Imperial College London

DrRobertDickinson

Faculty of MedicineDepartment of Surgery & Cancer

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 7633r.dickinson

 
 
//

Location

 

Biophysics Group, Room 403Sir Ernst Chain BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

71 results found

Dickinson R, Campos-Pires R, Ong BE, Koziakova M, Ujvari E, Fuller I, Boyles C, Sun V, Ko A, Pap D, Lee M, Gomes L, Gallagher K, Mahoney Pet al., 2023, Repetitive, but not single, mild blast TBI causes persistent neurological impairments and selective cortical neuronal loss in rats, Brain Sciences, Vol: 13, Pages: 1-24, ISSN: 2076-3425

Exposure to repeated mild blast traumatic brain injury (mbTBI) is common in combat soldiers and the training of Special Forces. Evidence suggests that repeated exposure to a mild or subthreshold blast can cause serious and long-lasting impairments, but the mechanisms causing these symptoms are unclear. In this study, we characterise the effects of single and tightly coupled repeated mbTBI in Sprague–Dawley rats exposed to shockwaves generated using a shock tube. The primary outcomes are functional neurologic function (unconsciousness, neuroscore, weight loss, and RotaRod performance) and neuronal density in brain regions associated with sensorimotor function. Exposure to a single shockwave does not result in functional impairments or histologic injury, which is consistent with a mild or subthreshold injury. In contrast, exposure to three tightly coupled shockwaves results in unconsciousness, along with persistent neurologic impairments. Significant neuronal loss following repeated blast was observed in the motor cortex, somatosensory cortex, auditory cortex, and amygdala. Neuronal loss was not accompanied by changes in astrocyte reactivity. Our study identifies specific brain regions particularly sensitive to repeated mbTBI. The reasons for this sensitivity may include exposure to less attenuated shockwaves or proximity to tissue density transitions, and this merits further investigation. Our novel model will be useful in elucidating the mechanisms of sensitisation to injury, the temporal window of sensitivity and the evaluation of new treatments.

Journal article

Campos-Pires R, Dickinson R, 2023, Modelling Blast Brain Injury, Blast Injury Science and Engineering: A Guide for Clinicians and Researchers, Editors: Bull, Clasper, Mahoney, Publisher: Springer Cham, Pages: 315-331, ISBN: 978-3-031-10354-4

The consequences of blast traumatic braininjury (blast-TBI) in humans are largely determinedby the characteristics of the traumainsult and, within certain limits, the individualresponses to the lesions inflicted (Maas et al.,Lancet Neurol. 2008;7:728–41). In blast-TBI,the mechanisms of brain vulnerability to thedetonation of an explosive device are not completelyunderstood. They most likely resultfrom a combination of the different physicalaspects of the blast phenomenon, specificallyextreme pressure oscillations (blast overpressurewave), projectile penetrating fragmentsand acceleration–deceleration forces, creatinga spectrum of brain injury that ranges frommild to severe blast-TBI(Hicks et al., JTrauma. 2010; 68:1257-63).The pathophysiologyof penetrating and inertially drivenblast-TBI has been extensively investigatedfor many years. However, the brain damagecaused by blast overpressure is much lessunderstood and is unique to this type of TBI(Chen et al., J Neurotrauma. 2009; 26:861–76). Indeed, there continues to be debate abouthow the pressure wave is transmitted andreflected through the brain and how it causescellular damage (Nakagawa et al., JNeurotrauma. 2011; 28:1101–19). No singlemodel can mimic the clinical and mechanicalcomplexity resulting from a real-lifeblast-TBI (Chen et al., J Neurotrauma. 2009;26:861–76). The different models, non-biological(in silico or surrogate physical) andbiological (ex vivo, in vitro or in vivo), tend tocomplement each other.

Book chapter

Liang M, Ahmad F, Dickinson R, 2022, A preclinical systematic review and meta-analysis of the noble gases argon and xenon as treatments for acquired brain injury, British Journal of Anaesthesia, Vol: 129, Pages: 200-218, ISSN: 0007-0912

BackgroundThe noble gases argon and xenon are potential novel neuroprotective treatments for acquired brain injuries. Xenon has already undergone early-stage clinical trials in the treatment of ischaemic brain injuries, with mixed results. Argon has yet to progress to clinical trials as a treatment for brain injury. Here, we aim to synthesise the results of preclinical studies evaluating argon and xenon as neuroprotective therapies for brain injuries.MethodsAfter a systematic review of the MEDLINE and Embase databases, we carried out a pairwise and stratified meta-analysis. Heterogeneity was examined by subgroup analysis, funnel plot asymmetry, and Egger's regression.ResultsA total of 32 studies were identified, 14 for argon and 18 for xenon, involving measurements from 1384 animals, including murine, rat, and porcine models. Brain injury models included ischaemic brain injury after cardiac arrest (CA), neurological injury after cardiopulmonary bypass (CPB), traumatic brain injury (TBI), and ischaemic stroke. Both argon and xenon had significant (P<0.001), positive neuroprotective effect sizes. The overall effect size for argon (CA, TBI, stroke) was 18.1% (95% confidence interval [CI], 8.1–28.1%), and for xenon (CA, TBI, stroke) was 34.1% (95% CI, 24.7–43.6%). Including the CPB model, only present for xenon, the xenon effect size (CPB, CA, TBI, stroke) was 27.4% (95% CI, 11.5–43.3%). Xenon, both with and without the CPB model, was significantly (P<0.001) more protective than argon.ConclusionsThese findings provide evidence to support the use of xenon and argon as neuroprotective treatments for acquired brain injuries. Current evidence suggests that xenon is more efficacious than argon overall.

Journal article

Pires RC, Mohamed-Ali N, Aldhoun J, Edge CJ, Franks NP, Dickinson Ret al., 2021, Moderate hypothermia combined with xenon, but not hypothermia alone, reduces secondary injury development after traumatic brain injury in rats, ropean Society for Anaesthesiology, Publisher: LIPPINCOTT WILLIAMS & WILKINS, Pages: 946-946, ISSN: 0003-2999

Conference paper

Campos-Pires R, Onggradito H, Ujvari E, Karimi S, Leong I, Valeo F, Aldhoun J, Edge C, Franks N, Dickinson Ret al., 2021, The noble gas xenon is neuroprotective and promotes beneficial neuroinflammation following severe neurotrauma in rats, 38th National Neurotrauma Symposium, Publisher: Mary Ann Liebert, Pages: A114-A114, ISSN: 0897-7151

Conference paper

Campos-Pires R, Onggradito H, Ujvari E, Karimi S, Aldhoun J, Edge C, Franks N, Dickinson Ret al., 2021, Xenon is neuroprotective and promotes beneficial early neuroinflammation in a rat model of severe traumatic brain injury, Society for Neuroscience

Conference paper

Edge C, Dickinson R, 2021, Argon: a noble, but not inert, treatment for brain trauma?, British Jourmal of Anaesthesia, Vol: 126, Pages: 41-43

Journal article

Campos-Pires R, Onggradito H, Ujvari E, Karimi S, Valeo F, Aldhoun J, Edge C, Franks N, Dickinson Ret al., 2020, Xenon treatment after severe traumatic brain injury improves locomotor outcome, reduces acute neuronal loss and enhances early beneficial neuroinflammation: a randomized, blinded, controlled animal study, Critical Care (UK), Vol: 24, Pages: 1-18, ISSN: 1364-8535

BackgroundTraumatic brain injury (TBI) is a major cause of morbidity and mortality, but there are no clinically proven treatments that specifically target neuronal loss and secondary injury development following TBI. In this study, we evaluate the effect of xenon treatment on functional outcome, lesion volume, neuronal loss and neuroinflammation after severe TBI in rats.MethodsYoung adult male Sprague Dawley rats were subjected to controlled cortical impact (CCI) brain trauma or sham surgery followed by treatment with either 50% xenon:25% oxygen balance nitrogen, or control gas 75% nitrogen:25% oxygen. Locomotor function was assessed using Catwalk-XT automated gait analysis at baseline and 24 h after injury. Histological outcomes were assessed following perfusion fixation at 15 min or 24 h after injury or sham procedure.ResultsXenon treatment reduced lesion volume, reduced early locomotor deficits, and attenuated neuronal loss in clinically relevant cortical and subcortical areas. Xenon treatment resulted in significant increases in Iba1-positive microglia and GFAP-positive reactive astrocytes that was associated with neuronal preservation.ConclusionsOur findings demonstrate that xenon improves functional outcome and reduces neuronal loss after brain trauma in rats. Neuronal preservation was associated with a xenon-induced enhancement of microglial cell numbers and astrocyte activation, consistent with a role for early beneficial neuroinflammation in xenon’s neuroprotective effect. These findings suggest that xenon may be a first-line clinical treatment for brain trauma.

Journal article

Valeo F, Campos-Pires R, Soumalias P, Martinez-Gili L, Chilloux J, Dickinson R, Dumas Met al., 2020, Serum metabolic profiling following traumatic brain injury in rats using ¹H nuclear magnetic resonance spectroscopy, Federation of European Neuroscience Societies

Conference paper

Campos-Pires R, Mohamed-Ali N, Franks N, Aldhoun J, Dickinson Ret al., 2020, Hypothermia combined with xenon reduces secondary injury development and enhances neuroprotection by preventing neuronal cell loss in a rat model of traumatic brain injury, European Journal of Anaesthesia vol e37, Pages: 300-300

Conference paper

Koziakova M, Harris K, Edge C, Franks N, White I, Dickinson Ret al., 2019, Noble gas neuroprotection: Xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms, British Journal of Anaesthesia, Vol: 123, Pages: 601-609, ISSN: 1471-6771

BackgroundNoble gases may provide novel treatments for neurological injuries such as ischaemic and traumatic brain injury. Few studies have evaluated the complete series of noble gases under identical conditions in the same model.MethodsWe used an in vitro model of hypoxia–ischaemia to evaluate the neuroprotective properties of the series of noble gases, helium, neon, argon, krypton, and xenon. Organotypic hippocampal brain slices from mice were subjected to oxygen-glucose deprivation, and injury was quantified using propidium iodide fluorescence.ResultsBoth xenon and argon were equally effective neuroprotectants, with 0.5 atm of xenon or argon reducing injury by 96% (P<0.0001), whereas helium, neon, and krypton were devoid of any protective effect. Neuroprotection by xenon, but not argon, was reversed by elevated glycine.ConclusionsXenon and argon are equally effective as neuroprotectants against hypoxia–ischaemia in vitro, with both gases preventing injury development. Although xenon's neuroprotective effect may be mediated by inhibition of the N-methyl-d-aspartate receptor at the glycine site, argon acts via a different mechanism. These findings may have important implications for their clinical use as neuroprotectants.

Journal article

Campos-Pires R, Mohamed-Ali N, Balaet M, Aldhoun J, Abelleira-Hervas L, Aitken P, Edge C, Franks N, Dickinson Ret al., 2019, Xenon prevents early neuronal loss and neuroinflammation in a rat model of traumatic brain injury, BJA Research Forum / Anaesthetic Research Society, Publisher: Elsevier, Pages: e508-e509, ISSN: 0007-0912

Conference paper

Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, Saville J, Edge CJ, Franks NP, Thal SC, Dickinson Ret al., 2019, XENON PREVENTS NEURODEGENERATION AND LATE-ONSET COGNITIVE IMPAIRMENT, AND IMPROVES SURVIVAL AFTER TRAUMATIC BRAIN INJURY IN MICE, 37th Annual National Neurotrauma Symposium, Publisher: MARY ANN LIEBERT, INC, Pages: A47-A47, ISSN: 0897-7151

Conference paper

Campos-Pires R, Mohamed-Ali N, Balaet M, Aldhoun J, Abelleira-Hervas L, Aitken P, Edge CJ, Franks NP, Dickinson Ret al., 2019, XENON REDUCES SECONDARY INJURY, PREVENTS NEURONAL LOSS AND NEUROINFLAMMATION IN A RAT MODEL OF TRAUMATIC BRAIN INJURY, 37th Annual National Neurotrauma Symposium, Publisher: MARY ANN LIEBERT, INC, Pages: A116-A116, ISSN: 0897-7151

Conference paper

Campos-Pires R, Yonis A, Pau A, Macdonald W, Harris K, Franks N, Edge C, Dickinson Ret al., 2019, Delayed xenon treatment prevents injury development following blast-neurotrauma in vitro, 37th Annual National Neurotrauma Symposium, Publisher: Mary Ann Liebert, Pages: A40-A41, ISSN: 0897-7151

Conference paper

Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, Saville J, Edge CJ, Franks NP, Thal SC, Dickinson Ret al., 2019, Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice, British Journal of Anaesthesia, Vol: 123, Pages: 60-73, ISSN: 0007-0912

Journal article

Campos-Pires R, Hirnet T, Valeo F, Ong BE, Saville J, Radyushkin K, Edge C, Franks N, Thal S, Dickinson Ret al., 2019, Xenon Treatment Prevents Late Onset Cognitive Impairment and Improves Survival Following Traumatic Brain Injury in Mice, 13th World Conference on Brain Injury, Pages: 220-220, ISSN: 0269-9052

Conference paper

Campos-Pires R, Mohamed-Ali N, Balaet M, Aldhoun J, Abelleira-Hervas L, Aitken P, Edge C, Franks N, Dickinson Ret al., 2019, Xenon Treatment Reduces Secondary Injury Development and Prevents Neuronal Loss and Microglial Proliferation in a Rat Model of Traumatic Brain Injury, 13th World Conference on Brain injury, Pages: 222-222, ISSN: 0269-9052

Conference paper

Campos-Pires R, Yonis A, Pau A, Macdonald W, Harris K, Edge C, Franks N, Dickinson Ret al., 2019, The Noble Gas Xenon Prevents Injury Development Following Blast-Traumatic Brain Injury In Vitro, 13th World Conference on Brain Injury, Pages: 218-218, ISSN: 0269-9052

Conference paper

Campos Pires R, Yonis A, Macdonald W, Harris K, Edge C, Mahoney P, Dickinson Ret al., 2018, A novel In vitro model of blast traumatic brain injury, Jove-Journal of Visualized Experiments, Vol: 142, ISSN: 1940-087X

Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely understood and are believed to be unique to this type of brain injury. Preclinical models are crucial tools that contribute to better understand blast-induced brain injury. A novel in vitro blast TBI model was developed using an open-ended shock tube to simulate real-life open-field blast waves modelled by the Friedlander waveform. C57BL/6N mouse organotypic hippocampal slice cultures were exposed to single shock waves and the development of injury was characterized up to 72 h using propidium iodide, a well-established fluorescent marker of cell damage that only penetrates cells with compromised cellular membranes. Propidium iodide fluorescence was significantly higher in the slices exposed to a blast wave when compared with sham slices throughout the duration of the protocol. The brain tissue injury is very reproducible and proportional to the peak overpressure of the shock wave applied.

Journal article

Campos-Pires R, Armstrong S, Sebastiani A, Luh C, Gruss M, Radyushkin K, Hirnet T, Werner C, Engelhard K, Franks NP, Thal SC, Dickinson Ret al., 2018, Xenon treatment improves short-term and long-term outcomes in a rodent model of traumatic brain injury, British Journal of Anaesthesia Research Forum, Publisher: Elsevier, Pages: e21-e21, ISSN: 0007-0912

Conference paper

Campos-Pires R, Yonis A, Pau A, Macdonald W, Harris K, Edge CJ, Franks NP, Mahoney PF, Dickinson Ret al., 2018, Xenon is neuroprotective against blast traumatic brain injury in vitro, British Journal of Anaesthesia Research Forum, Publisher: Elsevier, Pages: e23-e23, ISSN: 0007-0912

Conference paper

Campos Pires R, Koziakova M, Yonis A, Pau A, Macdonald W, Harris K, Edge C, Franks N, Mahoney P, Dickinson Ret al., 2018, Xenon protects against blast-induced traumatic brain injury in an in vitro model, Journal of Neurotrauma, Vol: 35, Pages: 1037-1044, ISSN: 0897-7151

The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

Journal article

Baroness Finlay of Llandaff I, Myers I, Dickinson R, Bennetto L, Clarke S, Eilersten-Feeney K, Griffiths L, Harrison P, Humber A, Jackson G, Lewis T, Mayho B, Miller S, Sykes O, Veiraiah A, Walker E, Wareing H, White Set al., 2017, Carbon Monoxide Poisoning: Saving Lives, Advancing Treatment, Carbon Monoxide Poisoning: Saving Lives, Advancing Treatment, London, Publisher: All Party Parliamentary Group on Carbon Monoxide

Carbon monoxide (CO) poisoning is a serious public health issue. In England and Wales alone, every year some 4,000 attendances to emergency departments (EDs) are the result of accidental CO poisoning. Statistics show that CO kills more than 30 people a year and leads to around 200 hospital admissions, but these figures are likely to be a gross underestimate. Consequently, treating accidental CO poisoning may actually be costing much more than the estimated £178 million per annum.Healthcare professionals have a vital role to play in preventing, diagnosing and treating patients exposed to CO. However, these professionals face a number of barriers to action: gaps in knowledge, limited awareness, and a lack of co-ordination within and between the healthcare sectors. These barriers need to be removed if we are to reduce significantly the number of accidental deaths and unnecessary injuries caused by CO poisoning, and to improve patient management and recovery.This report has been prepared by members of COMed, the healthcare professionals’ sub-group of the APPCOG Stakeholder Forum. It presents a number of hard-hitting essays that review current knowledge and practice on the diagnosis and management of CO poisoning in the healthcare system. It identifies gaps in knowledge and practice, and makes recommendations to close those gaps so that diagnosis, patient management and recovery can be improved.The findings presented in this report led members of the sub-group to conclude that:A lack of awareness amongst healthcare professionals of CO poisoning as a cause of illness is very likely to be impacting adversely on public health outcomes. Much remains to be discovered and explained about the link between low level chronic CO exposure and long-term effects on an individual’s health - for example, its impact on diseases of the cardiovascular and neurological system and whether CO is a casual factor of disease or involved in disease processes not previously

Report

Campos-Pires R, Edge CJ, Dickinson R, 2016, Argon: A Noble Foe for Subarachnoid Hemorrhage, Critical Care Medicine, Vol: 44, Pages: 1456-1457, ISSN: 1530-0293

Journal article

Campos-Pires R, Armstrong SP, Sebastiani A, Radyushkin K, Thal S, Franks NP, Dickinson Ret al., 2016, THE NOBLE GAS XENON REDUCES SECONDARY INJURYAND IMPROVES LONG-TERM LOCOMOTOR FUNCTION AFTER TRAUMATIC BRAIN INJURY IN RODENTS, 27th International Symposium on Cerebral Blood Flow, Metabolism and Function / 12th International Conference on Quantification of Brain Function with PET, Publisher: SAGE PUBLICATIONS INC, Pages: 308-309, ISSN: 0271-678X

Conference paper

Harris K, Armstrong S, Campos-Pires R, Kiru L, Franks N, Dickinson Ret al., 2016, Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site, International Brain Injury Association’s Eleventh World Congress on Brain Injury, Publisher: Taylor & Francis, Pages: 606-606, ISSN: 1362-301X

Conference paper

Campos-Pires R, Armstrong S, Sebastiani A, Luh C, Gruss M, Radyushkin K, Hirnet T, Engelhard K, Franks NP, Thal SC, Dickinson Ret al., 2016, Xenon provides short-term and long-term neuroprotection in a rodent model of traumatic brain injury, International Brain Injury Association’s Eleventh World Congress on Brain Injury, Publisher: Taylor & Francis, Pages: 653-653, ISSN: 1362-301X

Conference paper

Campos-Pires R, Dickinson R, 2016, Modelling Blast Brain Injury, Blast Injury Science and Engineering A Guide for Clinicians and Researchers, Editors: Clasper, Bull, Mahoney, Publisher: Springer, Pages: 173-182, ISBN: 9783319218670

The consequences of blast traumatic brain injury (blast-TBI) in humans are largely determined by the characteristics of the trauma insult and, within certain limits, the individual responses to the lesions inflicted (1). In blast-TBI the mechanisms of brain vulnerability to the detonation of an explosive device are not entirely understood. They most likely result from a combination of the different physical aspects of the blast phenomenon, specifically extreme pressure oscillations (blast-overpressure wave), projectile penetrating fragments and acceleration-deceleration forces, creating a spectrum of brain injury that ranges from mild to severe blast-TBI (2). The pathophysiology of penetrating and inertially-driven blast-TBI has been extensively investigated for many years. However, the brain damage caused by blast-overpressure is much less understood and is unique to this type of TBI (3). Indeed, there continues to be debate about how the pressure wave is transmitted and reflected through the brain and how it causes cellular damage (4). No single model can mimic the clinical and mechanical complexity resulting from a real life blast-TBI (3). The different models, non-biological (in silico or surrogate physical) and biological (ex vivo, in vitro or in vivo), tend to complement each other.

Book chapter

Campos-Pires R, Armstrong S, Sebastiani A, Hirnet T, Luh C, Radyushkin K, Thal S, Franks N, Dickinson Ret al., 2015, Xenon provides short term & long term neuroprotection in an in vivo model of traumatic brain injury., BNA Festival of Neuroscience, Pages: 1-1

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00001594&limit=30&person=true