Imperial College London

ProfessorRobinShattock

Faculty of MedicineDepartment of Infectious Disease

Chair in Mucosal Infection and Immunity
 
 
 
//

Contact

 

+44 (0)20 7594 5206r.shattock

 
 
//

Location

 

453Wright Fleming WingSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

382 results found

Arakelyan A, Fitzgerald W, King DF, Rogers P, Cheeseman HM, Grivel J-C, Shattock RJ, Margolis Let al., 2017, Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions, Scientific Reports, Vol: 7, ISSN: 2045-2322

HIV-1 envelope proteins (Envs) play a critical role in HIV infection. In a correct trimeric conformation, Env mediates virus–cell binding and fusion. Malfunctioning of this machinery renders virions incapable of infecting cells. Each HIV-1 virion carries 10–14 Envs, and therefore a defective Env may not necessarily render a HIV virion non-infectious, since other Env on the same virion may still be functional. Alternatively, it is possible that on a given virion either all the spikes are defective or all are functional. Here, we investigate Env conformations on individual virions using our new nanotechnology, “flow virometry”, and a panel of antibodies that discriminate between various Env conformations. We found that the majority of HIV-1 virions carry either only trimeric (“functional”) or only defective spikes. The relatively small subfraction of virions that carry both functional and nonfunctional Envs contributes little to HIV infection of human lymphoid tissue ex vivo. The observation that the majority of virions exclusively express either functional or nonfunctional forms of Env has important implications for understanding the role of neutralizing and non-neutralizing antibodies in the immune control of HIV infection as well as for the development of effective prophylactic strategies.

Journal article

Aw, McKay, Shattock, Polizzi KMet al., 2017, Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris, AMB Express, Vol: 7, ISSN: 2191-0855

The use of the recombinant expression platform Pichia pastoris to produce pharmaceutically important proteins has been investigated over the past 30 years. Compared to mammalian cultures, expression in P. pastoris is cheaper and faster, potentially leading to decreased costs and process development times. Product yields depend on a number of factors including the secretion signal chosen for expression, which can influence the host cell response to recombinant protein production. VRC01, a broadly neutralising anti-HIV antibody, was expressed in P. pastoris, using the methanol inducible AOX1 promoter for both the heavy and light chains. Titre reached up to 3.05 μg mL-1 in small scale expression. VRC01 was expressed using both the α-mating factor signal peptide from Saccharomyces cerevisiae and the murine IgG1 signal peptide. Surprisingly using the murine IgG1 signal peptide resulted in higher yield of antibody capable of binding gp140 antigen. Furthermore, we evaluated levels of secretory stress compared to the untransformed wild-type strain and show a reduced level of secretory stress in the murine IgG1 signal peptide strains versus those containing the α-MF signal peptide. As bottlenecks in the secretory pathway are often the limiting factor in protein secretion, reduced levels of secretory stress and the higher yield of functional antibody suggest the murine IgG1 signal peptide may lead to better protein folding and secretion. This work indicates the possibilities for utilising the murine IgG1 signal peptide for a range of antibodies, resulting in high yields and reduced cellular stress.

Journal article

Joseph S, Quinn K, Greenwood A, Cope A, McKay P, Hayes P, Kopycinski J, Gilmour J, Miller A, Geldmacher C, Nadai Y, Ahmed M, Montefiori D, Dally L, Bouliotis G, Lewis D, Tatoud R, Wagner R, Esteban M, Shattock R, McCormack S, Weber Jet al., 2017, A comparative phase I study of combination, homologous subtype-C DNA, MVA, and Env gp140 protein/adjuvant HIV vaccines in two immunization regimes, Frontiers in Immunology, Vol: 8, ISSN: 1664-3224

There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The ap

Journal article

McKay PF, Mann JFS, Pattani A, Kett V, Aldon Y, King D, Malcolm RK, Shattock Ret al., 2017, Intravaginal immunisation using a novel antigen-releasing ring device elicits robust vaccine antigen-specific systemic and mucosal humoral immune responses, Journal of Controlled Release, Vol: 249, Pages: 74-83, ISSN: 1873-4995

The generation of effective levels of antigen-specific immunity at the mucosal sites of pathogen entry is a key goal for vaccinologists. We explored topical vaginal application as an approach to initiate local antigen-specific immunity, enhance previously existing systemic immunity or re-target responses to the mucosae. To deliver a protein vaccine formulation to the vaginal mucosal surface, we used a novel vaginal ring device comprising a silicone elastomer body into which three freeze-dried, rod-shaped, hydroxypropylmethylcellulose inserts were incorporated. Each rod contained recombinant HIV-1 CN54gp140 protein (167 μg) ± R848 (167 μg) adjuvant. The inserts were loaded into cavities within each ring such that only the ends of the inserts were initially exposed.Sheep received a prime-boost vaccination regime comprising intramuscular injection of 100 μg CN54gp140 + 200 μg R848 followed by three successive ring applications of one week duration and separated by one month intervals. Other sheep received only the ring devices without intramuscular priming. Serum and vaginal mucosal fluids were sampled every two weeks and analysed by CN54gp140 ELISA and antigen-specific B cells were measured by flow cytometry at necropsy. Vaccine antigen-specific serum antibody responses were detected in both the intramuscularly-primed and vaginal mucosally-primed groups. Those animals that received only vaginal vaccinations had identical IgG but superior IgA responses. Analysis revealed that all animals exhibited mucosal antigen-specific IgG and IgA with the IgA responses 30-fold greater than systemic levels. Importantly, very high numbers of antigen-specific B cells were detected in local genital draining lymph nodes.We have elicited local genital antigen-specific immune responses after topical application of an adjuvanted antigen formulation within a novel vaginal ring vaccine release device. This regimen and delivery method elicited high levels of antigen-specifi

Journal article

Krebs KC, Tian M, Asmal M, Ling B, Nelson K, Henry K, Gibson R, Li Y, Han W, Shattock RJ, Veazey RS, Letvin N, Arts EJ, Gao Yet al., 2016, Infection of rhesus macaques with a pool of simian immunodeficiency virus with the envelope genes from acute HIV-1 infections, AIDS Research and Therapy, Vol: 13, ISSN: 1742-6405

Background:New simian–human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques.Results:Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env’s in the pool, a feature also observed in the HIV establishing new infections in humans.Conclusion:Despite the inability to propagate in primary cells and cell lin

Journal article

Fox J, Tiraboschi JM, Herrera C, Else L, Egan D, Dickinson L, Jackson A, Olejniczak N, Back D, Khoo S, Shattock R, Boffito Met al., 2016, Pharmacokinetic/Pharmacodynamic Investigation of Single-Dose Oral Maraviroc in the Context of HIV-1 Pre-exposure Prophylaxis, JAIDS-Journal of Acquired Immune Deficiency Syndromes, Vol: 73, Pages: 252-257, ISSN: 1525-4135

To investigate the pharmacokinetics/pharmacodynamics ofsingle-dose maraviroc 300 mg in HIV-1 exposure compartments.Maraviroc concentrations in blood, secretions (vaginal, urethral, oral,and rectal), and tissue (vaginal and rectal) were measured, and ex vivochallenge was performed in 54 healthy volunteers to study protectionfrom HIV infection. Maraviroc Cmax occurred within 4 hours inmost compartments. Concentrations from 4 to 72 hours were aboveintracellular (IC) IC90 in all compartments, range 15–8095 ng/mL. MeanAUC0-72 compartment-to-plasma ratios were highest in the rectum (45–819) and urethra (144) compared with the female genital tract (1.6–4.8)and saliva (0.2). No sex differences in AUC0-72 or Cmax were observed.No ex vivo protection from HIV-1BaL occurred in rectal or vaginaltissue. Despite high and sustained concentrations, single-dose maravirocwas not protective against ex vivo challenge of vaginal/rectal tissue.

Journal article

Cheeseman HM, Olejniczak NJ, Rogers PM, Evans AB, King DFL, Ziprin P, Liao H-X, Haynes BF, Shattock RJet al., 2016, Broadly neutralizing antibodies display potential for prevention of HIV-1 infection of mucosal tissue superior to that of nonneutralizing antibodies, Journal of Virology, Vol: 91, ISSN: 1098-5514

Definition of the key parameters mediating effective antibody blocking of HIV-1 acquisition within mucosal tissue may prove critical to effective vaccine development and the prophylactic use of monoclonal antibodies. Although direct antibody-mediated neutralization is highly effective against cell-free virus, antibodies targeting different sites of envelope vulnerability may display differential activity against mucosal infection. Nonneutralizing antibodies (nnAbs) may also impact mucosal transmission events through Fc-gamma receptor (FcγR)-mediated inhibition. In this study, a panel of broadly neutralizing antibodies (bnAbs) and nnAbs, including those associated with protection in the RV144 vaccine trial, were screened for the ability to block HIV-1 acquisition and replication across a range of cellular and mucosal tissue models. Neutralization potency, as determined by the TZM-bl infection assay, did not fully predict activity in mucosal tissue. CD4-binding site (CD4bs)-specific bnAbs, in particular VRC01, were consistent in blocking HIV-1 infection across all cellular and tissue models. Membrane-proximal external region (MPER) (2F5) and outer domain glycan (2G12) bnAbs were also efficient in preventing infection of mucosal tissues, while the protective efficacy of bnAbs targeting V1-V2 glycans (PG9 and PG16) was more variable. In contrast, nnAbs alone and in combinations, while active in a range of cellular assays, were poorly protective against HIV-1 infection of mucosal tissues. These data suggest that tissue resident effector cell numbers and low FcγR expression may limit the potential of nnAbs to prevent establishment of the initial foci of infection. The solid protection provided by specific bnAbs clearly demonstrates their superior potential over that of nonneutralizing antibodies for preventing HIV-1 infection at the mucosal portals of infection.IMPORTANCE Key parameters mediating effective antibody blocking of HIV-1 acquisition within mucosal

Journal article

Aldon Y, Kratochvil S, Shattock RJ, McKay PFet al., 2016, Programming T and B cell homing to mucosal sites to induce protective and/or therapeutic vaccination using chemokine-adjuvanted DNA plasmids, Conference on HIV Research for Prevention (HIV R4P), Publisher: Mary Ann Liebert, Pages: 84-84, ISSN: 0889-2229

Conference paper

Herrera C, Romas L, Olejniczak N, Plummer F, Shattock RJ, Burgener Aet al., 2016, Preclinical Evaluation of Serpins as Potential Colorectal Microbicides, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 295-295, ISSN: 0889-2229

Conference paper

Herrera C, Kelly C, Shattock RJ, 2016, Preclinical Evaluation of a Reverse Transcriptase and Protease Inhibitory Combination as a Candidate Microbicide, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 233-233, ISSN: 0889-2229

Conference paper

Herrera C, Veazey R, Schuetz A, Olejniczak N, Chenine A-L, Phogat S, Sinangil F, Nitayaphan S, Kaewkungwal J, Pitisuttithum P, Rerks-Ngarm S, Michael NL, Robb ML, Excler J-L, O'Connell RJ, Vasan S, Kim JH, Shattock RJet al., 2016, Ex Vivo Evaluation of Mucosal Cytokine Responses to in Vivo Vaccination with ALVAC-HIV/AIDSVAX (R) B/E of Non-human Primates (NHPs) and Humans, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 75-75, ISSN: 0889-2229

Conference paper

Muir L, Mckay PF, Petrova VN, Klymenko OV, Kratochvil S, Kellam P, Shattock RJet al., 2016, Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare subsets in response to effective vs ineffective vaccination, Conference on HIV Research for Prevention (HIV R4P), Publisher: Mary Ann Liebert, Pages: 336-336, ISSN: 0889-2229

Conference paper

Joseph S, Quinn K, Greenwood A, Miller A, Cope AV, Mckay PF, Hayes P, Kopycinski J, Bouliotis G, Gilmour J, McFarlane L, Tatoud R, Shattock RJ, Lewis D, Montefiore D, Esteban M, Wagner R, McCormack S, Weber Jet al., 2016, UK HVC 003: A Phase I Clinical Trial Exploring a Strategy to Maximise HIV Antibody Responses using Subtype C DNA, MVA and GLA Adjuvanted gp140, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 99-99, ISSN: 0889-2229

Conference paper

Herrera C, Harman S, Rogers P, Aldon Y, Armanasco N, Stieh D, Holt J, Nutall J, Shattock RJet al., 2016, Increased Activity of the Entry Inhibitor DS003, a BMS-378806 Analogue, through Binding to the CD4-induced Epitope in HIV-1 gp120, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 233-233, ISSN: 0889-2229

Conference paper

Cheeseman HM, Rogers P, King DFL, Shattock RJet al., 2016, Peripheral Immune Cells Improve the Inhibitory Activity of Non-neutralising HIV-1-specific Antibodies, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 147-147, ISSN: 0889-2229

Conference paper

Nadai Y, Ahmed MIM, Joseph S, Missanga M, Bauer A, Cope AV, Joachim A, Reimer U, Pollakis G, McCormack S, Tatoud R, Shattock RJ, Robb M, Sandstroem E, Hoelscher M, Bakari M, Maboko L, Kroidl A, Weber J, Geldmacher C, Held Ket al., 2016, Env-specific IgG Responses Induced by Identical and None-identical Immunogen Prime-boost Vaccination Strategies Target Different Antigenic Regions, Conference on HIV Research for Prevention (HIV R4P), Publisher: MARY ANN LIEBERT, INC, Pages: 392-392, ISSN: 0889-2229

Conference paper

Mukhopadhya I, Murray GI, Duncan L, Yuecel R, Shattock R, Kelly C, Iannelli F, Pozzi G, El-Omar EM, Hold GL, Hijazi Ket al., 2016, Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides., Mol Pharm, Vol: 13, Pages: 3334-3340

CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

Journal article

Jha A, Progatzky F, Wane M, Thwaites RS, McBrien M, Brimley J, Tunstall T, Shattock RJ, Bugeon L, Openshaw PJM, Dallman MJ, Hansel TTet al., 2016, Human nasal mucosal responses to TLR agonists are mirrored by the zebrafish gill, British Association of Lung Research Summer Congress

Introduction: There are few reliable ways to study respiratory mucosal immune responses to viruses, viral-type toll-like receptor (TLR) agonists and vaccines. To investigate innate immune responses to TLR agonists (TLR3: poly IC/ poly ICLC; TLR7/8: resiquimod), we compared the effects on human nasal mucosa and zebrafish gills in vivo. Methods: Nasal challenge of adult volunteers was performed with saline, poly IC (n=4), poly ICLC (n=4) or resiquimod (n=8; 5 non-atopic, 3 atopic). Nasal mucosal lining fluid (MLF) was obtained by nasosorption at regular intervals up to 24 hours after challenge; nasal obstruction was monitored by peak nasal inspiratory flow (PNIF) and total nasal symptom scores (TNSS). Cytokines and interferons were measured in MLF using electrochemiluminescence on the Meso Scale Discovery (MSD) platform. Adult zebrafish gills were exposed to the same TLR agonists and gene expression was quantified in gill tissue at similar time-points. Results: Nasal challenge with TLR3 agonists failed to elicit any significant responses when compared to saline. In contrast resiquimod (10μg/100μl per nostril) caused a potent induction of cytokines with an early release (1-3 hours) of IFN-α2a, TNF-α and IL-1β and a later release (after 4 hours) of IFN-γ. The 3 volunteers with the highest levels of IFN-α2a were atopic. Six volunteers were asymptomatic and two volunteers had flu-like symptoms. There were no significant changes in clinical correlates of nasal obstruction. After resiquimod administration, but not TLR3 agonists, zebrafish gills showed an immune profile remarkably analogous to human nasal responses. Conclusion: The TLR7/8 agonist resiquimod is a potent mucosal inducer of IFN-α2a, IFN-γ and proinflammatory cytokines, whilst TLR3 agonists failed to stimulate mucosal innate immune responses. Zebrafish gills accurately mimic human nasal mucosal responses following exposure to TLR agonists, offering translational app

Conference paper

Cheeseman HM, Carias AM, Evans AB, Olejniczak NJ, Ziprin P, King DF, Hope TJ, Shattock RJet al., 2016, Expression profile of human Fc receptors in mucosal tissue: implications for antibody-dependent cellular effector functions targeting HIV-1 transmission, PLOS One, Vol: 11, ISSN: 1932-6203

The majority of new Human Immunodeficiency Virus (HIV)-1 infections are acquired via sexual transmission at mucosal surfaces. Partial efficacy (31.2%) of the Thai RV144 HIV-1 vaccine trial has been correlated with Antibody-dependent Cellular Cytotoxicity (ADCC) mediated by non-neutralizing antibodies targeting the V1V2 region of the HIV-1 envelope. This has led to speculation that ADCC and other antibody-dependent cellular effector functions might provide an important defense against mucosal acquisition of HIV-1 infection. However, the ability of antibody-dependent cellular effector mechanisms to impact on early mucosal transmission events will depend on a variety of parameters including effector cell type, frequency, the class of Fc-Receptor (FcR) expressed, the number of FcR per cell and the glycoslyation pattern of the induced antibodies. In this study, we characterize and compare the frequency and phenotype of IgG (CD16 [FcγRIII], CD32 [FcγRII] and CD64 [FcγRI]) and IgA (CD89 [FcαR]) receptor expression on effector cells within male and female genital mucosal tissue, colorectal tissue and red blood cell-lysed whole blood. The frequency of FcR expression on CD14+ monocytic cells, myeloid dendritic cells and natural killer cells were similar across the three mucosal tissue compartments, but significantly lower when compared to the FcR expression profile of effector cells isolated from whole blood, with many cells negative for all FcRs. Of the three tissues tested, penile tissue had the highest percentage of FcR positive effector cells. Immunofluorescent staining was used to determine the location of CD14+, CD11c+ and CD56+ cells within the three mucosal tissues. We show that the majority of effector cells across the different mucosal locations reside within the subepithelial lamina propria. The potential implication of the observed FcR expression patterns on the effectiveness of FcR-dependent cellular effector functions to impact on the ini

Journal article

Cosgrove CA, Lacey CJ, Cope AV, Bartolf A, Morris G, Yan C, Baden S, Cole T, Carter D, Brodnicki E, Shen X, Joseph S, DeRosa SC, Peng L, Yu X, Ferrari G, Seaman M, Montefiori DC, Frahm N, Tomaras GD, Stöhr W, McCormack S, Shattock RJet al., 2016, Comparative immunogenicity of HIV-1 gp140 vaccine delivered by parenteral, and mucosal routes in female volunteers; MUCOVAC2, a randomized two centre study, PLOS One, Vol: 11, ISSN: 1932-6203

BackgroundDefining optimal routes for induction of mucosal immunity represents an important research priority for the HIV-1 vaccine field. In particular, it remains unclear whether mucosal routes of immunization can improve mucosal immune responses.MethodsIn this randomized two center phase I clinical trial we evaluated the systemic and mucosal immune response to a candidate HIV-1 Clade C CN54gp140 envelope glycoprotein vaccine administered by intramuscular (IM), intranasal (IN) and intravaginal (IVAG) routes of administration in HIV negative female volunteers. IM immunizations were co-administered with Glucopyranosyl Lipid Adjuvant (GLA), IN immunizations with 0.5% chitosan and IVAG immunizations were administered in an aqueous gel.ResultsThree IM immunizations of CN54 gp140 at either 20 or 100 μg elicited significantly greater systemic and mucosal antibodies than either IN or IVAG immunizations. Following additional intramuscular boosting we observed an anamnestic antibody response in nasally primed subjects. Modest neutralizing responses were detected against closely matched tier 1 clade C virus in the IM groups. Interestingly, the strongest CD4 T-cell responses were detected after IN and not IM immunization.ConclusionsThese data show that parenteral immunization elicits systemic and mucosal antibodies in women. Interestingly IN immunization was an effective prime for IM boost, while IVAG administration had no detectable impact on systemic or mucosal responses despite IM priming.

Journal article

Herrera C, Armanasco N, García-Pérez J, Ziprin P, Olejniczak N, Alcami J, Nuttall J, Shattock RJet al., 2016, Maraviroc and reverse transcriptase inhibitors combinations as potential pre-exposure prophylaxis candidates, AIDS, Vol: 30, Pages: 1015-1025, ISSN: 0269-9370

Objective: Receptive anal intercourse in both men and women is associated with the highest probability for sexual acquisition of HIV infection. As part of a program to develop an effective prevention strategy, we performed an ex-vivo preclinical evaluation to determine the efficacy of multiple double combinations of maraviroc (MVC) and reverse transcriptase inhibitors (RTIs).Design: The entry inhibitor, MVC, a nucleotide RTI, tenofovir and two non-nucleoside RTIs, UC781 and TMC120 (dapivirine, DPV), were used in double, combinations against a panel of CCR5-using clade B and clade C HIV-1 isolates and against MVC-escape variants. A gel-formulated version of MVC-DPV combination was also tested.Methods: Indicator cells, cocultures of immature dendritic cells with CD4+T cells, and colorectal tissue explants were used to assess antiviral activity of drug combinations.Results: All dual MVC-RTI combinations tested inhibited MVC-sensitive and resistant isolates in cellular and colorectal explants models. All the combinations were positive with no reduction in the activity of MVC. In tissue explants, the combinations against all viral isolates tested produced an increase in the activity of MVC. An initial gel-formulation of MVC-DPV combination showed greater and prolonged antiviral activity of MVC in mucosal tissue explants.Conclusion: This study demonstrates that combinations based on antiretroviral drugs inhibiting HIV transmission at viral entry and reverse transcription have potential as prevention strategies against colorectal transmission of HIV-1 including MVC-resistant isolates. Preclinical evaluation with colorectal tissue explants indicates that a gel-formulation of MVC-DPV is an effective candidate colorectal microbicide.

Journal article

Mann JF, Tregoning JS, Aldon Y, Shattock RJ, McKay PFet al., 2016, CD71 targeting boosts immunogenicity of sublingually delivered influenza haemagglutinin antigen and protects against viral challenge in mice., Journal of Controlled Release, Vol: 232, Pages: 75-82, ISSN: 1873-4995

The delivery of vaccines to the sublingual mucosa is an attractive prospect due to the ease and acceptability of such an approach. However, novel adjuvant and delivery approaches are required to optimally vaccinate at this site. We have previously shown that conjugation of protein antigen to the iron transport molecule, transferrin, can significantly enhance mucosal immune responses. We tested whether conjugating influenza haemagglutinin to transferrin could improve the immune response to sublingually delivered antigen. Transferrin conjugated haemagglutinin induced a significant antibody and T cell response in both naïve animals and previously immunized animals. The immune response generated was able to protect mice against influenza virus challenge. Sublingually administered antigen dispersed more widely through the gastro-intestinal tract than intranasally delivered antigen and transferrin conjugation had a more marked effect on sublingually delivered antigen than intranasal immunisation. From these studies we conclude that transferrin conjugation of antigen is effective at boosting immune responses to sublingually delivered antigen and may be an attractive approach for influenza vaccines, particularly when mass campaigns are required.

Journal article

Badamchi-Zadeh A, McKay PF, Korber BT, Barinaga G, Walters AA, Nunes A, Gomes JP, Follman F, Tregoning JS, Shattock RJet al., 2016, A multi-component prime-boost vaccination regimen with a consensus MOMP antigen enhances Chlamydia trachomatis clearance, Frontiers in Immunology, Vol: 7, ISSN: 1664-3224

Background: A vaccine for Chlamydia trachomatis is of urgent medical need. We explored bioinformatic approaches to generate an immunogen against C. trachomatis that would induce cross-serovar T cell responses as (i) CD4+ T cells have been shown in animal models and human studies to be important in chlamydial protection, and (ii) antibody responses may be restrictive and serovar-specific.Methods: A consensus antigen based on over 1,500 MOMP sequences provided high epitope coverage against the most prevalent C. trachomatis strains in silico. Having designed the T cell immunogen, we assessed it for immunogenicity in prime-boost regimens. This consensus MOMP transgene was delivered using plasmid DNA, Human Adenovirus-5 (HuAd5) or modified vaccinia Ankara (MVA) vectors with or without MF59® adjuvanted recombinant MOMP protein. Results: Different regimens induced distinct immune profiles. The DNA-HuAd5-MVA-Protein (DAMP) vaccine regimen induced a cellular response with a Th1 biased serum antibody response, alongside high serum and vaginal MOMP-specific antibodies. This regimen significantly enhanced clearance against intravaginal C. trachomatis serovar D infection in both BALB/c and B6C3F1 mouse strains. This enhanced clearance was shown to be CD4+ T cell dependent. Future studies will need to confirm the specificity and precise mechanisms of protection. Conclusions: A C. trachomatis vaccine needs to induce a robust cellular response with broad cross-serovar coverage and that a heterologous prime-boost regimen may be an approach to achieve this.

Journal article

Fletcher P, Herrera C, Armanasco N, Nuttall J, Shattock RJet al., 2016, Short Communication: Limited Anti-HIV-1 Activity of Maraviroc in Mucosal Tissues, AIDS Research and Human Retroviruses, Vol: 32, Pages: 334-338, ISSN: 0889-2229

The potential of maraviroc (MVC), a small-molecule CCR5 antagonist, as a candidate to prevent HIV-1 sexual transmission by oral or topical dosing has not yet been completely established. Using relevant cellular and mucosal tissue explant models, we show partial antiviral activity of MVC when tested in multiple preclinical dosing strategies.

Journal article

Vamvaka E, Evans A, Ramessar K, Krumpe LRH, Shattock RJ, O'Keefe BR, Christou P, Capell Tet al., 2016, Cyanovirin-N produced in rice endosperm offers effective pre-exposure prophylaxis against HIV-1BaL infection in vitro, Plant Cell Reports, Vol: 35, Pages: 1309-1319, ISSN: 1432-203X

Cyanovirin-N (CV-N) is a lectin with potent antiviral activity that has been proposed as a component of microbicides for the prevention of infection with Human immunodeficiency virus (HIV). The production of protein-based microbicide components requires a platform that is sufficiently economical and scalable to meet the demands of the large at-risk population, particularly in resource poor developing countries. We, therefore, expressed CV-N in rice endosperm, because the dried seed is ideal for storage and transport and crude extracts could be prepared locally and used as a microbicide component without further purification. We found that crude extracts from rice seeds expressing up to 10 µg CV-N per gram dry seed weight showed dose-dependent gp120 binding activity, confirming that the protein was soluble, correctly folded and active. The recombinant lectin (OSCV-N) reduced the infectivity of HIV-1BaL (an R5 virus strain representing the majority of transmitted infections) by ~90 % but showed only weak neutralization activity against HIV-1RF (representative of X4 virus, rarely associated with transmission), suggesting it would be highly effective for pre-exposure prophylaxis against the vast majority of transmitted strains. Crude extracts expressing OSCV-N showed no toxicity towards human cells at working dilutions indicating that microbicide components produced in rice endosperm are safe for direct application as topical microbicides in humans.

Journal article

Le Grand R, Dereuddre-Bosquet N, Dispinseri S, Gosse L, Desjardins D, Shen X, Tolazzi M, Ochsenbauer C, Saidi H, Tomaras G, Prague M, Barnett SW, Thiebaut R, Cope A, Scarlatti G, Shattock RJet al., 2016, Superior efficacy of a human immunodeficiency virus vaccine combined with antiretroviral prevention in simian-human immunodeficiency virus-challenged nonhuman primates, Journal of Virology, Vol: 90, Pages: 5315-5328, ISSN: 1098-5514

Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention.IMPORTANCE There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no protection (and ma

Journal article

McKay PF, King DFL, Mann JFS, Barinaga G, Carter D, Shattock RJet al., 2016, TLR4 and TLR7/8 adjuvant combinations generate different vaccine antigen-specific immune outcomes in minipigs when administered via the ID or IN routes, PLOS One, Vol: 11, ISSN: 1932-6203

The induction of high levels of systemic and mucosal humoral immunity is a key goal for many prophylactic vaccines. However, adjuvant strategies developed in mice have often performed poorly in the clinic. Due to their closer similarity to humans, minipigs may provide a more accurate picture of adjuvant performance. Based on their complementary signalling pathways, we assessed humoral immune responses to model antigens after co-administration with the toll-like receptor 4 (TLR4) stimulator glucopyranosyl lipid adjuvant (GLA-AF) or the TLR7/8 agonist resiquimod (R848) (alone and in combination) via the intradermal (ID), intranasal (IN) or combined routes in the Gottingen minipig animal model. Surprisingly, we discovered that while GLA-AF additively enhanced the adjuvant effect of R848 when injected ID, it abrogated the adjuvant activity of R848 after IN inoculation. We then performed a route comparison study using a CN54 gp140 HIV Envelope model antigen adjuvanted with R848 + GLA-AF (ID) or R848 alone (IN). Animals receiving priming inoculations via one route were then boosted by the alternate route. Although differences were observed in the priming phase (IN or ID), responses converged upon boosting by the alternative route with no observable impact resultant from the order of administration (ID/IN vs IN/ID). Specific IgG responses were measured at a distal mucosal site (vaginal), although there was no evidence of mucosal linkage as these closely reflected serum antibody levels. These data indicate that the complex in vivo cross-talk between innate pathways are likely tissue specific and cannot be predicted by simple in vitro models.

Journal article

Mukhopadhya I, Murray GI, Berry S, Thomson J, Frank B, Gwozdz G, Ekeruche-Makinde J, Shattock R, Kelly C, Iannelli F, Pozzi G, El-Omar EM, Hold GL, Hijazi Ket al., 2016, Drug transporter gene expression in human colorectal tissue and cell lines: modulation with antiretrovirals for microbicide optimization, JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, Vol: 71, Pages: 372-386, ISSN: 0305-7453

Journal article

Francis SC, Hou Y, Baisley K, van de Wijgert J, Watson-Jones D, Ao TT, Herrera C, Maganja K, Andreasen A, Kapiga S, Coulton GR, Hayes RJ, Shattock RJet al., 2016, Immune activation in the female genital tract: expression profiles of soluble proteins in women at high risk for HIV infection, PLOS One, Vol: 11, ISSN: 1932-6203

Journal article

Vamvaka E, Arcalis E, Ramessar K, Evans A, O'Keefe BR, Shattock RJ, Medina V, Stöger E, Christou P, Capell Tet al., 2016, Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV, Plant Biotechnology Journal, Vol: 14, Pages: 1427-1437, ISSN: 1467-7652

Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV-endemic regions such as sub-Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of OSGRFT in the best-performing plants was 223 μg/g dry seed weight. We also established a one-step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger-scale process to facilitate inexpensive downstream processing. OSGRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole-cell assays using purified OSGRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure OSGRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom-to-operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00698655&person=true&page=5&respub-action=search.html