Imperial College London

DrRichardPerryman

Faculty of MedicineDepartment of Brain Sciences

Research Associate
 
 
 
//

Contact

 

r.perryman13 Website

 
 
//

Location

 

E5Burlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

2 results found

Perryman R, Renziehausen A, Shaye H, Kostagianni AD, Tsiailanis AD, Thorne T, Chatziathanasiadou MV, Sivolapenko GB, El Mubarak MA, Won Han G, Zarzycka B, Katritch V, Lebon G, Nigro CL, Lattanzio L, Morse S, Choi J, ONeill K, Kanaki Z, Klinakis A, Crook T, Cherezov V, Tzakos A, Syed Net al., 2023, Inhibition of the angiotensin II type 2 receptor AT2R is a novel therapeutic strategy for glioblastoma, Proceedings of the National Academy of Sciences of USA, Vol: 119, ISSN: 0027-8424

Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a novel therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G protein or β-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2 tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation and increased levels of apoptosis in an orthotopic xenograft model of GBM.

Journal article

Hajji N, Garcia-Revilla J, Sarmiento Soto M, Perryman R, Symington JJ, Quarles CC, Healey DR, Guo Y, Orta-Vázquez ML, Mateos-Cordero S, Shah K, Bomalaski J, Anichini G, Tzakos AG, Crook T, O'Neill K, Scheck AC, Venero JL, Syed Net al., 2022, Arginine deprivation alters microglia polarity and synergises with radiation to eradicate non arginine auxotrophic glioblastoma tumors, Journal of Clinical Investigation, Vol: 132, Pages: 1-19, ISSN: 0021-9738

New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine depleting agent ADI-PEG20 in a non-arginine auxotrophic cellular background (Arginine Succinate Synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response with extended disease-free survival in an orthotopic immune competent model of GBM with no significant toxicity. ADI-PEG20 not only enhances the cellular sensitivity of Arginine succinate synthetase 1 positive GBM to ionising radiation by elevated production of nitric oxide (NO) and hence generation of cytotoxic peroxynitrites, but also promotes glioma-associated macrophages/microglia infiltration into tumors and turns their classical anti-inflammatory (pro-tumor) phenotype into a pro-inflammatory (anti-tumor) phenotype. Our results provide an effective, well-tolerated and simple strategy to improve GBM treatment which merits consideration for early evaluation in clinical trials.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00788317&limit=30&person=true