WATER RESOURCES RESEARCH, Vol: 56, ISSN: 0043-1397

Journal article

Zahasky C, Jackson SJ, Lin Q, Krevor Set al., 2020, Pore Network Model Predictions of Darcy-Scale Multiphase Flow Heterogeneity Validated by Experiments, WATER RESOURCES RESEARCH, Vol: 56, ISSN: 0043-1397

Journal article

Alhosani A, Scanziani A, Lin Q, Raeini A, Bijeljic B, Blunt Met al., 2020, Pore-scale mechanisms of CO2 storage in oilfields, Scientific Reports, Vol: 10, Pages: 1-9, ISSN: 2045-2322

Rapid implementation of global scale carbon capture and storage is required to limit temperature rises to 1.5 °C this century. Depleted oilfields provide an immediate option for storage, since injection infrastructure is in place and there is an economic benefit from enhanced oil recovery. To design secure storage, we need to understand how the fluids are configured in the microscopic pore spaces of the reservoir rock. We use high-resolution X-ray imaging to study the flow of oil, water and CO2 in an oil-wet rock at subsurface conditions of high temperature and pressure. We show that contrary to conventional understanding, CO2 does not reside in the largest pores, which would facilitate its escape, but instead occupies smaller pores or is present in layers in the corners of the pore space. The CO2 flow is restricted by a factor of ten, compared to if it occupied the larger pores. This shows that CO2 injection in oilfields provides secure storage with limited recycling of gas; the injection of large amounts of water to capillary trap the CO2 is unnecessary.

Journal article

Mularczyk A, Lin Q, Blunt MJ, Lamibrac A, Marone F, Schmidt TJ, Buchi FN, Eller Jet al., 2020, Droplet and percolation network interactions in a fuel cell gas diffusion layer, Journal of The Electrochemical Society, Vol: 167, ISSN: 0013-4651

Product water accumulations in polymer electrolyte fuel cells can cause performance losses and reactant starvation leading to cell degradation. Liquid water removal in the form of droplets, fed by percolation networks in the gas diffusion layer (GDL), is one of the main transport mechanisms by which the water is evacuated from the GDL. In this study, the effect of droplet detachment in the gas channel on the water cluster inside the GDL has been investigated using X-ray tomographic microscopy and X-ray radiography. The droplet growth is captured in varying stages over a sequence of consecutive droplet releases, during which an inflation and deflation of the gas-liquid interface menisci of the percolating water structure in the GDL has been observed and correlated to changes in pressure fluctuations in the water phase via gas-liquid curvature analysis.

Journal article

Garfi G, John CM, Lin Q, Berg S, Krevor Set al., 2020, Fluid Surface Coverage Showing the Controls of Rock Mineralogy on the Wetting State, GEOPHYSICAL RESEARCH LETTERS, Vol: 47, ISSN: 0094-8276

Journal article

Gao Y, Lin Q, Bijeljic B, Blunt MJet al., 2020, Pore-scale dynamics and the multiphase Darcy law, Physical Review Fluids, Vol: 5, Pages: 1-12, ISSN: 2469-990X

Synchrotron x-ray microtomography combined with sensitive pressure differential measurements were used to study flow during steady-state injection of equal volume fractions of two immiscible fluids of similar viscosity through a 57-mm-long porous sandstone sample for a wide range of flow rates. We found three flow regimes. (1) At low capillary numbers, Ca, representing the balance of viscous to capillary forces, the pressure gradient, ∇P, across the sample was stable and proportional to the flow rate (total Darcy flux) qt (and hence capillary number), confirming the traditional conceptual picture of fixed multiphase flow pathways in porous media. (2) Beyond Ca∗≈10−6, pressure fluctuations were observed, while retaining a linear dependence between flow rate and pressure gradient for the same fractional flow. (3) Above a critical value Ca>Cai≈10−5 we observed a power-law dependence with ∇P∼qat with a≈0.6 associated with rapid fluctuations of the pressure differential of a magnitude equal to the capillary pressure. At the pore scale a transient or intermittent occupancy of portions of the pore space was captured, where locally flow paths were opened to increase the conductivity of the phases. We quantify the amount of this intermittent flow and identify the onset of rapid pore-space rearrangements as the point when the Darcy law becomes nonlinear. We suggest an empirical form of the multiphase Darcy law applicable for all flow rates, consistent with the experimental results.

Journal article

Alhosani A, Scanziani A, Lin Q, Pan Z, Bijeljic B, Blunt MJet al., 2019, In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a water-wet carbonate rock, Advances in Water Resources, Vol: 134, ISSN: 0309-1708

We study in situ three-phase near-miscible CO2 injection in a water-wet carbonate rock at elevated temperature and pressure using X-ray microtomography. We examine the recovery mechanisms, presence or absence of oil layers, pore occupancy and interfacial areas during a secondary gas injection process. In contrast to an equivalent immiscible system, we did not observe layers of oil sandwiched between gas in the centre of the pore space and water in the corners. At near-miscible conditions, the measured contact angle between oil and gas was approximately 73°, indicating only weak oil wettability in the presence of gas. Oil flows in the centres of large pores, rather than in layers for immiscible injection, when displaced by gas. This allows for a rapid production of oil since it is no longer confined to movement in thin layers. A significant recovery factor of 80% was obtained and the residual oil saturation existed as disconnected blobs in the corners of the pore space. At equilibrium, gas occupied the biggest pores, while oil and water occupied pores of varying sizes (small, medium and large). Again, this was different from an immiscible system, where water occupied only the smallest pores. We suggest that a double displacement mechanism, where gas displaces water that displaces oil is responsible for shuffling water into larger pores than that seen after initial oil injection. This is only possible since, in the absence of oil layers, gas can contact water directly. The gas-oil and oil-water interfacial areas are lower than in the immiscible case, since there are no oil layers and even water layers in the macro-pore space become disconnected; in contrast, there is a larger direct contact of oil to the solid. These results could serve as benchmarks for developing near-miscible pore-scale modelling tools.

Journal article

Blunt MJ, Lin Q, Akai T, Bijeljic Bet al., 2019, A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging, Journal of Colloid and Interface Science, Vol: 552, Pages: 59-65, ISSN: 0021-9797

Conservation of energy is used to derive a thermodynamically-consistent contact angle, θt, when fluid phase 1 displaces phase 2 in a porous medium. Assuming no change in Helmholtz free energy between two local equilibrium states we find that Δa1scosθt=κϕΔS1+Δa12, where a is the interfacial area per unit volume, ϕ is the porosity, S is the saturation and κ the curvature of the fluid-fluid interface. The subscript s denotes the solid, and we consider changes, Δ, in saturation and area. With the advent of high-resolution time-resolved three-dimensional X-ray imaging, all the terms in this expression can be measured directly. We analyse imaging datasets for displacement of oil by water in a water-wet and a mixed-wet sandstone. For the water-wet sample, the curvature is positive and oil bulges into the brine with almost spherical interfaces. In the mixed-wet case, larger interfacial areas are found, as the oil resides in layers. The mean curvature is close to zero, but the interface tends to bulge into brine in one direction, while brine bulges into oil in the other. We compare θt with the values measured geometrically in situ on the pore-scale images, θg. The thermodynamic angle θt provides a robust and consistent characterization of wettability. For the water-wet case the calculated value of θt gives an accurate prediction of multiphase flow properties using pore-scale modelling.

Journal article

Akai T, Lin Q, Alhosani A, Bijeljic B, Blunt MJet al., 2019, Quantification of uncertainty and best practice in computing interfacial curvature from complex pore space images., Materials (Basel), Vol: 12, Pages: 1-21, ISSN: 1996-1944

Recent advances in high-resolution three-dimensional X-ray CT imaging have made it possible to visualize fluid configurations during multiphase displacement at the pore-scale. However, there is an inherited difficulty in image-based curvature measurements: the use of voxelized image data may introduce significant error, which has not-to date-been quantified. To find the best method to compute curvature from micro-CT images and quantify the likely error, we performed drainage and imbibition direct numerical simulations for an oil/water system on a bead pack and a Bentheimer sandstone. From the simulations, local fluid configurations and fluid pressures were obtained. We then investigated methods to compute curvature on the oil/water interface. The interface was defined in two ways; in one case the simulated interface with a sub-resolution smoothness was used, while the other was a smoothed interface extracted from synthetic segmented data based on the simulated phase distribution. The curvature computed on these surfaces was compared with that obtained from the simulated capillary pressure, which does not depend on the explicit consideration of the shape of the interface. As distinguished from previous studies which compared an average or peak curvature with the value derived from the measured macroscopic capillary pressure, our approach can also be used to study the pore-by-pore variation. This paper suggests the best method to compute curvature on images with a quantification of likely errors: local capillary pressures for each pore can be estimated to within 30% if the average radius of curvature is more than 6 times the image resolution, while the average capillary pressure can also be estimated to within 11% if the average radius of curvature is more than 10 times the image resolution.

Journal article

Lin Q, Bijeljic B, Berg S, Pini R, Blunt MJ, Krevor Set al., 2019, Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone, Physical Review E, Vol: 99, Pages: 063105-1-063105-13, ISSN: 1539-3755

High-resolution x-ray imaging was used in combination with differential pressure measurements to measurerelative permeability and capillary pressure simultaneously during a steady-state waterflood experiment on asample of Bentheimer sandstone 51.6 mm long and 6.1 mm in diameter. After prolonged contact with crude oil toalter the surface wettability, a refined oil and formation brine were injected through the sample at a fixed total flowrate but in a sequence of increasing brine fractional flows. When the pressure across the system stabilized, x-raytomographic images were taken. The images were used to compute saturation, interfacial area, curvature, andcontact angle. From this information relative permeability and capillary pressure were determined as functionsof saturation. We compare our results with a previously published experiment under water-wet conditions. Theoil relative permeability was lower than in the water-wet case, although a smaller residual oil saturation, ofapproximately 0.11, was obtained, since the oil remained connected in layers in the altered wettability rock.The capillary pressure was slightly negative and 10 times smaller in magnitude than for the water-wet rock,and approximately constant over a wide range of intermediate saturation. The oil-brine interfacial area wasalso largely constant in this saturation range. The measured static contact angles had an average of 80◦ with astandard deviation of 17◦. We observed that the oil-brine interfaces were not flat, as may be expected for a verylow mean curvature, but had two approximately equal, but opposite, curvatures in orthogonal directions. Theseinterfaces were approximately minimal surfaces, which implies well-connected phases. Saddle-shaped menisciswept through the pore space at a constant capillary pressure and with an almost fixed area, removing most ofthe oil.

Journal article

Al-Khulaifi Y, Lin Q, Blunt MJ, Bijeljic Bet al., 2019, Pore-scale dissolution by CO₂ saturated brine in a multimineral carbonate at reservoir conditions: impact of physical and chemical heterogeneity, Water Resources Research, Vol: 55, Pages: 3171-3193, ISSN: 0043-1397

We study the impact of physical and chemical heterogeneity on reaction rates in multimineral porous media. We selected two pairs of carbonate samples of different physical heterogeneity in accordance with their initial computed velocity distributions and then injected CO 2 saturated brine at reservoir conditions at two flow rates. We periodically imaged the samples using X-ray microtomography. The mineralogical composition was similar (a ratio of dolomite to calcite of 8:1), but the intrinsic reaction rates and mineral spatial distribution were profoundly different. Visualizations of velocity fields and reacted mineral distributions revealed that a dominant flow channel formed in all cases. The more physically homogeneous samples had a narrower velocity distribution and more preexisting fast channels, which promoted dominant channel formation in their proximity. In contrast, the heterogeneous samples exhibit a broader distribution of velocities and fewer fast channels, which accentuated nonuniform calcite distribution and favored calcite dissolution away from the initially fast pathways. We quantify the impact of physical and chemical heterogeneity by computing the proximity of reacted minerals to the fast flow pathways. The average reaction rates were an order of magnitude lower than the intrinsic ones due to mass transfer limitations. The effective reaction rate of calcite decreased by an order of magnitude, in both fast channels and slow regions. After channel formation calcite was shielded by dolomite whose effective rate in slow regions could even increase. Overall, the preferential channeling effect, as opposed to uniform dissolution, was promoted by a higher degree of physical and/or chemical heterogeneity.

Journal article

Lin Q, Bijeljic B, Krevor SC, Blunt MJ, Rücker M, Berg S, Coorn A, Van Der Linde H, Georgiadis A, Wilson OBet al., 2019, A New Waterflood Initialization Protocol With Wettability Alteration for Pore-Scale Multiphase Flow Experiments, Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description, Vol: 60, Pages: 264-272, ISSN: 1529-9074

Journal article

Lin Q, Bijeljic B, Berg S, Pini R, Blunt MJ, Krevor Set al., 2019, Minimal surfaces in porous media: pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone, Publisher: EarthArXiv

We observed features of pore scale fluid distributions during oil-brine displacement in a mixed-wet sandstone rock sample. High-resolution X-ray imaging was used in combination with differential pressure measurements to measure relative permeability and capillary pressure simultaneously during a steady-state waterflood experiment on a sample of Bentheimer sandstone 51.6 mm long and 6.1 mm in diameter. After prolonged contact with crude oil to alter the surface wettability, a refined oil and formation brine were injected through the sample at a fixed total flow rate but in a sequence of increasing brine fractional flows. When the pressure across the system stabilized, X-ray tomographic images were taken. The images were used to compute saturation, interfacial area, curvature and contact angle. From this information relative permeability and capillary pressure were determined as functions of saturation. We compare our results with a previously published experiment with strongly water-wet conditions. The oil relative permeability was lower than in the water-wet case, although a smaller residual oil saturation, of approximately 0.11, was obtained, since the oil remained connected in layers in the altered wettability rock. The capillary pressure was slightly negative and ten times smaller in magnitude than a similar water-wet rock, and approximately constant over a wide range of intermediate saturation. The oil-brine interfacial area was also largely constant in this saturation range. The measured static contact angles had an average of $80^{\circ}$ with a standard deviation of $17^{\circ}$.We observed that the oil-brine interfaces were not flat, as may be expected for a very low mean curvature, but had two approximately equal, but opposite, curvatures in orthogonal directions. These interfaces were approximately minimal surfaces which allow efficient displacement and imply well-connected phases. Saddle-shaped menisci swept through the pore space at a constant capillary

Working paper

Suttle M, Genge M, Folco L, Van Ginneken M, Lin Q, Russell S, Najorka Set al., 2019, The atmospheric entry of fine-grained micrometeorites: the role of volatile gases in heating and fragmentation, Meteoritics and Planetary Science, Vol: 54, Pages: 503-520, ISSN: 1086-9379

The early stages of atmospheric entry are investigated in four large (250–950 μm) unmelted micrometeorites (three fine‐grained and one composite), derived from the Transantarctic Mountain micrometeorite collection. These particles have abundant, interconnected, secondary pore spaces which form branching channels and show evidence of enhanced heating along their channel walls. Additionally, a micrometeorite with a double‐walled igneous rim is described, suggesting that some particles undergo volume expansion during entry. This study provides new textural data which links together entry heating processes known to operate inside micrometeoroids, thereby generating a more comprehensive model of their petrographic evolution. Initially, flash heated micrometeorites develop a melt layer on their exterior; this igneous rim migrates inwards. Meanwhile, the particle core is heated by the decomposition of low‐temperature phases and by volatile gas release. Where the igneous rim acts as a seal, gas pressures rise, resulting in the formation of interconnected voids and higher particle porosities. Eventually, the igneous rim is breached and gas exchange with the atmosphere occurs. This mechanism replaces inefficient conductive rim‐to‐core thermal gradients with more efficient particle‐wide heating, driven by convective gas flow. Interconnected voids also increase the likelihood of particle fragmentation during entry and, may therefore explain the rarity of large fine‐grained micrometeorites among collections.

Journal article

Saif T, Lin Q, Gao Y, Al-Khulaifi Y, Marone F, Hollis D, Blunt MJ, Bijeljic Bet al., 2019, 4D in situ synchrotron X-ray tomographic microscopy and laser-based heating study of oil shale pyrolysis, Applied Energy, Vol: 235, Pages: 1468-1475, ISSN: 0306-2619

The comprehensive characterization and analysis of the evolution of micro-fracture networks in oil shales during pyrolysis is important to understand the complex petrophysical changes during hydrocarbon recovery. We used time-resolved X-ray microtomography to perform pore-scale dynamic imaging with a synchrotron light source to capture in 4-D (three-dimensional image + real time) the evolution of fracture initiation, growth, coalescence and closure. A laser-based heating system was used to pyrolyze a sample of Eocene Green River (Mahogany Zone) up to 600 °C with tomograms acquired every 30 s at 1.63 µm computed voxel size and analyzed using Digital Volume Correlation (DVC) for full 3-D strain and deformation maps. At 354 °C the first isolated micro-fractures were observed and by 378 °C, a connected fracture network was formed as the solid organic matter was transformed into volatile hydrocarbon components. With increasing temperature, we observed simultaneous pore space growth and coalescence as well as temporary closure of minor fractures caused by local compressive stresses. This indicates that the evolution of individual fractures not only depends on organic matter composition but also on the dynamic development of neighboring fractures. Our results demonstrate that combining synchrotron X-ray tomography, laser-based heating and DVC provides a powerful methodology for characterizing dynamics of multi-scale physical changes during oil shale pyrolysis to help optimize hydrocarbon recovery.

Journal article

Lin Q, Alhammadi AM, Gao Y, Bijeljic B, Blunt MJet al., 2019, Iscal for complete rock characterization: Using pore-scale imaging to determine relative permeability and capillary pressure

We combine steady-state measurements of relative permeability with pore-scale imaging to estimate local capillary pressure. High-resolution three-dimensional X-ray tomography enables the pore structure and fluid distribution to be quantified at reservoir temperatures and pressures with a resolution of a few microns. Two phases are injected through small cylindrical samples at a series of fractional flows until the pressure differential across the core is constant. Then high-quality images are acquired from which saturation is calculated, using differential imaging to quantify the phase distributions in micro-porosity which cannot be explicitly resolved. The relative permeability is obtained from the pressure drop and fractional flow, as in conventional measurements. The curvature of the fluid/fluid interfaces in the larger pore spaces is found, then from the Young-Laplace equation, the capillary pressure is calculated. In addition, the sequence of images of fluid distribution captures the displacement process. Observed gradients in capillary pressure - the capillary end effect - can be accounted for analytically in the calculation of relative permeability. We illustrate our approach with three examples of increasing complexity. First, we compare the measured relative permeability and capillary pressure for Bentheimer sandstone, both for a clean sample and a mixed-wet core that had been aged in reservoir crude oil after centrifugation. We characterize the distribution of contact angles to demonstrate that the mixed-wet sample has a wide range of angle centred, approximately, on 90°. We then study a water-wet micro-porous carbonate to illustrate the impact of sub-resolution porosity on the flow behaviour: here oil, as the non-wetting phase, is present in both the macro-pores and micro-porosity. Finally, we present results for a mixed-wet reservoir carbonate. We show that the oil/water interfaces in the mixed-wet samples are saddle-shaped with two opposite, but alm

Conference paper

Lin Q, Bijeljic B, Pini R, Blunt MJ, Krevor SCet al., 2018, Imaging and measurement of pore‐scale interfacial curvature to determine capillary pressure simultaneously with relative permeability, Water Resources Research, Vol: 54, Pages: 7046-7060, ISSN: 0043-1397

There are a number of challenges associated with the determination of relative permeability and capillary pressure. It is difficult to measure both parameters simultaneously on the same sample using conventional methods. Instead, separate measurements are made on different samples, usually with different flooding protocols. Hence, it is not certain that the pore structure and displacement processes used to determine relative permeability are the same as those when capillary pressure was measured. Moreover, at present, we do not use pore‐scale information from high‐resolution imaging to inform multiphase flow properties directly. We introduce a method using pore‐scale imaging to determine capillary pressure from local interfacial curvature. This, in combination with pressure drop measurements, allows both relative permeabilities and capillary pressure to be determined during steady state coinjection of two phases through the core. A steady state waterflood experiment was performed in a Bentheimer sandstone, where decalin and brine were simultaneously injected through the core at increasing brine fractional flows from 0 to 1. The local saturation and the curvature of the oil‐brine interface were determined. Using the Young‐Laplace law, the curvature was related to a local capillary pressure. There was a detectable gradient in both saturation and capillary pressure along the flow direction. The relative permeability was determined from the experimentally measured pressure drop and average saturation obtained by imaging. An analytical correction to the brine relative permeability could be made using the capillary pressure gradient. The results for both relative permeability and capillary pressure are consistent with previous literature measurements on larger samples.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00695810&limit=30&person=true