Imperial College London

Dr Qingyang Lin

Faculty of EngineeringDepartment of Earth Science & Engineering

Visiting Researcher
 
 
 
//

Contact

 

+44 (0)20 7594 9982q.lin11 Website

 
 
//

Location

 

RSM 440/7Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

67 results found

Xin Q, Yang Y, Liu S, Zhang X, Zheng C, Lin Q, Gao Xet al., 2023, Mass transfer of multi-pollutants over titania-based SCR catalyst: A molecular dynamics study, Applied Energy, Vol: 331, Pages: 1-9, ISSN: 0306-2619

Mass transfer can significantly affect the SCR process which is designed for NOx removal. However, it is still challenging to characterize the transport of gaseous species involved in the process, especially at nano-scale. This work probes into the application of non-equilibrium molecular dynamics (NEMD) simulations to study the mass transfer of multi-pollutants over a titania-based catalyst. A dual control-volume (DCV) model was proposed to simulate transport of typical gaseous molecules (e.g. NO, NH3 and SO2). The impacts of temperature, pore width, hydroxyl sites and competitive diffusion on diffusivity of objective molecules were studied in details. The results showed that temperature and surface sites could affect NH3 more significantly than NO and SO2, yet the influence of surface sites was strongly size-dependent. The reduction in NH3 diffusivity caused by the presence of surface sites decreased from 32.37 % to 2.97 % when the pore width grows from 25 Å to 75 Å. The competitive transport between NH3 and SO2 has also mitigated the impacts of surface sites on both molecules.

Journal article

Qu ML, Blunt MJ, Fan X, Foroughi S, Yu ZT, Lin Qet al., 2023, Pore-to-mesoscale network modeling of heat transfer and fluid flow in packed beds with application to process design, AIChE Journal, ISSN: 0001-1541

A dual-network model (DNM) representing the topological characteristics of both the pore space and solid fraction of a packed bed was developed to study coupled incompressible water flow and heat transport from the pore-scale to mesoscale (μm-cm) with the consideration of temperature-dependent fluid viscosity. The DNM was validated and used to study the temperature and velocity at the pore scale and their effects on fluid flow and heat transfer. Then the pore volume of the DNM was varied to illustrate the effect of bed porosity on transport processes, quantifying the trade-off between flow conditions and heat transfer. This work demonstrates the ability of the DNM to simulate pore-scale fluid flow and heat transfer simultaneously, which can then be averaged over the entire simulation domain to approximate meso/macroscopic parameters efficiently in relation to the pore geometry.

Journal article

Blunt MJ, Lin Q, 2022, Flow in Porous Media in the Energy Transition, ENGINEERING, Vol: 14, Pages: 10-14, ISSN: 2095-8099

Journal article

Lin Q, Zhang X, Wang T, Zheng C, Gao Xet al., 2022, Technical Perspective of Carbon Capture, Utilization, and Storage, Engineering, Vol: 14, Pages: 27-32, ISSN: 2095-8099

Carbon dioxide (CO2) is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities. The majority of CO2 emissions are results of the burning of fossil fuels for energy, as well as industrial processes such as steel and cement production. Carbon capture, utilization, and storage (CCUS) is a sustainable technology promising in terms of reducing CO2 emissions that would otherwise contribute to climate change. From this perspective, the discussion on carbon capture focuses on chemical absorption technology, primarily due to its commercialization potential. The CO2 absorptive capacity and absorption rate of various chemical solvents have been summarized. The carbon utilization focuses on electrochemical conversion routes converting CO2 into potentially valuable chemicals which have received particular attention in recent years. The Faradaic conversion efficiencies for various CO2 reduction products are used to describe efficiency improvements. For carbon storage, successful deployment relies on a better understanding of fluid mechanics, geomechanics, and reactive transport, which are discussed in details.

Journal article

Zhang Y, Lin Q, Raeini AQ, Onaka Y, Iwama H, Takabayashi K, Blunt MJ, Bijeljic Bet al., 2022, Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration, Fuel, Vol: 316, Pages: 1-9, ISSN: 0016-2361

To better understand asphaltene deposition mechanisms and their influence on rock permeability and wettability, we have developed an in situ micro-CT imaging capability to observe asphaltene precipitation during multiphase flow at high resolution in three dimensions. Pure heptane and crude oil were simultaneously injected to induce asphaltene precipitation in the pore space of a sandstone rock sample. The heptane permeability across the sample was nine times lower after the first asphaltene precipitation, while it was reduced by a factor of ninety due to asphaltene migration and growth after subsequent brine injection. Furthermore, through quantifying the curvatures and contact angles on the images before and after asphaltene precipitation, we observed that the wettability of the porous medium changed from water-wet to mixed-wet. Overall, we demonstrate a micro-CT imaging and analysis workflow to quantify asphaltene deposition, permeability reduction and wettability change which can be used for reservoir characterisation and remediation.

Journal article

Qu M-L, Lu S-Y, Lin Q, Foroughi S, Yu Z-T, Blunt MJet al., 2022, Characterization of Water Transport in Porous Building Materials Based on an Analytical Spontaneous Imbibition Model, TRANSPORT IN POROUS MEDIA, Vol: 143, Pages: 417-432, ISSN: 0169-3913

Journal article

Wan C, Bao H, Chen Z, Lin Q, Liu S, Wu W, Song H, Yang Yet al., 2022, The prediction of nitric oxide conversion by dielectric barrier discharge using an artificial neural network model, Journal of the Energy Institute, Vol: 101, Pages: 96-110, ISSN: 1743-9671

NO conversion to NO2 by DBD (Dielectric Barrier Discharge) was investigated in the N2/O2/NO system. Since NO2 could be generated from NO oxidation by O species, the increase of specific energy input (SEI), function of discharge power and residence time, facilitated the production of O radicals, promoting NO2 production. However, high temperature accomplished by DBD inhibit the NO2 generation to some extent. Also, the conversion is affected by stoichiometric ratio, i.e., oxygen content and inlet NO concentration, which makes a challenge to characterize and predict the products using traditional methods, such as chemical kinetic model. To address above problem, an artificial neural network (ANN) model was developed to predict NO conversion by DBD in the N2/O2/NO system. The experimental data was adopted to train the proposed ANN model in order to simulate and predict the concentrations of NO, NO2, N2O and NOx during reactions. Good agreement was observed between the simulated results and the validated tests. The ANN model showed that inlet NO concentration plays a dominant role in NO2 generation, accounting for 36.22%, followed by residence time and discharge power, which were 26.25% and 23.52%, respectively. O2 content has marginal effect, taking 14.01%. As a byproduct, N2O was much more affected by stoichiometric ratio, which accounted for 64.75%, compared to 35.25%, belonging to discharge power and residence time.

Journal article

Garfi G, John C, Rücker M, Lin Q, Spurin C, Berg S, Krevor Set al., 2022, Determination of the spatial distribution of wetting in the pore networks of rocks

<jats:p>The macroscopic movement of subsurface fluids involved in CO2 storage, groundwater, and petroleum engineering applications is controlled by interfacial forces in the pores of rocks, micrometre to millimetre in length scale. Recent advances in physics based models of these systems has arisen from approaches simulating flow through a digital representation of the complex pore structure. However, further progress is limited by a lack of approaches to characterising the spatial distribution of the wetting state within the pore structure. In this work, we show how observations of the fluid coverage of mineral surfaces within the pores of rocks can be used as the basis for a quantitative 3D characterisation of heterogeneous wetting states throughout rock pore structures. We demonstrate the approach with water-oil fluid pairs on rocks with distinct lithologies (sandstone and carbonate) and wetting states (hydrophilic, intermediate wetting, or heterogeneously wetting). The resulting 3D maps can be used as a deterministic input to pore scale modelling workflows and applied to all multiphase flow problems in porous media ranging from soil science to fuel cells.</jats:p>

Journal article

Garfi G, John CM, Rucker M, Lin Q, Spurin C, Berg S, Krevor Set al., 2022, Determination of the spatial distribution of wetting in the pore networks of rocks, JOURNAL OF COLLOID AND INTERFACE SCIENCE, Vol: 613, Pages: 786-795, ISSN: 0021-9797

Journal article

Alhosani A, Selem AM, Lin Q, Bijeljic B, Blunt MJet al., 2021, Disconnected gas transport in steady‐state three‐phase flow, Water Resources Research, Vol: 57, Pages: 1-26, ISSN: 0043-1397

We use high-resolution three-dimensional X-ray microtomography to investigate fluid displacement during steady-state three-phase flow in a cm-sized water-wet sandstone rock sample. The pressure differential across the sample is measured which enables the determination of relative permeability; capillary pressure is also estimated from the interfacial curvature. Though the measured relative permeabilities are consistent, to within experimental uncertainty, with values obtained without imaging on larger samples, we discover a unique flow dynamics. The most non-wetting phase (gas) is disconnected across the system: gas flows by periodically opening critical flow pathways in intermediate-sized pores. While this phenomenon has been observed in two-phase flow, here it is significant at low flow rates, where capillary forces dominate at the pore-scale. Gas movement proceeds in a series of double and multiple displacement events. Implications for the design of three-phase flow processes and current empirical models are discussed: the traditional conceptualization of three-phase dynamics based on analogies to two-phase flow vastly over-estimates the connectivity and flow potential of the gas phase.

Journal article

Mularczyk A, Lin Q, Niblett D, Vasile A-P, Blunt MJ, Niasar VJ, Marone F, Schmidt TJ, Buechi FN, Eller Jet al., 2021, Capillary Pressure Evolution in Operating Polymer Electrolyte Fuel Cells, ECS Meeting Abstracts, Vol: MA2021-02, Pages: 1027-1027

Journal article

Lin Q, Bijeljic B, Raeini AQ, Rieke H, Blunt MJet al., 2021, Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone, Geophysical Research Letters, Vol: 48, Pages: 1-11, ISSN: 0094-8276

We applied three-dimensional X-ray microtomography to image a capillary drainage process (0–1,000 kPa) in a cm-scale heterogeneous laminated sandstone containing three distinct regions with different pore sizes to study the capillary pressure. We used differential imaging to distinguish solid, macropore, and five levels of subresolution pore phases associated with each region. The brine saturation distribution was computed based on average CT values. The nonwetting phase displaced the wetting phase in order of pore size and connectivity. The drainage capillary pressure in the highly heterogeneous rock was dependent on the capillary pressures in the individual regions as well as distance to the boundary between regions. The complex capillary pressure distribution has important implications for accurate water saturation estimation, gas and/or oil migration and the capillary rise of water in heterogeneous aquifers.

Journal article

Mularczyk A, Lin Q, Niblett D, Vasile A, Blunt MJ, Niasar V, Marone F, Schmidt TJ, Büchi FN, Eller Jet al., 2021, Operando liquid pressure determination in polymer electrolyte fuel cells., ACS Applied Materials and Interfaces, Vol: 13, Pages: 34003-34011, ISSN: 1944-8244

Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase. This made it possible to observe the increase in capillary pressure when the advancing water front had to overcome a throat between two neighboring pores and the nuanced interactions of volume and pressure evolution during the droplet formation and its feeding path instability. A 2 kPa higher breakthrough pressure compared to static ex situ capillary pressure versus saturation evaluations was observed, which suggests a rethinking of the dynamic liquid water invasion process in polymer electrolyte fuel cell gas diffusion layers.

Journal article

Lin Q, Bijeljic B, Foroughi S, Berg S, Blunt MJet al., 2021, Pore-scale imaging of displacement patterns in an altered-wettability carbonate, Chemical Engineering Science, Vol: 235, Pages: 1-12, ISSN: 0009-2509

High-resolution X-ray imaging combined with a steady-state flow experiment is used to demonstrate how pore-scale displacement affects macroscopic properties in an altered-wettability microporous carbonate, where porosity and fluid saturation can be directly obtained from the grey-scale micro-CT images. The resolvable macro pores are largely oil-wet with an average thermodynamic contact angle of 120°. The pore-by-pore analysis shows locally either oil or brine almost fully occupied the macro pores, with some oil displacement in the micro-porosity. We observed a typical oil-wet behaviour consistent with the contact angle measurement. The brine tended to occupy the larger macro pores, leading to a higher brine relative permeability, lower residual oil saturation, than under water-wet conditions and in a mixed-wet sandstone. The capillary pressure was negative and seven times larger in the carbonate than the sandstone, despite having a similar average pore size. These different displacement patterns are principally determined by the difference in wettability.

Journal article

Zhang Y, Bijeljic B, Gao Y, Lin Q, Blunt MJet al., 2021, Quantification of non‐linear multiphase flow in porous media, Geophysical Research Letters, Vol: 48, Pages: 1-7, ISSN: 0094-8276

We measure the pressure difference during two‐phase flow across a sandstone sample for a range of injection rates and fractional flows of water, the wetting phase, during an imbibition experiment. We quantify the onset of a transition from a linear relationship between flow rate and pressure gradient to a nonlinear power‐law dependence. We show that the transition from linear (Darcy) to nonlinear flow and the exponent in the power‐law is a function of fractional flow. We use energy balance to accurately predict the onset of intermittency for a range of fractional flows, fluid viscosities, and different rock types.

Journal article

Alhosani A, Lin Q, Scanziani A, Andrews E, Zhang K, Bijeljic B, Blunt MJet al., 2021, Pore-scale characterization of carbon dioxide storage at immiscible and near-miscible conditions in altered-wettability reservoir rocks, International Journal of Greenhouse Gas Control, Vol: 105, Pages: 1-15, ISSN: 1750-5836

Carbon dioxide storage combined with enhanced oil recovery (CCS-EOR) is an important approach for reducing greenhouse gas emissions. We use pore-scale imaging to help understand CO2 storage and oil recovery during CCS-EOR at immiscible and near-miscible CO2 injection conditions. We study in situ immiscible CO2 flooding in an oil-wet reservoir rock at elevated temperature and pressure using X-ray micro-tomography. We observe the predicted, but hitherto unreported, three-phase wettability order in strongly oil-wet rocks, where water occupies the largest pores, oil the smallest, while CO2 occupies pores of intermediate size. We investigate the pore occupancy, existence of CO2 layers, recovery and CO2 trapping in the oil-wet rock at immiscible conditions and compare to the results obtained on the same rock type under slightly more weakly oil-wet near-miscible conditions, with the same wettability order. CO2 spreads in connected layers at near-miscible conditions, while it exists as disconnected ganglia in medium-sized pores at immiscible conditions. Hence, capillary trapping of CO2 by oil occurs at immiscible but not at near-miscible conditions. Moreover, capillary trapping of CO2 by water is not possible in both cases since CO2 is more wetting to the rock than water. The oil recovery by CO2 injection alone is reduced at immiscible conditions compared to near-miscible conditions, where low gas-oil capillary pressure improves microscopic displacement efficiency. Based on these results, to maximize the amount of oil recovered and CO2 stored at immiscible conditions, a water-alternating-gas injection strategy is suggested, while a strategy of continuous CO2 injection is recommended at near-miscible conditions.

Journal article

Blunt MJ, Alhosani A, Lin Q, Scanziani A, Bijeljic Bet al., 2021, Determination of contact angles for three-phase flow in porous media using an energy balance, Journal of Colloid and Interface Science, Vol: 582, Pages: 283-290, ISSN: 0021-9797

HYPOTHESIS: We define contact angles, θ, during displacement of three fluid phases in a porous medium using energy balance, extending previous work on two-phase flow. We test if this theory can be applied to quantify the three contact angles and wettability order in pore-scale images of three-phase displacement. THEORY: For three phases labelled 1, 2 and 3, and solid, s, using conservation of energy ignoring viscous dissipation (Δa1scosθ12-Δa12-ϕκ12ΔS1)σ12=(Δa3scosθ23+Δa23-ϕκ23ΔS3)σ23+Δa13σ13, where ϕ is the porosity, σ is the interfacial tension, a is the specific interfacial area, S is the saturation, and κ is the fluid-fluid interfacial curvature. Δ represents the change during a displacement. The third contact angle, θ13 can be found using the Bartell-Osterhof relationship. The energy balance is also extended to an arbitrary number of phases. FINDINGS: X-ray imaging of porous media and the fluids within them, at pore-scale resolution, allows the difference terms in the energy balance equation to be measured. This enables wettability, the contact angles, to be determined for complex displacements, to characterize the behaviour, and for input into pore-scale models. Two synchrotron imaging datasets are used to illustrate the approach, comparing the flow of oil, water and gas in a water-wet and an altered-wettability limestone rock sample. We show that in the water-wet case, as expected, water (phase 1) is the most wetting phase, oil (phase 2) is intermediate wet, while gas (phase 3) is most non-wetting with effective contact angles of θ12≈48° and θ13≈44°, while θ23=0 since oil is always present in spreading layers. In contrast, for the altered-wettability case, oil is most wetting, gas is intermediate-wet, while water is most non-wetting with contact angles of θ12=134°±~10°,θ13=119°&p

Journal article

Lin Q, Akai T, Blunt MJ, Bijeljic B, Iwama H, Takabayashi K, Onaka Y, Yonebayashi Het al., 2021, Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks, Fuel, Vol: 283, ISSN: 0016-2361

We propose an experimental methodology to visualize asphaltene precipitation in the pore space of rocks and assess the reduction in permeability. We perform core flooding experiments integrated with X-ray microtomography (micro-CT). The simultaneous injection of pure heptane and crude oil containing asphaltene induces the precipitation of asphaltene in the pore space. The degree of precipitation is controlled by the measurement of differential pressure across the sample. After precipitation, doped heptane is injected to replace the fluid to enhance the contrast between precipitated asphaltene and doped heptane. The micro-CT images are segmented into three phases: void, precipitated asphaltene, and rock. In the experiment, we observed that the precipitated asphaltene which occupied 39.1% of the pore volume caused a 29-fold reduction in permeability. Furthermore, we analyze the spatial distribution of precipitated asphaltene which showed that the asphaltene tended to clog the larger pores. We also computed the flow field numerically on the images and obtained good agreement between simulated and measured permeability. The distribution of local velocity showed that after precipitation the flow was confined to narrow channels in the pore space. This method can be applied to any type of porous system with precipitation.

Journal article

Blunt M, Kearney L, Alhosani A, Lin Q, Bijeljic Bet al., 2021, Wettability characterization from pore-scale images using topology and energy balance with implications for recovery and storage

We present two methods to measure contact angles inside porous media using high-resolution images. The direct determination of contact angle at the three-phase contact line is often ambiguous due to uncertainties with image segmentation. Instead, we propose two alternative approaches that provide an averaged assessment of wettability. The first uses fundamental principles in topology to relate the contact angle to the integral of the Gaussian curvature over the fluid-fluid meniscus. The advantage of this approach is that it replaces the uncertain determination of an angle at a point with a more accurate determination of an integral over a surface. However, in mixed-wet porous media, many interfaces are pinned with a hinging contact angle. For predictive pore-scale models, we need to determine the contact angle at which displacement occurs when the interfaces move. To address this problem we apply an energy balance, ignoring viscous dissipation, to estimate the contact angle from the meniscus curvature and changes in interfacial areas and saturation. We apply these methods to characterize wettability on pore-scale images of two- and three-phase flow. We also discuss the implications of the results for recovery and storage applications.

Conference paper

Selem A, Agenet N, Gao Y, Lin Q, Blunt MJ, Bijeljic Bet al., 2021, PORE-SCALE IMAGING OF CONTROLLED-SALINITY WATERFLOODING IN A HETEROGENEOUS CARBONATE ROCK AT RESERVOIR CONDITIONS, Pages: 2272-2276

Controlled salinity water-flooding (CSW) is a promising enhanced oil recovery technique, yet the pore-scale mechanisms that control the process remain poorly understood especially in carbonate rocks. The aim of this experimental study is, therefore, to gain novel insights into CSW and characterize oil, water and the pore space in carbonates. X-ray imaging combined with a high-pressure high-temperature flow apparatus was used to image and study in situ CSW in a complex carbonate rock. To establish the conditions found in oil reservoirs, the Estaillades limestone core sample (5.9 mm in diameter and 10 mm in length) was aged for three weeks at 11 MPa and 80°C. This weakly oil-wet sample was then flooded by injecting low salinity brine at a range of increasing flow rates. Tomographic images were acquired at 2.9-micron spatial resolution after each flow rate. A total of 60 pore volumes of low salinity brine were injected recovering 85% of the oil initially in place in macro-pores. Contact angles and brine-oil curvatures were obtained to characterize wettability changes within the rock pore space. Our analysis shows that wettability alteration towards a mixed wet system caused by low salinity brine was the main mechanism for increased oil recovery.

Conference paper

Alhosani A, Scanziani A, Lin Q, Selem A, Pan Z, Blunt MJ, Bijeljic Bet al., 2020, Three-phase flow displacement dynamics and Haines jumps in a hydrophobic porous medium, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 476, ISSN: 1364-5021

We use synchrotron X-ray micro-tomography to investigate the displacement dynamics during three-phase—oil, water and gas—flow in a hydrophobic porous medium. We observe a distinct gas invasion pattern, where gas progresses through the pore space in the form of disconnected clusters mediated by double and multiple displacement events. Gas advances in a process we name three-phase Haines jumps, during which gas re-arranges its configuration in the pore space, retracting from some regions to enable the rapid filling of multiple pores. The gas retraction leads to a permanent disconnection of gas ganglia, which do not reconnect as gas injection proceeds. We observe, in situ, the direct displacement of oil and water by gas as well as gas–oil–water double displacement. The use of local in situ measurements and an energy balance approach to determine fluid–fluid contact angles alongside the quantification of capillary pressures and pore occupancy indicate that the wettability order is oil–gas–water from most to least wetting. Furthermore, quantifying the evolution of Minkowski functionals implied well-connected oil and water, while the gas connectivity decreased as gas was broken up into discrete clusters during injection. This work can be used to design CO2 storage, improved oil recovery and microfluidic devices.

Journal article

Akai T, Lin Q, Bijeljic B, Blunt MJet al., 2020, Using energy balance to determine pore-scale wettability, Journal of Colloid and Interface Science, Vol: 576, Pages: 486-495, ISSN: 0021-9797

HypothesisBased on energy balance during two-phase displacement in porous media, it has recently been shown that a thermodynamically consistent contact angle can be determined from micro-tomography images. However, the impact of viscous dissipation on the energy balance has not been fully understood. Furthermore, it is of great importance to determine the spatial distribution of wettability. We use direct numerical simulation to validate the determination of the thermodynamic contact angle both in an entire domain and on a pore-by-pore basis.SimulationsTwo-phase direct numerical simulations are performed on complex 3D porous media with three wettability states: uniformly water-wet, uniformly oil-wet, and non-uniform mixed-wet. Using the simulated fluid configurations, the thermodynamic contact angle is computed, then compared with the input contact angles.FindingsThe impact of viscous dissipation on the energy balance is quantified; it is insignificant for water flooding in water-wet and mixed-wet media, resulting in an accurate estimation of a representative contact angle for the entire domain even if viscous effects are ignored. An increasing trend in the computed thermodynamic contact angle during water injection is shown to be a manifestation of the displacement sequence. Furthermore, the spatial distribution of wettability can be represented by the thermodynamic contact angle computed on a pore-by-pore basis.

Journal article

Scanziani A, Alhosani A, Lin Q, Spurin C, Garfi G, Blunt MJ, Bijeljic Bet al., 2020, In situ characterization of three‐phase flow in mixed‐wet porous media using synchrotron imaging, Water Resources Research, Vol: 56, ISSN: 0043-1397

We use fast synchrotron X‐ray microtomography to understand three‐phase flow in mixed‐wet porous media to design either enhanced permeability or capillary trapping. The dynamics of these phenomena are of key importance in subsurface hydrology, carbon dioxide storage, oil recovery, food and drug manufacturing, and chemical reactors. We study the dynamics of a water‐gas‐water injection sequence in a mixed‐wet carbonate rock. During the initial waterflooding, water displaced oil from pores of all size, indicating a mixed‐wet system with local contact angles both above and below 90°. When gas was injected, gas displaced oil preferentially with negligible displacement of water. This behavior is explained in terms of the gas pressure needed for invasion. Overall, gas behaved as the most nonwetting phase with oil as the most wetting phase; however, pores of all size were occupied by oil, water, and gas, as a signature of mixed‐wet media. Thick oil wetting layers were observed, which increased oil connectivity and facilitated its flow during gas injection. A chase waterflooding resulted in additional oil flow, while gas was trapped by oil and water. Furthermore, we quantified the evolution of the surface areas and both Gaussian and the total curvature, from which capillary pressure could be estimated. These quantities are related to the Minkowski functionals which quantify the degree of connectivity and trapping. The combination of water and gas injection, under mixed‐wet immiscible conditions, leads to both favorable oil flow and significant trapping of gas, which is advantageous for storage applications.

Journal article

Zhang Y, Bijeljic B, Gao Y, Lin Q, Blunt Met al., 2020, Quantification of non-linear multiphase flow in porous media

Working paper

Alhosani A, Scanziani A, Lin Q, Foroughi S, Alhammadi AM, Blunt MJ, Bijeljic Bet al., 2020, Dynamics of water injection in an oil-wet reservoir rock at subsurface conditions: Invasion patterns and pore-filling events, Physical Review E, Vol: 102, Pages: 023110 – 1-023110 – 15, ISSN: 2470-0045

We use fast synchrotron x-ray microtomography to investigate the pore-scale dynamics of water injection in an oil-wet carbonate reservoir rock at subsurface conditions. We measure, in situ, the geometric contact angles to confirm the oil-wet nature of the rock and define the displacement contact angles using an energy-balance-based approach. We observe that the displacement of oil by water is a drainagelike process, where water advances as a connected front displacing oil in the center of the pores, confining the oil to wetting layers. The displacement is an invasion percolation process, where throats, the restrictions between pores, fill in order of size, with the largest available throats filled first. In our heterogeneous carbonate rock, the displacement is predominantly size controlled; wettability has a smaller effect, due to the wide range of pore and throat sizes, as well as largely oil-wet surfaces. Wettability only has an impact early in the displacement, where the less oil-wet pores fill by water first. We observe drainage associated pore-filling dynamics including Haines jumps and snap-off events. Haines jumps occur on single- and/or multiple-pore levels accompanied by the rearrangement of water in the pore space to allow the rapid filling. Snap-off events are observed both locally and distally and the capillary pressure of the trapped water ganglia is shown to reach a new capillary equilibrium state. We measure the curvature of the oil-water interface. We find that the total curvature, the sum of the curvatures in orthogonal directions, is negative, giving a negative capillary pressure, consistent with oil-wet conditions, where displacement occurs as the water pressure exceeds that of the oil. However, the product of the principal curvatures, the Gaussian curvature, is generally negative, meaning that water bulges into oil in one direction, while oil bulges into water in the other. A negative Gaussian curvature provides a topological quantification of th

Journal article

Foroughi S, Bijeljic B, Lin Q, Raeini AQ, Blunt MJet al., 2020, Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol: 102, Pages: 023302 – 1-023302 – 15, ISSN: 1539-3755

A pore-network model is an upscaled representation of the pore space and fluid displacement, which is used to simulate two-phase flow through porous media. We use the results of pore-scale imaging experiments to calibrate and validate our simulations, and specifically to find the pore-scale distribution of wettability. We employ energy balance to estimate an average, thermodynamic, contact angle in the model, which is used as the initial estimate of contact angle. We then adjust the contact angle of each pore to match the observed fluid configurations in the experiment as a nonlinear inverse problem. The proposed algorithm is implemented on two sets of steady state micro-computed-tomography experiments for water-wet and mixed-wet Bentheimer sandstone. As a result of the optimization, the pore-by-pore error between the model and experiment is decreased to less than that observed between repeat experiments on the same rock sample. After calibration and matching, the model predictions for capillary pressure and relative permeability are in good agreement with the experiments. The proposed algorithm leads to a distribution of contact angle around the thermodynamic contact angle. We show that the contact angle is spatially correlated over around 4 pore lengths, while larger pores tend to be more oil-wet. Using randomly assigned distributions of contact angle in the model results in poor predictions of relative permeability and capillary pressure, particularly for the mixed-wet case.

Journal article

Scanziani A, Lin Q, Alhosani A, Blunt MJ, Bijeljic Bet al., 2020, Dynamics of fluid displacement in mixed-wet porous media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 476, Pages: 1-16, ISSN: 1364-5021

We identify a distinct two-phase flow invasion pattern in a mixed-wet porous medium. Time-resolved high-resolution synchrotron X-ray imaging is used to study the invasion of water through a small rock sample filled with oil, characterized by a wide non-uniform distribution of local contact angles both above and below 90°. The water advances in a connected front, but throats are not invaded in decreasing order of size, as predicted by invasion percolation theory for uniformly hydrophobic systems. Instead, we observe pinning of the three-phase contact between the fluids and the solid, manifested as contact angle hysteresis, which prevents snap-off and interface retraction. In the absence of viscous dissipation, we use an energy balance to find an effective, thermodynamic, contact angle for displacement and show that this angle increases during the displacement. Displacement occurs when the local contact angles overcome the advancing contact angles at a pinned interface: it is wettability which controls the filling sequence. The product of the principal interfacial curvatures, the Gaussian curvature, is negative, implying well-connected phases which is consistent with pinning at the contact line while providing a topological explanation for the high displacement efficiencies in mixed-wet media.

Journal article

Zahasky C, Jackson SJ, Lin Q, Krevor Set al., 2020, Pore Network Model Predictions of Darcy-Scale Multiphase Flow Heterogeneity Validated by Experiments, WATER RESOURCES RESEARCH, Vol: 56, ISSN: 0043-1397

Journal article

Jackson SJ, Lin Q, Krevor S, 2020, Representative Elementary Volumes, Hysteresis, and Heterogeneity in Multiphase Flow From the Pore to Continuum Scale, WATER RESOURCES RESEARCH, Vol: 56, ISSN: 0043-1397

Journal article

Alhosani A, Scanziani A, Lin Q, Raeini A, Bijeljic B, Blunt Met al., 2020, Pore-scale mechanisms of CO2 storage in oilfields, Scientific Reports, Vol: 10, Pages: 1-9, ISSN: 2045-2322

Rapid implementation of global scale carbon capture and storage is required to limit temperature rises to 1.5 °C this century. Depleted oilfields provide an immediate option for storage, since injection infrastructure is in place and there is an economic benefit from enhanced oil recovery. To design secure storage, we need to understand how the fluids are configured in the microscopic pore spaces of the reservoir rock. We use high-resolution X-ray imaging to study the flow of oil, water and CO2 in an oil-wet rock at subsurface conditions of high temperature and pressure. We show that contrary to conventional understanding, CO2 does not reside in the largest pores, which would facilitate its escape, but instead occupies smaller pores or is present in layers in the corners of the pore space. The CO2 flow is restricted by a factor of ten, compared to if it occupied the larger pores. This shows that CO2 injection in oilfields provides secure storage with limited recycling of gas; the injection of large amounts of water to capillary trap the CO2 is unnecessary.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00695810&limit=30&person=true