Imperial College London

Dr. Rebekah E. T. Moore

Faculty of EngineeringDepartment of Earth Science & Engineering

Research Fellow



+44 (0)20 7594 7140r.moore13




Royal School of MinesSouth Kensington Campus





Publication Type

10 results found

Wiggenhauser M, Moore RET, Wang P, Bienert GP, Holst Laursen K, Blotevogel Set al., 2022, Stable isotope fractionation of metals and metalloids in plants: a review, Frontiers in Plant Science, Vol: 13, ISSN: 1664-462X

This work critically reviews stable isotope fractionation of essential (B, Mg, K, Ca, Fe, Ni, Cu, Zn, Mo), beneficial (Si), and non-essential (Cd, Tl) metals and metalloids in plants. The review (i) provides basic principles and methodologies for non-traditional isotope analyses, (ii) compiles isotope fractionation for uptake and translocation for each element and connects them to physiological processes, and (iii) interlinks knowledge from different elements to identify common and contrasting drivers of isotope fractionation. Different biological and physico-chemical processes drive isotope fractionation in plants. During uptake, Ca and Mg fractionate through root apoplast adsorption, Si through diffusion during membrane passage, Fe and Cu through reduction prior to membrane transport in strategy I plants, and Zn, Cu, and Cd through membrane transport. During translocation and utilization, isotopes fractionate through precipitation into insoluble forms, such as phytoliths (Si) or oxalate (Ca), structural binding to cell walls (Ca), and membrane transport and binding to soluble organic ligands (Zn, Cd). These processes can lead to similar (Cu, Fe) and opposing (Ca vs. Mg, Zn vs. Cd) isotope fractionation patterns of chemically similar elements in plants. Isotope fractionation in plants is influenced by biotic factors, such as phenological stages and plant genetics, as well as abiotic factors. Different nutrient supply induced shifts in isotope fractionation patterns for Mg, Cu, and Zn, suggesting that isotope process tracing can be used as a tool to detect and quantify different uptake pathways in response to abiotic stresses. However, the interpretation of isotope fractionation in plants is challenging because many isotope fractionation factors associated with specific processes are unknown and experiments are often exploratory. To overcome these limitations, fundamental geochemical research should expand the database of isotope fractionation factors and disentangl

Journal article

Sullivan KV, Moore RET, Capper MS, Schilling K, Goddard K, Ion C, Layton-Matthews D, Leybourne MI, Coles B, Kreissig K, Coombes RC, Larner F, Rehkamper Met al., 2021, Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue, Matallomics, Vol: 13, Pages: 1-12, ISSN: 1756-591X

The disruption of Zn homeostasis has been linked with breast cancer development and progression. To enhance our understanding of changes in Zn homeostasis both inside and around the tumour microenvironment, Zn concentrations and isotopic compositions (δ66Zn) were determined in benign (BT) and malignant (MT) tumours, healthy tissue from reduction mammoplasty (HT), and histologically normal tissue adjacent to benign (NAT(BT)) and malignant tumours (NAT(MT)). Mean Zn concentrations in NAT(BT) are 5.5 µg g−1 greater than in NAT(MT) (p = 0.00056) and 5.1 µg g−1 greater than in HT (p = 0.0026). Zinc concentrations in MT are 12.9 µg g−1 greater than in HT (p = 0.00012) and 13.3 µg g−1 greater than in NAT(MT) (p < 0.0001), whereas δ66Zn is 0.17‰ lower in MT than HT (p = 0.017). Benign tumour Zn concentrations are also elevated compared to HT (p = 0.00013), but are not significantly elevated compared to NAT(BT) (p = 0.32). The δ66Zn of BT is 0.15‰ lower than in NAT(BT) (p = 0.045). The similar light δ66Zn of BT and MT compared to HT and NAT may be related to the isotopic compensation of increased metallothionein (64Zn-rich) expression by activated matrix metalloproteinase (66Zn-rich) in MT, and indicates a resultant 66Zn-rich reservoir may exist in patients with breast tumours. Zinc isotopic compositions thus show promise as a potential diagnostic tool for the detection of breast tumours. The revealed differences of Zn accumulation in healthy and tumour-adjacent tissues require additional investigation.

Journal article

Schilling K, Moore RET, Sullivan KV, Capper M, Rehkamper M, Goddard K, Ion C, Coombes RC, Vesty-Edwards L, Lamb AD, Halliday AN, Larner Fet al., 2021, Zinc stable isotopes in urine as diagnostic for cancer of secretory organs, Metallomics: integrated biometal science, Vol: 13, Pages: 1-10, ISSN: 1756-5901

Breast, prostate, and pancreatic cancers alter the zinc (Zn) metabolism. Combined analyses of urinary Zn concentrations [Zn] and Zn stable isotope compositions (δ66Zn) may provide a non-invasive approach for tracing malignancy-induced Zn dyshomeostasis. In this study, we measured [Zn] and δ66Zn in urine from prostate (n = 22), breast (n = 16), and from women with benign breast disease (n = 14) and compared those with age-matched healthy controls (22–49 years or 50+ years) and published data for pancreatic cancer (n = 17). Our results show that cancer-induced changes are reflected in higher urinary [Zn] and lower urinary δ66Zn for pancreatic and prostate cancer and benign breast disease when compared with healthy controls. For prostate cancer, the progression of low [Zn] and high δ66Zn for patients of low-risk disease toward high [Zn] and low δ66Zn for the higher risk patients demonstrates that [Zn] and δ66Zn in urine could serve as a reliable prognostic tool. Urinary excretion of isotopically light Zn by patients with prostatic and pancreatic cancer is probably the result of increased reactive oxygen species in cancerous cells, which limits the scavenging of hydroxyl radicals and thus facilitates the oxidation of metalloproteins with sulfur-rich ligands. Urine from breast cancer patients shows undistinguishable δ66Zn to healthy controls, implying that the expression of metalloproteins with sulfur-rich ligands is stronger in breast cancer tissues. In conclusion, urinary δ66Zn may provide a non-invasive diagnostic tool for pancreatic cancer and support disease prognosis for prostate cancer. These findings should translate to comprehensive transverse and longitudinal cohort studies in future.

Journal article

Sullivan K, Moore RET, Rehkämper M, Leybourne MI, Layton-Matthews D, Puxty J, Kyser Ket al., 2020, Postprandial zinc stable isotope response in human blood serum, Metallomics, ISSN: 1756-5901

In recent years, considerable advances have been made in the field of medical isotope metallomics, but numerous fundamental physiological processes remain to be investigated. Past studies report that blood serum Zn concentration decrease by about 20%, depending on the size of meal, approximately 3 hours postprandially (i.e. after eating), before returning to baseline values if no meals are consumed over the following 4 to 5 hours. Nine participants were recruited for this study to investigate whether this postprandial Zn concentration decrease is accompanied by a stable isotope response. A baseline serum sample was collected from participants in the morning after overnight fasting. A 576 kcal meal was then provided and additional serum samples were taken 90 and 180 minutes post-meal to coincide with the peak postprandial response. Serum Zn concentrations decreased postprandially by an average of 21 ± 9% (1SD), but this was not accompanied by a change in stable Zn isotope composition (mean Δ66Zn180-minute – Baseline = 0.01 ± 0.09‰, 2SD). We propose that hemodilution and the rapid, efficient postprandial transfer of albumin-bound Zn from serum to the liver and pancreas is responsible for the lack of postprandial serum Zn isotopic response. These results indicate that studies examining solely the distribution of Zn isotopes in serum may obtain samples without considering timing of the most recent meal. However, future studies seeking to compare serum Zn concentrations with δ66Zn values should draw blood samples in the morning after overnight fasting.

Journal article

Moore R, Ullah I, de Oliveira VH, Hammond SJ, Strekopytov S, Tibbett M, Dunwell JM, Rehkamper Met al., 2020, Cadmium isotope fractionation reveals genetic variation in Cd uptake and translocation by Theobroma cacao and role of natural resistance-associated macrophage protein 5 and heavy metal ATPase-family transporters, Horticulture Research, Vol: 7, ISSN: 2052-7276

In response to new European Union regulations, studies are underway to mitigate accumulation of toxic cadmium (Cd) in cacao (Theobroma cacao, Tc). This study advances such research with Cd isotope analyses of 19 genetically diverse cacao clones and yeast transformed to express cacao natural resistance-associated macrophage protein (NRAMP5) and heavy metal ATPases (HMAs). The plants were enriched in light Cd isotopes relative to the hydroponic solution with Δ114/110Cdtot-sol = −0.22 ± 0.08‰. Leaves show a systematic enrichment of isotopically heavy Cd relative to total plants, in accord with closed-system isotope fractionation of Δ114/110Cdseq-mob = −0.13‰, by sequestering isotopically light Cd in roots/stems and mobilisation of remaining Cd to leaves. The findings demonstrate that (i) transfer of Cd between roots and leaves is primarily unidirectional; (ii) different clones utilise similar pathways for Cd sequestration, which differ from those of other studied plants; (iii) clones differ in their efficiency of Cd sequestration. Transgenic yeast that expresses TcNRAMP5 (T. cacao natural resistance-associated macrophage gene) had isotopically lighter Cd than did cacao. This suggests that NRAMP5 transporters constitute an important pathway for uptake of Cd by cacao. Cd isotope signatures of transgenic yeast expressing HMA-family proteins suggest that they may contribute to Cd sequestration. The data are the first to record isotope fractionation induced by transporter proteins in vivo.

Journal article

Barraza F, Moore R, Rehkamper M, Schreck E, Lefeuvre G, Kreissig K, Coles B, Maurice Let al., 2019, Cadmium isotope fractionation in soil-cacao systems of Ecuador: a pilot field study, RSC Advances: an international journal to further the chemical sciences, Vol: 9, Pages: 34011-34022, ISSN: 2046-2069

The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil – cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0–80 cm depth have very similar δ114/110Cd of about −0.1‰ to 0‰. Two 0–5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of δ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf–soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean–leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean–leaf values of −0.34‰ to −0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (−0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated.

Journal article

Rehkamper M, Moore R, Maret W, Larner Fet al., 2019, Assessment of coupled Zn concentration and natural stable isotope analyses of urine as a novel probe of Zn status, Metallomics, Vol: 11, Pages: 1506-1517, ISSN: 1756-5901

Zinc is a common trace metal in the human body, present in about 10% of proteins. Despite numerous roles of Zn in health and disease, there is still a need for a robust biomarker of Zn status. Many parameters have been proposed, with varying levels of success, with plasma Zn often favoured. This study investigates if Zn status can be assessed from the natural stable Zn isotope composition of urine. To this end, 60 urine samples were analysed from ten healthy participants. Remarkably, samples with lower Zn concentrations are systematically enriched in heavy Zn isotopes. Most of the low-Zn urine originated from individuals who omitted dairy, meat or both from their diets. When data for blood serum from age-matched, healthy individuals are compared with the urine results, the former plot at the extension of the urine trend at higher Zn concentrations and lighter isotope compositions. The observed co-variation of Zn isotope compositions with concentrations is indicative of an isotope fractionation system where both properties are controlled by the same processes. It is interpreted as arising from filtration and/or reabsorption processes within the kidney, which are associated with absorbed dietary Zn. The data suggest that the Zn in blood serum that is bound to low molecular weight molecules has an isotope composition distinct from total serum, due to the different affinities of molecular Zn-binding residues to heavy and light Zn isotopes. This technique provides additional information into an individual's Zn status compared to urine or plasma Zn levels alone.

Journal article

Moore R, Rehkamper M, Kreissig K, Strekopytov S, Larner Fet al., 2018, Determination of major and trace element variability in healthy human urine by ICP-QMS and specific gravity normalisation, RSC Advances, Vol: 8, Pages: 38022-38035, ISSN: 2046-2069

Sixty five urine samples obtained during one or two non-consecutive days from 10 healthy individuals were analysed for major (Na, Mg, K, Ca) and trace (Co, Cu, Zn, As, Rb, Sr, Mo and Pb) element concentrations. Following microwave digestion, the analyses were carried out using ICP-QMS (inductively coupled plasma quadrupole mass spectrometry) incorporating a collision/reaction cell. Repeat analyses of quality control samples show that the procedure produces unbiased results and is well suited for routine urinalysis of the investigated elements. Concentrations were normalised using specific gravity (SG) and the resultant decrease in variability supports previous conclusions that SG-normalisation appropriately corrects for differences in urine dilution. The elemental concentrations of the individual urine samples show large differences in dispersion. Most variable are As, Co and Zn, with CVs (coefficients of variation) of >75%. The major elements as well as Rb, Sr and Mo display intermediate variability, whilst Cu and Pb have the least elemental dispersion with CV values of about 30%. A detailed assessment shows that the overall elemental variability is governed both by differences between individuals and variations for a single individual over time. Spot urine samples exhibit elemental concentrations that, on average, resemble the daily mean values to within about 30% for all elements except K and Rb. Diet-related changes in urinary element concentration are most prominent for Mg, K, Co, Rb and Pb. The concentrations of Co, As and Rb appear to vary systematically with gender but this may primarily reflect co-variance with specific diets.

Journal article

Moore RET, Larner F, Coles BJ, Rehkämper Met al., 2017, High precision zinc stable isotope measurement of certified biological reference materials using the double spike technique and multiple collector-ICP-MS, Analytical and Bioanalytical Chemistry, Vol: 409, Pages: 2941-2950, ISSN: 1618-2650

Biological reference materials with well-characterized stable isotope compositions are lacking in the field of ‘isotope biochemistry’, which seeks to understand bodily processes that rely on essential metals by determiningmetal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations, fish muscle, bovine muscle, pig kidney, human hair,human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13 ‰ for δ66/64Zn 22 (which denotes the deviation of the 66 Zn/64Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotopeanalyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine 2 muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ66/64Zn≈ –0.8 to 0.0 ‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identicalresults.

Journal article

Archer C, Andersen MB, Cloquet C, Conway TM, Dong S, Ellwood M, Moore R, Nelson J, Rehkamper M, Rouxel O, Samanta M, Shin KC, Sohrin Y, Takano S, Wasylenki Let al., 2016, Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis, Journal of Analytical Atomic Spectrometry, Vol: 32, Pages: 415-419, ISSN: 0267-9477

We have prepared a large volume of pure, concentrated and homogenous zinc standard solution. This new standard solution is intended to be used as a primary reference standard for the zinc isotope community, and to serve as a replacement for the nearly exhausted current reference standard, the so-called JMC-Lyon Zn. The isotopic composition of this new zinc standard (AA-ETH Zn) has been determined through an inter-laboratory calibration exercise, calibrated against the existing JMC-Lyon standard, as well as the certified Zn reference standard IRMM-3702. The data show that the new standard is isotopically indistinguishable from the IRMM-3702 zinc standard, with a weighted δ66/64Zn value of 0.28 ± 0.02‰ relative to JMC-Lyon. We suggest that this new standard be assigned a δ66/64Zn value of +0.28‰ for reporting of future Zn isotope data, with the rationale that all existing published Zn isotope data are presented relative to the JMC-Lyon standard. Therefore our proposed presentation allows for a direct comparison with all previously published data, and that are directly traceable to a certified reference standard, IRMM-3702 Zn. This standard will be made freely available to all interested labs through contact with the corresponding author.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00874341&limit=30&person=true