Imperial College London

Professor Richard Reynolds, BSc AKC PhD

Faculty of MedicineDepartment of Brain Sciences

Professor of Cellular Neurobiology
 
 
 
//

Contact

 

+44 (0)20 7594 6668r.reynolds

 
 
//

Location

 

E414Burlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

165 results found

Magliozzi R, Pezzini F, Pucci M, Rossi S, Facchiano F, Marastoni D, Montagnana M, Lippi G, Reynolds R, Calabrese Met al., 2021, Changes in Cerebrospinal Fluid Balance of TNF and TNF Receptors in Naïve Multiple Sclerosis Patients: Early Involvement in Compartmentalised Intrathecal Inflammation, Cells, Vol: 10, Pages: 1712-1712

<jats:p>An imbalance of TNF signalling in the inflammatory milieu generated by meningeal immune cell infiltrates in the subarachnoid space in multiple sclerosis (MS), and its animal model may lead to increased cortical pathology. In order to explore whether this feature may be present from the early stages of MS and may be associated with the clinical outcome, the protein levels of TNF, sTNF-R1 and sTNF-R2 were assayed in CSF collected from 122 treatment-naïve MS patients and 36 subjects with other neurological conditions at diagnosis. Potential correlations with other CSF cytokines/chemokines and with clinical and imaging parameters at diagnosis (T0) and after 2 years of follow-up (T24) were evaluated. Significantly increased levels of TNF (fold change: 7.739; p &lt; 0.001), sTNF-R1 (fold change: 1.693; p &lt; 0.001) and sTNF-R2 (fold change: 2.189; p &lt; 0.001) were detected in CSF of MS patients compared to the control group at T0. Increased TNF levels in CSF were significantly (p &lt; 0.01) associated with increased EDSS change (r = 0.43), relapses (r = 0.48) and the appearance of white matter lesions (r = 0.49). CSF levels of TNFR1 were associated with cortical lesion volume (r = 0.41) at T0, as well as with new cortical lesions (r = 0.56), whilst no correlation could be found between TNFR2 levels in CSF and clinical or MRI features. Combined correlation and pathway analysis (ingenuity) of the CSF protein pattern associated with TNF expression (encompassing elevated levels of BAFF, IFN-γ, IL-1β, IL-10, IL-8, IL-16, CCL21, haptoglobin and fibrinogen) showed a particular relationship to the interaction between innate and adaptive immune response. The CSF sTNF-R1-associated pattern (encompassing high levels of CXCL13, TWEAK, LIGHT, IL-35, osteopontin, pentraxin-3, sCD163 and chitinase-3-L1) was mainly related to altered T cell and B cell signalling. Finally, the CSF TNFR2-associated pattern (encompassing high CSF levels of IF

Journal article

Pienaar IS, Mohammed R, Courtley R, Gledson MR, Reynolds R, Nicholas R, Elson JLet al., 2021, Investigation of the correlation between mildly deleterious mtDNA Variations and the clinical progression of multiple sclerosis., Mult Scler Relat Disord, Vol: 53

BACKGROUND: Evidence suggests that mitochondrial DNA (mtDNA) variation at a population level may influence susceptibility to, or the clinical progression of Multiple Sclerosis (MS). OBJECTIVE: To determine if mtDNA population variation is linked to the clinical progress of MS. METHODS: Using the complete mtDNA sequences of 217 MS patients, we applied the new 'variant load' model, designed as a framework by which to examine the role of mtDNA variation in the context of complex clinical disease. RESULTS: No significant association was detected between mtDNA 'variant load'and the clinical measures of progression. CONCLUSION: Our results suggest that mtDNA population variation does not play a substantial role in the clinical progression of MS; however, modest effects and/or effects in a subgroup of patients cannot be entirely excluded. Results do not exclude the possibility of detecting an association between variation and more strictly quantified variables obtained from histopathologically-stained specimens. The results further illustrate the method's applicabilityto other disease phenotypes.

Journal article

Pardini M, Brown JWL, Magliozzi R, Reynolds R, Chard DTet al., 2021, Surface-in pathology in multiple sclerosis: a new view on pathogenesis?, Brain

While multiple sclerosis can affect any part of the CNS, it does not do so evenly. In white matter it has long been recognized that lesions tend to occur around the ventricles, and grey matter lesions mainly accrue in the outermost (subpial) cortex. In cortical grey matter, neuronal loss is greater in the outermost layers. This cortical gradient has been replicated in vivo with magnetization transfer ratio and similar gradients in grey and white matter magnetization transfer ratio are seen around the ventricles, with the most severe abnormalities abutting the ventricular surface. The cause of these gradients remains uncertain, though soluble factors released from meningeal inflammation into the CSF has the most supporting evidence. In this Update, we review this 'surface-in' spatial distribution of multiple sclerosis abnormalities and consider the implications for understanding pathogenic mechanisms and treatments designed to slow or stop them.

Journal article

Wang Q, Luo Y, Chaudhuri KR, Reynolds R, Tan E-K, Pettersson Set al., 2021, The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options., Brain: a journal of neurology, ISSN: 0006-8950

Parkinson's disease is a common neurodegenerative disease in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alteration in gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the central nervous system, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries and alterations of the gut microbiota in Parkinson's disease, and highlight current mechanistic insights on the microbiota-gut-brain axis in disease pathophysiology. We discuss the interactions between production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we also draw attention to diet modification, use of probiotics and prebiotics and fecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.

Journal article

van Olst Y, Rodriguez-Mogeda C, Picon C, Kiljan S, James RE, Kamermans A, van der Pol SMA, Knoop L, Michailidou I, Drost E, Franssen M, Schenk GJ, Geurts JJG, Amor S, Mazarakis ND, van Horssen J, de Vries HE, Reynolds R, Witte MEet al., 2021, Meningeal inflammation in multiple sclerosis induces phenotypic changes in cortical microglia that differentially associate with neurodegeneration, ACTA NEUROPATHOLOGICA, Vol: 141, Pages: 881-899, ISSN: 0001-6322

Journal article

Magliozzi R, Pitteri M, Ziccardi S, Pisani AI, Montibeller L, Marastoni D, Rossi S, Mazziotti V, Guandalini M, Dapor C, Schiavi G, Tamanti A, Nicholas R, Reynolds R, Calabrese Met al., 2021, CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis, Annals of Clinical and Translational Neurology, Vol: 8, Pages: 534-547, ISSN: 2328-9503

INTRODUCTION AND METHODS: In order to verify whether parvalbumin (PVALB), a protein specifically expressed by GABAergic interneurons, could be a MS-specific marker of grey matter neurodegeneration, we performed neuropathology/molecular analysis of PVALB expression in motor cortex of 40 post-mortem progressive MS cases, with/without meningeal inflammation, and 10 control cases, in combination with cerebrospinal fluid (CSF) assessment. Analysis of CSF PVALB and neurofilaments (Nf-L) levels combined with physical/cognitive/3TMRI assessment was performed in 110 naïve MS patients and in 32 controls at time of diagnosis. RESULTS: PVALB gene expression was downregulated in MS (fold change = 3.7 ± 1.2, P < 0.001 compared to controls) reflecting the significant reduction of PVALB+ cell density in cortical lesions, to a greater extent in MS patients with high meningeal inflammation (51.8, P < 0.001). Likewise, post-mortem CSF-PVALB levels were higher in MS compared to controls (fold change = 196 ± 36, P < 0.001) and correlated with decreased PVALB+ cell density (r = -0.64, P < 0.001) and increased MHC-II+ microglia density (r = 0.74, P < 0.01), as well as with early age of onset (r = -0.69, P < 0.05), shorter time to wheelchair (r = -0.49, P < 0.05) and early age of death (r = -0.65, P < 0.01). Increased CSF-PVALB levels were detected in MS patients at diagnosis compared to controls (P = 0.002). Significant correlation was found between CSF-PVALB levels and cortical lesion number on MRI (R = 0.28, P = 0.006) and global cortical thickness (R = -0.46, P < 0.001), better than Nf-L levels. CSF-PVALB levels increased in MS patients with severe cognitive impairment (mean ± SEM:25.2 ± 7.5

Journal article

Elkjaer ML, Nawrocki A, Kacprowski T, Lassen P, Simonsen AH, Marignier R, Sejbaek T, Nielsen HH, Wermuth L, Rashid AY, Hogh P, Sellebjerg F, Reynolds R, Baumbach J, Larsen MR, Illes Zet al., 2021, CSF proteome in multiple sclerosis subtypes related to brain lesion transcriptomes, Scientific Reports, Vol: 11, Pages: 1-13, ISSN: 2045-2322

To identify markers in the CSF of multiple sclerosis (MS) subtypes, we used a two-step proteomic approach: (i) Discovery proteomics compared 169 pooled CSF from MS subtypes and inflammatory/degenerative CNS diseases (NMO spectrum and Alzheimer disease) and healthy controls. (ii) Next, 299 proteins selected by comprehensive statistics were quantified in 170 individual CSF samples. (iii) Genes of the identified proteins were also screened among transcripts in 73 MS brain lesions compared to 25 control brains. F-test based feature selection resulted in 8 proteins differentiating the MS subtypes, and secondary progressive (SP)MS was the most different also from controls. Genes of 7 out these 8 proteins were present in MS brain lesions: GOLM was significantly differentially expressed in active, chronic active, inactive and remyelinating lesions, FRZB in active and chronic active lesions, and SELENBP1 in inactive lesions. Volcano maps of normalized proteins in the different disease groups also indicated the highest amount of altered proteins in SPMS. Apolipoprotein C-I, apolipoprotein A-II, augurin, receptor-type tyrosine-protein phosphatase gamma, and trypsin-1 were upregulated in the CSF of MS subtypes compared to controls. This CSF profile and associated brain lesion spectrum highlight non-inflammatory mechanisms in differentiating CNS diseases and MS subtypes and the uniqueness of SPMS.

Journal article

Picon C, Jayaraman A, James R, Beck C, Gallego P, Witte ME, van Horssen J, Mazarakis ND, Reynolds Ret al., 2021, Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter, Acta Neuropathologica, Vol: 141, Pages: 585-604, ISSN: 0001-6322

Sustained exposure to pro-inflammatory cytokines in the leptomeninges is thought to play a major role in the pathogenetic mechanisms leading to cortical pathology in multiple sclerosis (MS). Although the molecular mechanisms underlying neurodegeneration in the grey matter remain unclear, several lines of evidence suggest a prominent role for tumour necrosis factor (TNF). Using cortical grey matter tissue blocks from post-mortem brains from 28 secondary progressive MS subjects and ten non-neurological controls, we describe an increase in expression of multiple steps in the TNF/TNF receptor 1 signaling pathway leading to necroptosis, including the key proteins TNFR1, FADD, RIPK1, RIPK3 and MLKL. Activation of this pathway was indicated by the phosphorylation of RIPK3 and MLKL and the formation of protein oligomers characteristic of necrosomes. In contrast, caspase-8 dependent apoptotic signaling was decreased. Upregulation of necroptotic signaling occurred predominantly in macroneurons in cortical layers II–III, with little expression in other cell types. The presence of activated necroptotic proteins in neurons was increased in MS cases with prominent meningeal inflammation, with a 30-fold increase in phosphoMLKL+ neurons in layers I–III. The density of phosphoMLKL+ neurons correlated inversely with age at death, age at progression and disease duration. In vivo induction of chronically elevated TNF and INFγ levels in the CSF in a rat model via lentiviral transduction in the meninges, triggered inflammation and neurodegeneration in the underlying cortical grey matter that was associated with increased neuronal expression of TNFR1 and activated necroptotic signaling proteins. Exposure of cultured primary rat cortical neurons to TNF induced necroptosis when apoptosis was inhibited. Our data suggest that neurons in the MS cortex are dying via TNF/TNFR1 stimulated necroptosis rather than apoptosis, possibly initiated in part by chronic meni

Journal article

Elkjaer ML, Frisch T, Tonazzolli A, Röttger R, Reynolds R, Baumbach J, Illes Zet al., 2021, Unbiased examination of genome-wide human endogenous retrovirus transcripts in MS brain lesions., Multiple Sclerosis Journal, ISSN: 1352-4585

BACKGROUND: Human endogenous retrovirus (HERV) expression in multiple sclerosis (MS) brain lesions may contribute to chronic inflammation, but expression of genome-wide HERVs in different MS lesions is unknown. OBJECTIVE: We examined the HERV expression landscape in different MS lesions compared to control brains. METHODS: Transcripts from 71 MS brain samples and 25 control WM were obtained by next-generation RNA sequencing and mapped against HERV transcripts across the human genome. Differential expression of mapped HERV-W and HERV-H reads between MS lesion types and controls was analysed. RESULTS: Out of 6.38 billion high-quality paired end reads, 174 million reads (2.73%) mapped to HERV transcripts. There was no difference in HERVs expression level between MS and control brains, but HERV-W transcripts were significantly reduced in chronic active lesions. Of the four HERV-W transcripts exclusively present in MS, ERV3633503 located on chromosome 7q21.13 close to the MS genetic risk locus had the highest number of reads. In the HERV-H family, 75% of transcripts located to nearby 7q21-22 were overrepresented in MS, and ERV3643914 was expressed more than 16 times in MS compared to control brains. CONCLUSION: Novel HERV-W and HERV-H transcripts located at chromosome 7 regions were uniquely expressed in MS lesions, indicating their potential role in brain lesion evolution.

Journal article

Gallego-Delgado P, James R, Browne E, Meng J, Umashankar S, Tan L, Picon C, Mazarakis ND, Faisal AA, Howell OW, Reynolds Ret al., 2020, Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier., PLoS Biology, Vol: 18, Pages: 1-36, ISSN: 1544-9173

Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits.

Journal article

Wang J, Jelcic I, Muhlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, Cruciani C, Faigle W, Naghavian R, Foege M, Binder TMC, Eiermann T, Opitz L, Fuentes-Font L, Reynolds R, Kwok WW, Nguyen JT, Lee J-H, Lutterotti A, Munz C, Rammensee H-G, Hauri-Hohl M, Sospedra M, Stevanovic S, Martin Ret al., 2020, HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis, Cell, Vol: 183, Pages: 1264-1281.e20, ISSN: 0092-8674

The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS.

Journal article

Monaco S, Nicholas R, Reynolds R, Magliozzi Ret al., 2020, Intrathecal inflammation in progressive multiple sclerosis, International Journal of Molecular Sciences, Vol: 21, Pages: 1-11, ISSN: 1422-0067

Progressive forms of multiple sclerosis (MS) are associated with chronic demyelination, axonal loss, neurodegeneration, cortical and deep gray matter damage, and atrophy. These changes are strictly associated with compartmentalized sustained inflammation within the brain parenchyma, the leptomeninges, and the cerebrospinal fluid. In progressive MS, molecular mechanisms underlying active demyelination differ from processes that drive neurodegeneration at cortical and subcortical locations. The widespread pattern of neurodegeneration is consistent with mechanisms associated with the inflammatory molecular load of the cerebrospinal fluid. This is at variance with gray matter demyelination that typically occurs at focal subpial sites, in the proximity of ectopic meningeal lymphoid follicles. Accordingly, it is possible that variations in the extent and location of neurodegeneration may be accounted for by individual differences in CSF flow, and by the composition of soluble inflammatory factors and their clearance. In addition, “double hit” damage may occur at sites allowing a bidirectional exchange between interstitial fluid and CSF, such as the Virchow–Robin spaces and the periventricular ependymal barrier. An important aspect of CSF inflammation and deep gray matter damage in MS involves dysfunction of the blood–cerebrospinal fluid barrier and inflammation in the choroid plexus. Here, we provide a comprehensive review on the role of intrathecal inflammation compartmentalized to CNS and non-neural tissues in progressive MS.

Journal article

Frisch T, Elkjaer ML, Reynolds R, Michel TM, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Zet al., 2020, Multiple sclerosis atlas: a molecular map of brain lesion stages in progressive multiple sclerosis, Network and Systems Medicine, Vol: 3, Pages: 122-129, ISSN: 2690-5949

Introduction: Multiple sclerosis (MS) is a chronic disorder of the central nervous system with an untreatable late progressive phase. Molecular maps of different stages of brain lesion evolution in patients with progressive multiple sclerosis (PMS) are missing but critical for understanding disease development and to identify novel targets to halt progression. Materials and Methods: The MS Atlas database comprises comprehensive high-quality transcriptomic profiles of 98 white matter (WM) brain samples of different lesion types (normal-appearing WM [NAWM], active, chronic active, inactive, remyelinating) from ten progressive MS patients and 25 WM areas from five non-neurological diseased cases. Results: We introduce the first MS brain lesion atlas (msatlas.dk), developed to address the current challenges of understanding mechanisms driving the fate on a lesion basis. The MS Atlas gives means for testing research hypotheses, validating biomarkers and drug targets. It comes with a user-friendly web interface, and it fosters bioinformatic methods for de novo network enrichment to extract mechanistic markers for specific lesion types and pathway-based lesion type comparison. We describe examples of how the MS Atlas can be used to extract systems medicine signatures and demonstrate the interface of MS Atlas. Conclusion: This compendium of mechanistic PMS WM lesion profiles is an invaluable resource to fuel future MS research and a new basis for treatment development.

Journal article

Magliozzi R, Scalfari A, Pisani AI, Ziccardi S, Marastoni D, Pizzini FB, Bajrami A, Tamanti A, Guandalini M, Bonomi S, Rossi S, Mazziotti V, Castellaro M, Montemezzi S, Rasia S, Capra R, Pitteri M, Romualdi C, Reynolds R, Calabrese Met al., 2020, TheCSFProfile linked to cortical damage predicts multiple sclerosis activity, Annals of Neurology, ISSN: 0364-5134

ObjectiveIntrathecal inflammation correlates with the grey matter damage since the early stages of multiple sclerosis (MS), but whether the cerebrospinal fluid (CSF) profile can help to identify patients at risk of disease activity is still unclear.MethodsWe evaluated the association between CSF levels of 18 cytokines, previously found to be associated to grey matter damage, and the disease activity, among 99 patients with relapsing‐remitting MS, who underwent blinded clinical and 3 T magnetic resonance imaging (MRI) evaluations for 4 years. Groups with evidence of disease activity (EDA) or no evidence of disease activity (NEDA; occurrence of relapses, new white matter lesions, and Expanded Disability Status Scale [EDSS] change) were identified. Cortical lesions and the annualized cortical thinning were also evaluated.ResultsForty‐one patients experienced EDA and, compared to the NEDA group, had at diagnosis higher CSF levels of CXCL13, CXCL12, IFNγ, TNF, sCD163, LIGHT, and APRIL (p < 0.001). In the multivariate analysis, CXCL13 (hazard ratio [HR] = 1.35; p = 0.0002), LIGHT (HR = 1.22; p = 0.005) and APRIL (HR = 1.78; p = 0.0001) were the CSF molecules more strongly associated with the risk of EDA. The model, including CSF variables, predicted more accurately the occurrence of disease activity than the model with only clinical/MRI parameters (C‐index at 4 years = 71% vs 44%). Finally, higher CSF levels of CXCL13 (β = 4.7*10−4; p < 0.001), TNF (β = 3.1*10−3; p = 0.004), LIGHT (β = 2.6*10−4; p = 0.003), sCD163 (β = 4.3*10−3; p = 0.009), and TWEAK (β = 3.4*10−3; p = 0.024) were associated with more severe cortical thinning.InterpretationA specific CSF profile, mainly characterized by elevated levels of B‐cell r

Journal article

Reali C, Magliozzi R, Roncaroli F, Nicholas R, Howell OW, Reynolds Ret al., 2020, B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis, Brain Pathology, Vol: 30, Pages: 779-793, ISSN: 1015-6305

Increased inflammation in the cerebral meninges is associated with extensive subpial cortical grey matter pathology in the forebrain and a more severe disease course in a substantial proportion of secondary progressive multiple sclerosis (SPMS) cases. It is not known whether this relationship extends to spinal cord pathology. We assessed the contribution of meningeal and parenchymal immune infiltrates to spinal cord pathology in SPMS cases characterised by the presence (F+) or absence (F‐) of lymphoid‐like structures in the forebrain meninges. Transverse cryosections of cervical, thoracic and lumbar cord of 22 SPMS and 5 control cases were analysed for CD20+ B cells, CD4+ and CD8+ T cells, microglia/macrophages (IBA‐1+), demyelination (myelin oligodendrocyte glycoprotein+) and axon density (neurofilament‐H+). Lymphoid‐like structures containing follicular dendritic cell networks and dividing B cells were seen in the spinal meninges of three out of 11 F+SPMS cases. CD4+ and CD20+ cell counts were increased in F+SPMS compared to F‐SPMS and controls, whilst axon loss was greatest in motor and sensory tracts of the F+SPMS cases (p<0.01). The density of CD20+ B cells of the spinal leptomeninges correlated with: CD4+ T cells and total B and T cells of the meninges; with the density of white matter perivascular CD20+ and CD4+ lymphocytes (p<0.05); with white matter lesion area (p<0.05); and the extent of axon loss (p<0.05) in F+SPMS cases only. We show that the presence of lymphoid‐like structures in the forebrain is associated with a profound spinal cord pathology, and local B cell rich meningeal inflammation associates with the extent of cord pathology. Our work supports a principal role for B cells in sustaining inflammation and tissue injury throughout the CNS in the progressive disease stage.

Journal article

Delgado PG, James R, Browne E, Meng J, Umashankar S, Picon C, Mazarakis ND, Faisal AA, Howell OW, Reynolds Ret al., 2020, Neuroinflammation in the normal appearing white matter of multiple sclerosis brain causes abnormalities at the node of Ranvier, Publisher: Cold Spring Harbor Laboratory

Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of MS brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an NMDA blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by proinflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits.

Working paper

Martin NA, Hyrlov KH, Elkjaer ML, Thygesen EK, Wlodarczyk A, Elbaek KJ, Aboo C, Okarmus J, Benedikz E, Reynolds R, Hegedus Z, Stensballe A, Svenningsen ÅF, Owens T, Illes Zet al., 2020, Absence of miRNA-146a Differentially Alters Microglia Function and Proteome, Frontiers in Immunology, Vol: 11, ISSN: 1664-3224

Background: MiR-146a is an important regulator of innate inflammatory responses and is also implicated in cell death and survival. Methods: By sorting CNS resident cells, microglia were the main cellular source of miR-146a. Therefore, we investigated microglia function and phenotype in miR-146a knock-out (KO) mice, analyzed the proteome of KO and wild-type (WT) microglia by LC-MS/MS, and examined miR-146a expression in different brain lesions of patients with multiple sclerosis (MS). Results: When stimulated with LPS or myelin in vitro, microglia from KO mice expressed higher levels of IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 compared to WT. Stimulation increased migration and phagocytosis of WT but not KO microglia. CD11c+ microglia were induced by cuprizone (CPZ) in the WT mice but less in the KO. The proteome of ex vivo microglia was not different in miR-146a KO compared to WT mice, but CPZ treatment induced differential and reduced protein responses in the KO: GOT1, COX5b, CRYL1, and cystatin-C were specifically changed in KO microglia. We explored discriminative features of microglia proteomes: sparse Partial Least Squares-Discriminant Analysis showed the best discrimination when control and CPZ-treated conditions were compared. Cluster of ten proteins separated WT and miR-146a KO microglia after CPZ: among them were sensomes allowing to perceive the environment, Atp1a3 that belongs to the signature of CD11c+ microglia, and proteins related to inflammatory responses (S100A9, Ppm1g). Finally, we examined the expression of miR-146a and its validated target genes in different brain lesions of MS patients. MiR-146 was upregulated in all lesion types, and the highest expression was in active lesions. Nineteen of 88 validated target genes were significantly changed in active lesions, while none were changed in NAWM. Conclusion: Our data indicated that microglia is the major source of miR-146a in the CNS. The absence of miR-146a differentially affected microglia f

Journal article

James RE, Schalks R, Browne E, Eleftheriadou I, Munoz CP, Mazarakis ND, Reynolds Ret al., 2020, Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration., Acta Neuropathologica Communications, Vol: 8, Pages: 66-66, ISSN: 2051-5960

Analysis of isolated meninges and cerebrospinal fluid (CSF) of post-mortem MS cases has shown increased gene and protein expression for the pro-inflammatory cytokines: tumour necrosis factor (TNF) and interferon-γ (IFNγ). Here we tested the hypothesis that persistent production of these cytokines in the meningeal compartment and diffusion into underlying GM can drive chronic MS-like GM pathology. Lentiviral transfer vectors were injected into the sagittal sulcus of DA rats to deliver continuous expression of TNF + IFNγ transgenes in the meninges and the resulting neuropathology analysed after 1 and 2 months. Injection of TNF + IFNγ viral vectors, with or without prior MOG immunisation, induced extensive immune cell infiltration (CD4+ and CD8+ T-cells, CD79a + B-cells and macrophages) in the meninges by 28 dpi, which remained at 2 months. Control GFP viral vector did not induce infiltration. Subpial demyelination was seen underlying these infiltrates, which was partly dependant on prior myelin oligodendrocyte glycoprotein (MOG) immunisation. A significant decrease in neuronal numbers was seen at 28 and 56 days in cortical layers II-V that was independent of MOG immunisation. RNA analysis at 28 dpi showed an increase in expression of necroptotic pathway genes, including RIP3, MLKL, cIAP2 and Nox2. PhosphoRIP3+ and phosphoMLKL+ neurons were present in TNF + IFNγ vector injected animals, indicating activation of necroptosis. Our results suggest that persistent expression of TNF in the presence of IFNγ is a potent inducer of meningeal inflammation and can activate TNF signalling pathways in cortical cells leading to neuronal death and subpial demyelination and thus may contribute to clinical progression in MS.

Journal article

Donninelli G, Saraf-Sinik I, Mazziotti V, Capone A, Grasso MG, Battistini L, Reynolds R, Magliozzi R, Volpe Eet al., 2020, Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain., Journal of Neuroinflammation, Vol: 17, Pages: 1-14, ISSN: 1742-2094

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, and demyelinating disease of the central nervous system (CNS). Several cytokines are thought to be involved in the regulation of MS pathogenesis. We recently identified interleukin (IL)-9 as a cytokine reducing inflammation and protecting from neurodegeneration in relapsing-remitting MS patients. However, the expression of IL-9 in CNS, and the mechanisms underlying the effect of IL-9 on CNS infiltrating immune cells have never been investigated. METHODS: To address this question, we first analyzed the expression levels of IL-9 in post-mortem cerebrospinal fluid of MS patients and the in situ expression of IL-9 in post-mortem MS brain samples by immunohistochemistry. A complementary investigation focused on identifying which immune cells express IL-9 receptor (IL-9R) by flow cytometry, western blot, and immunohistochemistry. Finally, we explored the effect of IL-9 on IL-9-responsive cells, analyzing the induced signaling pathways and functional properties. RESULTS: We found that macrophages, microglia, and CD4 T lymphocytes were the cells expressing the highest levels of IL-9 in the MS brain. Of the immune cells circulating in the blood, monocytes/macrophages were the most responsive to IL-9. We validated the expression of IL-9R by macrophages/microglia in post-mortem brain sections of MS patients. IL-9 induced activation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 and reduced the expression of activation markers, such as CD45, CD14, CD68, and CD11b in inflammatory macrophages stimulated in vitro with lipopolysaccharide and interferon (IFN)-γ. Similarly, in situ the number of activated CD68+ macrophages was significantly reduced in areas with high levels of IL-9. Moreover, in the same conditions, IL-9 increased the secretion of the anti-inflammatory cytokine, transforming growth factor (TGF)-β. CONCLUSIONS: These results reveal a new cytokine

Journal article

Nicholas R, Bandiera S, Reynolds R, Probert L, Magliozzi R, Papadopoulos Det al., 2020, Demyelinated White Matter Exhibits Upregulated DNA Damage Response and Cellular Senescence in Progressive Multiple Sclerosis, Annual Meeting of the American-Academy-of-Neurology, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0028-3878

Conference paper

Griffiths L, Reynolds R, Evans R, Bevan RJ, Rees MI, Gveric D, Neal JW, Howell OWet al., 2020, Substantial subpial cortical demyelination in progressive multiple sclerosis: have we underestimated the extent of cortical pathology?, Neuroimmunology and Neuroinflammation, Vol: 7, Pages: 51-67, ISSN: 2347-8659

Aim: Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease. Much of the complex symptomatology relates to pathology outside the classic white matter plaque, whereby lesions of the cortical grey matter, which are difficult to resolve by conventional clinical imaging, are in part predictive of outcome. We investigated the extent of grey matter pathology in whole coronal macrosections to reassess the contribution of cortical pathology to total demyelinating lesion area in progressive MS.Methods: Twenty-two cases of progressive MS were prepared as whole bi-hemispheric macrosections for histology, immunostaining and quantitative analysis of lesion number and relative area, leptomeningeal inflammation and microglial/macrophage activation.Results: Cortical grey matter demyelination was seen in all cases, which was more extensive than in white and deep grey matter (hippocampus, thalamus and basal ganglia) and accounted for 0.8%-60.2% of the entire measurable cortical ribbon. The pattern of cortical grey matter demyelination was predominantly subpial (mean 90.9%, range 60%-100%, of total cortical grey matter lesion area) and cases with the largest areas of subpial cortical lesions had more and larger deep grey matter lesions, greater numbers of activated microglia/macrophages, both in lesions as well as in normal cortical grey matter, together with elevated leptomeningeal inflammation and lymphoid-like structures. White matter lesion area was unchanged when compared with the progressive MS cases with little subpial cortical demyelination.Conclusion: Analysis of whole coronal macrosections reveals cortical demyelination is more extensive than reported by conventional histological methods. Cases of progressive MS with substantial subpial cortical demyelination that is independent of underlying white matter lesion area support the implications that these lesions may in-part arise through different pathogenetic mechanisms. Biomarkers and/or imagi

Journal article

Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Zet al., 2019, Molecular signature of different lesion types in the brain white matter of patients with progressive multiple sclerosis, Acta Neuropathologica Communications, Vol: 7, ISSN: 2051-5960

To identify pathogenetic markers and potential drivers of different lesion types in the white matter (WM) of patients with progressive multiple sclerosis (PMS), we sequenced RNA from 73 different WM areas. Compared to 25 WM controls, 6713 out of 18,609 genes were significantly differentially expressed in MS tissues (FDR < 0.05). A computational systems medicine analysis was performed to describe the MS lesion endophenotypes. The cellular source of specific molecules was examined by RNAscope, immunohistochemistry, and immunofluorescence. To examine common lesion specific mechanisms, we performed de novo network enrichment based on shared differentially expressed genes (DEGs), and found TGFβ-R2 as a central hub. RNAscope revealed astrocytes as the cellular source of TGFβ-R2 in remyelinating lesions. Since lesion-specific unique DEGs were more common than shared signatures, we examined lesion-specific pathways and de novo networks enriched with unique DEGs. Such network analysis indicated classic inflammatory responses in active lesions; catabolic and heat shock protein responses in inactive lesions; neuronal/axonal specific processes in chronic active lesions. In remyelinating lesions, de novo analyses identified axonal transport responses and adaptive immune markers, which was also supported by the most heterogeneous immunoglobulin gene expression. The signature of the normal-appearing white matter (NAWM) was more similar to control WM than to lesions: only 465 DEGs differentiated NAWM from controls, and 16 were unique. The upregulated marker CD26/DPP4 was expressed by microglia in the NAWM but by mononuclear cells in active lesions, which may indicate a special subset of microglia before the lesion develops, but also emphasizes that omics related to MS lesions should be interpreted in the context of different lesions types. While chronic active lesions were the most distinct from control WM based on the highest number of unique DEGs (n&thi

Journal article

Magliozzi R, Howell OW, Durrenberger P, Arico E, James R, Cruciani C, Reeves C, Roncaroli F, Nicholas R, Reynolds Ret al., 2019, Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis, Journal of Neuroinflammation, Vol: 16, Pages: 1-16, ISSN: 1742-2094

BackgroundRecent studies of cortical pathology in secondary progressive multiple sclerosis have shown that a more severe clinical course and the presence of extended subpial grey matter lesions with significant neuronal/glial loss and microglial activation are associated with meningeal inflammation, including the presence of lymphoid-like structures in the subarachnoid space in a proportion of cases.MethodsTo investigate the molecular consequences of pro-inflammatory and cytotoxic molecules diffusing from the meninges into the underlying grey matter, we carried out gene expression profiling analysis of the motor cortex from 20 post-mortem multiple sclerosis brains with and without substantial meningeal inflammation and 10 non-neurological controls.ResultsGene expression profiling of grey matter lesions and normal appearing grey matter not only confirmed the substantial pathological cell changes, which were greatest in multiple sclerosis cases with increased meningeal inflammation, but also demonstrated the upregulation of multiple genes/pathways associated with the inflammatory response. In particular, genes involved in tumour necrosis factor (TNF) signalling were significantly deregulated in MS cases compared with controls. Increased meningeal inflammation was found to be associated with a shift in the balance of TNF signalling away from TNFR1/TNFR2 and NFkB-mediated anti-apoptotic pathways towards TNFR1- and RIPK3-mediated pro-apoptotic/pro-necroptotic signalling in the grey matter, which was confirmed by RT-PCR analysis. TNFR1 was found expressed preferentially on neurons and oligodendrocytes in MS cortical grey matter, whereas TNFR2 was predominantly expressed by astrocytes and microglia.ConclusionsWe suggest that the inflammatory milieu generated in the subarachnoid space of the multiple sclerosis meninges by infiltrating immune cells leads to increased demyelinating and neurodegenerative pathology in the underlying grey matter due to changes in the balance of

Journal article

Magliozzi R, Hametner S, Facchiano F, Marastoni D, Rossi S, Castellaro M, Poli A, Lattanzi F, Visconti A, Nicholas R, Reynolds R, Monaco S, Lassmann H, Calabrese Met al., 2019, Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis, Annals of Clinical and Translational Neurology, Vol: 6, Pages: 2150-2163, ISSN: 2328-9503

ObjectiveIntrathecal inflammation, compartmentalized in cerebrospinal fluid (CSF) and in meningeal infiltrates, has fundamental role in inflammation, demyelination, and neuronal injury in cerebral cortex in multiple sclerosis (MS). Since the exact link between intrathecal inflammation and mechanisms of cortical pathology remains unknown, we aimed to investigate a detailed proteomic CSF profiling which is able to reflect cortical damage in early MS.MethodsWe combined new proteomic method, TRIDENT, CSF analysis, and advanced 3T magnetic resonance imaging (MRI), in 64 MS patients at the time of diagnosis and 26 controls with other neurological disorders. MS patients were stratified according to cortical lesion (CL) load.ResultsWe identified 227 proteins differently expressed between the patients with high and low CL load. These were mainly related to complement and coagulation cascade as well as to iron homeostasis pathway (30 and 6% of all identified proteins, respectively). Accordingly, in the CSF of MS patients with high CL load at diagnosis, significantly higher levels of sCD163 (P < 0.0001), free hemoglobin (Hb) (P < 0.05), haptoglobin (P < 0.0001), and fibrinogen (P < 0.01) were detected. By contrast, CSF levels of sCD14 were significantly (P < 0.05) higher in MS patients with low CL load. Furthermore, CSF levels of sCD163 positively correlated (P < 0.01) with CSF levels of neurofilament, fibrinogen, and B cell‐related molecules, such as CXCL13, CXCL12, IL10, and BAFF.InterpretationIntrathecal dysregulation of iron homeostasis and coagulation pathway as well as B‐cell and monocyte activity are strictly correlated with cortical damage at early disease stages.

Journal article

Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, Vistnes S, Stockley JH, Young A, Steindel M, Tung B, Goyal N, Bhaduri A, Mayer S, Engler JB, Bayraktar OA, Franklin RJM, Haeussler M, Reynolds R, Schafer DP, Friese MA, Shiow LR, Kriegstein AR, Rowitch DHet al., 2019, Neuronal vulnerability and multilineage diversity in multiple sclerosis, Nature, Vol: 573, Pages: 75-82, ISSN: 0028-0836

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing–remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.

Journal article

Van Horssen J, Witte M, Reynolds R, 2019, Potential biological mechanisms behind MS progression, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 74-74, ISSN: 1352-4585

Conference paper

Smith AM, Khozoie C, Fancy N, Srivastava P, Matthews PM, Owen D, Reynolds Ret al., 2019, Single nucleus RNA sequencing of post-mortem multiple sclerosis cortical grey matter, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 233-233, ISSN: 1352-4585

Conference paper

Howell O, Magliozzi R, Calabrese M, Reynolds Ret al., 2019, The spectrum of cortical pathology in the MS brain: when, where and why?, 35th Congress of the European-Committee-for-Treatment-and-Research-in-Multiple-Sclerosis (ECTRIMS) / 24th Annual Conference of Rehabilitation in MS, Publisher: SAGE PUBLICATIONS LTD, Pages: 115-115, ISSN: 1352-4585

Conference paper

Bartoletti-Stella A, Corrado P, Mometto N, Baiardi S, Durrenberger PF, Arzberger T, Reynolds R, Kretzschmar H, Capellari S, Parchi Pet al., 2019, Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease, MOLECULAR NEUROBIOLOGY, Vol: 56, Pages: 5009-5024, ISSN: 0893-7648

Journal article

Bevan RJ, Evans R, Griffiths L, Watkins LM, Rees MI, Magliozzi R, Allen I, McDonnell G, Kee R, Naughton M, Fitzgerald DC, Reynolds R, Neal JW, Howell OWet al., 2018, Meningeal inflammation and cortical demyelination in acute multiple sclerosis, Annals of Neurology, Vol: 84, Pages: 829-842, ISSN: 0364-5134

ObjectiveCortical gray matter (GM) pathology, involving demyelination and neurodegeneration, associated with meningeal inflammation, could be important in determining disability progression in multiple sclerosis (MS). However, we need to know more about how cortical demyelination, neurodegeneration, and meningeal inflammation contribute to pathology at early stages of MS to better predict long‐term outcome.MethodsTissue blocks from short disease duration MS (n = 12, median disease duration = 2 years), progressive MS (n = 21, disease duration = 25 years), non‐diseased controls (n = 11), and other neurological inflammatory disease controls (n = 6) were quantitatively analyzed by immunohistochemistry, immunofluorescence, and in situ hybridization.ResultsCortical GM demyelination was extensive in some cases of acute MS (range = 1–48% of total cortical GM), and subpial lesions were the most common type (62%). The numbers of activated (CD68+) microglia/macrophages were increased in cases with subpial lesions, and the density of neurons was significantly reduced in acute MS normal appearing and lesion GM, compared to controls (p < 0.005). Significant meningeal inflammation and lymphoid‐like structures were seen in 4 of 12 acute MS cases. The extent of meningeal inflammation correlated with microglial/macrophage activation (p < 0.05), but not the area of cortical demyelination, reflecting the finding that lymphoid‐like structures were seen adjacent to GM lesions as well as areas of partially demyelinated/remyelinated, cortical GM.InterpretationOur findings demonstrate that cortical demyelination, neuronal loss, and meningeal inflammation are notable pathological hallmarks of acute MS and support the need to identify early biomarkers of this pathology to better predict outcome. Ann Neurol 2018;84:829–842

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00165819&limit=30&person=true