Imperial College London

ProfessorRobinShattock

Faculty of MedicineDepartment of Infectious Disease

Chair in Mucosal Infection and Immunity
 
 
 
//

Contact

 

+44 (0)20 7594 5206r.shattock

 
 
//

Location

 

453Wright Fleming WingSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

382 results found

Spencer AJ, McKay PF, Belij-Rammerstorfer S, Ulaszewska M, Bissett CD, Hu K, Samnuan K, Blakney AK, Wright D, Sharpe HR, Gilbride C, Truby A, Allen ER, Gilbert SC, Shattock RJ, Lambe Tet al., 2021, Heterologous vaccination regimens with self-amplifying RNA and Adenoviral COVID vaccines induce robust immune responses in mice

<jats:title>Abstract</jats:title><jats:p>Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two dose heterologous vaccination regimens than single dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1<jats:sup>+</jats:sup> CD4 T cells which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.</jats:p>

Working paper

Samnuan K, Blakney A, McKay P, Shattock Ret al., 2021, Design-of-experiments in vitro transcription yield optimization of self-amplifying RNA, Publisher: Cold Spring Harbor Laboratory

Self-amplifying RNA (saRNA) vaccines are able to induce a higher antigen-specific immune response with a more cost-effective and rapid production process compared to plasmid DNA vaccines. saRNAs are synthesized through in vitro transcription (IVT) however; this process has mainly been optimized for relatively short mRNAs. Here, we optimized the IVT process for long saRNAs, approximately 9.4 kb through a design of experiment (DoE) approach to produce a maximal RNA yield and validated the optimal IVT method on various sizes of RNA. We found that magnesium has the highest impact on RNA yield with acetate ions enabling a higher yield than chloride ions. In addition, the interaction between magnesium and nucleoside triphosphates (NTPs) is highly essential for IVT. Further addition of sodium acetate (NaOAc) during IVT provided no added benefit in RNA yield. Moreover, pyrophosphatase was not essential for productive IVT. The optimal IVT method can be used to synthesize different lengths of RNA. These findings emphasize the ability to synthesize high quality and quantity of saRNA through IVT and that the optimal amount of each component is essential for their interactions to produce a high RNA yield.

Working paper

Siris S, Gladstone CA, Guo Y, Pinder CL, Shattock RJ, McKay PF, Langford PR, Bidmos FAet al., 2021, Isolating Pathogen-Specific Human Monoclonal Antibodies (hmAbs) Using Bacterial Whole Cells as Molecular Probes., Methods Mol Biol, Vol: 2183, Pages: 9-18

The immunoglobulin capture assay (ICA) enables the enrichment for pathogen-specific plasmablasts from individuals with a confirmed adaptive immune response to vaccination or disseminated infection. Only single recombinant antigens have been used previously as probes in this ICA and it was unclear whether the method was applicable to complex probes such as whole bacterial cells. Here, we describe the enrichment of plasmablasts specific for polysaccharide and protein antigens of both Streptococcus pneumoniae and Neisseria meningitidis using whole formalin-fixed bacterial cells as probes. The modified ICA protocol described here allowed for a pathogen-specific hmAb cloning efficiency of >80%.

Journal article

Pinder CL, McKay PF, Shattock RJ, 2021, Use of chlamydial elementary bodies as probes to isolate pathogen-specific human monoclonal antibodies., Methods in Molecular Biology, Vol: 2183, Pages: 19-28, ISSN: 1064-3745

Chlamydia trachomatis is one of the most prevalent sexually transmitted infectious agents in the world and the leading cause of infectious blindness. The role of antibodies in the prevention and clearance of infection is still not fully understood, but the analysis of the immunoglobulin response to novel vaccine candidates is an important part of many of these studies. In this chapter, we describe a novel method to identify and isolate Chlamydia-specific memory B cells by fluorescence-activated cell sorting (FACS) using fluorescently labeled whole bacteria from cryopreserved human PBMC samples. This method allows for live single cells to be sorted for cell culture, in vitro assays, single-cell RNA sequencing, and cloning of paired heavy and light chains for recombinant monoclonal antibody production.

Journal article

Kis Z, Kontoravdi C, Shattock R, Shah Net al., 2020, Resources, production scales and time required for producing RNA vaccines for the global pandemic demand., Vaccines (Basel), Vol: 9, Pages: 1-14, ISSN: 2076-393X

To overcome pandemics, such as COVID-19, vaccines are urgently needed at very high volumes. Here we assess the techno-economic feasibility of producing RNA vaccines for the demand associated with a global vaccination campaign. Production process performance is assessed for three messenger RNA (mRNA) and one self-amplifying RNA (saRNA) vaccines, all currently under clinical development, as well as for a hypothetical next-generation saRNA vaccine. The impact of key process design and operation uncertainties on the performance of the production process was assessed. The RNA vaccine drug substance (DS) production rates, volumes and costs are mostly impacted by the RNA amount per vaccine dose and to a lesser extent by the scale and titre in the production process. The resources, production scale and speed required to meet global demand vary substantially in function of the RNA amount per dose. For lower dose saRNA vaccines, global demand can be met using a production process at a scale of below 10 L bioreactor working volume. Consequently, these small-scale processes require a low amount of resources to set up and operate. RNA DS production can be faster than fill-to-finish into multidose vials; hence the latter may constitute a bottleneck.

Journal article

Sandbrink JB, Shattock RJ, 2020, RNA vaccines: a suitable platform for tackling emerging pandemics?, Frontiers in Immunology, Vol: 11, Pages: 1-9, ISSN: 1664-3224

The COVID-19 pandemic demonstrates the ongoing threat of pandemics caused by novel, previously unrecognized, or mutated pathogens with high transmissibility. Currently, vaccine development is too slow for vaccines to be used in the control of emerging pandemics. RNA-based vaccines might be suitable to meet this challenge. The use of an RNA-based delivery mechanism promises fast vaccine development, clinical approval, and production. The simplicity of in vitro transcription of mRNA suggests potential for fast, scalable, and low-cost manufacture. RNA vaccines are safe in theory and have shown acceptable tolerability in first clinical trials. Immunogenicity of SARS-CoV-2 mRNA vaccines in phase 1 trials looks promising, however induction of cellular immunity needs to be confirmed and optimized. Further optimization of RNA vaccine modification and formulation to this end is needed, which may also enable single injection regimens to be achievable. Self-amplifying RNA vaccines, which show high immunogenicity at low doses, might help to improve potency while keeping manufacturing costs low and speed high. With theoretical properties of RNA vaccines looking promising, their clinical efficacy is the key remaining question with regard to their suitability for tackling emerging pandemics. This question might be answered by ongoing efficacy trials of SARS-CoV-2 mRNA vaccines.

Journal article

J C, Najer A, Blakney A, McKay P, Bellahcene M, Winter C, Sintou A, Tang J, Keane TJ, Schneider M, Shattock R, Sattler S, Stevens Met al., 2020, Neutrophils enable local and non-invasive liposome delivery to inflamed skeletal muscle and ischemic heart, Advanced Materials, Vol: 32, Pages: 1-10, ISSN: 0935-9648

Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non‐invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil‐mediated delivery system able to transport drug‐loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome‐loaded neutrophils is confirmed in vivo by demonstrating the delivery of drug‐loaded liposomes to an inflamed skeletal muscle in mice. A single low‐dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome‐loaded neutrophils in a human‐disease‐relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier‐loaded neutrophils as a universal platform to deliver anti‐inflammatory drugs to promote tissue regeneration in inflammatory diseases.

Journal article

Nash S, Dietrich J, Ssemata AS, Herrera C, O'Hagan K, Else L, Chiodi F, Kelly C, Shattock R, Chirenje M, Lebina L, Khoo S, Bekker L-G, Weiss HA, Gray C, Stranix-Chibanda L, Kaleebu P, Seeley J, Martinson N, Fox J, CHAPS teamet al., 2020, Combined HIV Adolescent Prevention Study (CHAPS): comparison of HIV pre-exposure prophylaxis regimens for adolescents in sub-Saharan Africa-study protocol for a mixed-methods study including a randomised controlled trial., Trials, Vol: 21, ISSN: 1745-6215

BACKGROUND: HIV remains a major public health issue, especially in Eastern and Southern Africa. Pre-exposure prophylaxis is highly effective when adhered to, but its effectiveness is limited by cost, user acceptability and uptake. The cost of a non-inferiority phase III trial is likely to be prohibitive, and thus, it is essential to select the best possible drug, dose and schedule in advance. The aim of this study, the Combined HIV Adolescent PrEP and Prevention Study (CHAPS), is to investigate the drug, dose and schedule of pre-exposure prophylaxis (PrEP) required for the protection against HIV and the acceptability of PrEP amongst young people in sub-Saharan Africa, and hence to inform the choice of intervention for future phase III PrEP studies and to improve strategies for PrEP implementation. METHODS: We propose a mixed-methods study amongst young people aged 13-24 years. The first component consists of qualitative research to identify the barriers and motivators towards the uptake of PrEP amongst young people in South Africa, Uganda and Zimbabwe. The second component is a randomised clinical trial (ClinicalTrials.gov NCT03986970, June 2019) using a novel ex vivo HIV challenge method to investigate the optimal PrEP treatment (FTC-TDF vs FTC-TAF), dose and schedule. We will recruit 144 amongst HIV-negative uncircumcised men aged 13-24 years from voluntary male medical circumcision clinics in two sites (South Africa and Uganda) and randomise them into one of nine arms. One group will receive no PrEP prior to surgery; the other arms will receive either FTC-TDF or FTC-TAF, over 1 or 2 days, and with the final dose given either 6 or 20 h prior to surgery. We will conduct an ex vivo HIV challenge on their resected foreskin tissue. DISCUSSION: This study will provide both qualitative and quantitative results to help decide the optimum drug, dose and schedule for a future phase III trial of PrEP. The study will also provide crucial information

Journal article

Gurnani P, Blakney AK, Yeow J, Bouton CR, Shattock RJ, Stevens MM, Alexander Cet al., 2020, An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection, Polymer Chemistry, Vol: 11, Pages: 5861-5869, ISSN: 1759-9954

Cationic polymers are widely used as materials to condense nucleic acids for gene-based therapies. These have been developed to mainly deliver DNA and RNA for cancer therapies but the ongoing COVID-19 pandemic has demonstrated an urgent need for new DNA and RNA vaccines. Given this, suitable manufacturing conditions for such cationic polymers which can protect the nucleic acid in the formulation and delivery stages but release the cargo in the correct cellular compartment effectively and safely are required. A number of polymers based on poly(amidoamine)s fit these criteria but their syntheses can be time-consuming, inefficient and poorly reproducible, precluding their adoption as manufacturable vaccine excipients. Here we report an improved synthesis of poly(cystamine bisacrylamide-co-4-amino-1-butanol), abbreviated as pABOL, via modifications in concentration, reaction time and reaction conditions. Optimisation of monomer contents and stoichiometries, solvents, diluents and temperature, combined with the application of microwaves, enabled the preparation of vaccine candidate pABOL materials in 4 h compared to 48 h reported for previous syntheses. These procedures were highly reproducible in multiple repeat syntheses. Transfection experiments with a model RNA showed that polymers of formulation with appropriate molar masses and mass distributions were as effective in model cell lines as polymers derived from the unoptimised syntheses which have been shown to have high efficacy as RNA vaccine formulation candidates.

Journal article

Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, Kugathasan R, Petersen C, Daunt A, Ashby D, Riley S, Atchison C, Taylor GP, Satkunarajah S, Naar L, Klaber R, Badhan A, Rosadas C, Kahn M, Fernandez N, Sureda-Vives M, Cheeseman H, O'Hara J, Fontana G, Pallett SJC, Rayment M, Jones R, Moore LSP, Cherapanov P, Tedder R, McClure M, Ashrafian H, Shattock R, Ward H, Darzi A, Elliott P, Barclay W, Cooke Get al., 2020, Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 sero-prevalence survey, Thorax, Vol: 75, Pages: 1082-1088, ISSN: 0040-6376

BackgroundAccurate antibody tests are essential to monitor the SARS-CoV-2 pandemic. Lateral flow immunoassays (LFIAs) can deliver testing at scale. However, reported performance varies, and sensitivity analyses have generally been conducted on serum from hospitalised patients. For use in community testing, evaluation of finger-prick self-tests, in non-hospitalised individuals, is required.MethodsSensitivity analysis was conducted on 276 non-hospitalised participants. All had tested positive for SARS-CoV-2 by RT-PCR and were ≥21d from symptom-onset. In phase I we evaluated five LFIAs in clinic (with finger-prick) and laboratory (with blood and sera) in comparison to a) PCR-confirmed infection and b) presence of SARS-CoV-2 antibodies on two “in-house” ELISAs. Specificity analysis was performed on 500 pre-pandemic sera. In phase II, six additional LFIAs were assessed with serum.Findings95% (95%CI [92.2, 97.3]) of the infected cohort had detectable antibodies on at least one ELISA. LFIA sensitivity was variable, but significantly inferior to ELISA in 8/11 assessed. Of LFIAs assessed in both clinic and laboratory, finger-prick self-test sensitivity varied from 21%-92% vs PCR-confirmed cases and 22%-96% vs composite ELISA positives. Concordance between finger-prick and serum testing was at best moderate (kappa 0.56) and, at worst, slight (kappa 0.13). All LFIAs had high specificity (97.2% - 99.8%).InterpretationLFIA sensitivity and sample concordance is variable, highlighting the importance of evaluations in setting of intended use. This rigorous approach to LFIA evaluation identified a test with high specificity (98.6% (95%CI [97.1, 99.4])), moderate sensitivity (84.4% with fingerprick (95%CI [70.5, 93.5])), and moderate concordance, suitable for seroprevalence surveys.

Journal article

Gurnani P, Blakney AK, Terracciano R, Petch JE, Blok AJ, Bouton CR, McKay PF, Shattock RJ, Alexander Cet al., 2020, The <i>In Vitro</i>, <i>Ex Vivo</i>, and <i>In Vivo</i> Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA, BIOMACROMOLECULES, Vol: 21, Pages: 3242-3253, ISSN: 1525-7797

Journal article

Kis Z, Kontoravdi K, Dey AK, Shattock R, Shah Net al., 2020, Rapid development and deployment of high-volumevaccines for pandemic response, Journal of Advanced Manufacturing and Processing, Vol: 2, Pages: 1-10, ISSN: 2637-403X

Overcoming pandemics, such as the current Covid‐19 outbreak, requires the manufacture of several billion doses of vaccines within months. This is an extremely challenging task given the constraints in small‐scale manufacturing for clinical trials, clinical testing timelines involving multiple phases and large‐scale drug substance and drug product manufacturing. To tackle these challenges, regulatory processes are fast‐tracked, and rapid‐response manufacturing platform technologies are used. Here, we evaluate the current progress, challenges ahead and potential solutions for providing vaccines for pandemic response at an unprecedented scale and rate. Emerging rapid‐response vaccine platform technologies, especially RNA platforms, offer a high productivity estimated at over 1 billion doses per year with a small manufacturing footprint and low capital cost facilities. The self‐amplifying RNA (saRNA) drug product cost is estimated at below 1 USD/dose. These manufacturing processes and facilities can be decentralized to facilitate production, distribution, but also raw material supply. The RNA platform technology can be complemented by an a priori Quality by Design analysis aided by computational modeling in order to assure product quality and further speed up the regulatory approval processes when these platforms are used for epidemic or pandemic response in the future.

Journal article

McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, Zhou J, Bouton CR, Rogers P, Polra K, Lin PJC, Barbosa C, Tam YK, Barclay WS, Shattock RJet al., 2020, Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice, Nature Communications, Vol: 11, Pages: 1-7, ISSN: 2041-1723

The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibody-dependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN-γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic.

Journal article

Mann JFS, Pankrac J, Klein K, McKay PF, King DFL, Gibson R, Wijewardhana CN, Pawa R, Meyerowitz J, Gao Y, Canaday DH, Avino M, Poon AFY, Foster C, Fidler S, Shattock RJ, Arts EJet al., 2020, A targeted reactivation of latent HIV-1 using an activator vector in patient samples from acute infection., EBioMedicine, Vol: 59, Pages: 1-15, ISSN: 2352-3964

BACKGROUND: During combined anti-retroviral treatment, a latent HIV reservoir persists within resting memory CD4 T cells that initiates viral recrudescence upon treatment interruption. Strategies for HIV-1 cure have largely focused on latency reversing agents (LRAs) capable of reactivating and eliminating this viral reservoir. Previously investigated LRAs have largely failed to achieve a robust latency reversal sufficient for reduction of latent HIV pool or the potential of virus-free remission in the absence of treatment. METHODS: We utilize a polyvalent virus-like particle (VLP) formulation called Activator Vector (ACT-VEC) to 'shock' provirus into transcriptional activity. Ex vivo co-culture experiments were used to evaluate the efficacy of ACT-VEC in relation to other LRAs in individuals diagnosed and treated during the acute stage of infection. IFN-γ ELISpot, qRT-PCR and Illumina MiSeq were used to evaluate antigenicity, latency reversal, and diversity of induced virus respectively. FINDINGS: Using samples from HIV+ patients diagnosed and treated at acute/early infection, we demonstrate that ACT-VEC can reverse latency in HIV infected CD4 T cells to a greater extent than other major recall antigens as stimuli or even mitogens such as PMA/Iono. Furthermore, ACT-VEC activates more latent HIV-1 than clinically tested HDAC inhibitors or protein kinase C agonists. INTERPRETATION: Taken together, these results show that ACT-VEC can induce HIV reactivation from latently infected CD4 T cells collected from participants on first line combined antiretroviral therapy for at least two years after being diagnosed and treated at acute/early stage of infection. These findings could provide guidance to possible targeted cure strategies and treatments. FUNDING: NIH and CIHR.

Journal article

Blakney AK, Liu R, Yilmaz G, Abdouni Y, McKay PF, Bouton CR, Shattock RJ, Becer CRet al., 2020, Precisely targeted gene delivery in human skin using supramolecular cationic glycopolymers, POLYMER CHEMISTRY, Vol: 11, Pages: 3768-3774, ISSN: 1759-9954

Journal article

Saviano F, Lovato T, Russo A, Russo G, Bouton CR, Shattock RJ, Alexander C, Quaglia F, Blakney AK, Gurnani P, Conte Cet al., 2020, Ornithine-derived oligomers and dendrimers for <i>in vitro</i> delivery of DNA and <i>ex vivo</i> transfection of skin cells <i>via</i> saRNA, JOURNAL OF MATERIALS CHEMISTRY B, Vol: 8, Pages: 4940-4949, ISSN: 2050-750X

Journal article

Blakney AK, Abdouni Y, Yilmaz G, Liu R, McKay PF, Bouton CR, Shattock RJ, Becer Ret al., 2020, Mannosylated Poly(ethylene imine) Copolymers Enhance saRNA Uptake and Expression in Human Skin Explants, BIOMACROMOLECULES, Vol: 21, Pages: 2482-2492, ISSN: 1525-7797

Journal article

Blakney AK, Zhu Y, McKay PF, Bouton CR, Yeow J, Tang J, Hu K, Samnuan K, Grigsby CL, Shattock RJ, Stevens MMet al., 2020, Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer, ACS Nano, Vol: 14, Pages: 5711-5727, ISSN: 1936-0851

Self-amplifying RNA (saRNA) vaccines are highly advantageous, as they result in enhanced protein expression compared to mRNA (mRNA), thus minimizing the required dose. However, previous delivery strategies were optimized for siRNA or mRNA and do not necessarily deliver saRNA efficiently due to structural differences of these RNAs, thus motivating the development of saRNA delivery platforms. Here, we engineer a bioreducible, linear, cationic polymer called “pABOL” for saRNA delivery and show that increasing its molecular weight enhances delivery both in vitro and in vivo. We demonstrate that pABOL enhances protein expression and cellular uptake via both intramuscular and intradermal injection compared to commercially available polymers in vivo and that intramuscular injection confers complete protection against influenza challenge. Due to the scalability of polymer synthesis and ease of formulation preparation, we anticipate that this polymer is highly clinically translatable as a delivery vehicle for saRNA for both vaccines and therapeutics.

Journal article

Bekker L-G, Tatoud R, Dabis F, Feinberg M, Kaleebu P, Marovich M, Ndung'u T, Russell N, Johnson J, Luba M, Fauci AS, Morris L, Pantaleo G, Buchbinder S, Gray G, Vekemans J, Kim JH, Levy Y, Corey L, Shattock R, Makanga M, Williamson C, Dieffenbach C, Goodenow MM, Shao Y, Staprans S, Warren M, Johnston MIet al., 2020, The complex challenges of HIV vaccine development require renewed and expanded global commitment, LANCET, Vol: 395, Pages: 384-388, ISSN: 0140-6736

Journal article

Aldon Y, Kratochvil S, Shattock R, McKay Pet al., 2020, Chemokine-adjuvanted plasmid DNA induces homing of antigen-specific and non-Antigen-specific B and T cells to the intestinal and genital mucosae, Journal of Immunology, ISSN: 0022-1767

Plasmid DNA is a promising vaccine platform that together with electroporation can elicit significant systemic antibody responses, however immunity at mucosal sites remains low. Here, we sought to program T and B cells to home to the gastro-intestinal and vaginal mucosa using genetic chemokine adjuvants and assessed their impact on immune homeostasis in various distinct immune compartments. Balb/c mice were immunized intramuscularly with plasmid DNA encoding a model antigen HIV-1 Env gp140 (gp140) and selected chemokines/cytokine and boosted intravaginally with gp140 recombinant protein. Isolated splenocytes, intestinal and genital lymphocytes as well as serum and intestinal luminal contents were assessed for antigen-specific reactivity. In addition, flow cytometric analysis was performed to determine the impact on immune homeostasis at these sites. Different molecular chemokine/cytokine adjuvants effected significant alterations to the recruitment of B and T cells to the spleen, vaginal and intestinal mucosae, for example CCL25 enhanced splenic and vaginal antigen-specific T cell responses while CCL28 increased the levels of specific T cells only in the vaginal mucosa. The levels of antibody could be modulated in the systemic circulation, as well as the vaginal vault and intestinal lumen, with CCL20 playing a central role. Our data demonstrate that the CCL20, CCL25 and CCL28 genetic chemokine adjuvants enhance the vaccine antigen-specific humoral and cellular responses and induce homing to the intestinal and female genital mucosae.

Journal article

Haidari G, Day S, Wood M, Ridgers H, Cope A, Fleck S, Yan C, Reijonen K, Hannaman D, Spentzou A, Hayes P, Vogt A, Combadiere B, Cook A, McCormack S, Shattock RJet al., 2019, The safety and immunogenicity of GTU (R) MultiHIV DNA vaccine delivered by transcutaneous and intramuscular injection with or without electroporation in HIV-1 positive subjects on suppressive ART, Frontiers in Immunology, Vol: 10, Pages: 1-8, ISSN: 1664-3224

Previous studies have shown targeting different tissues via the transcutaneous (TC) and intramuscular injection (IM) with or without electroporation (EP) has the potential to trigger immune responses to DNA vaccination. The CUTHIVTHER 001 Phase I/II randomized controlled clinical trial was designed to determine whether the mode of DNA vaccination delivery (TC+IM or EP+IM) could influence the quality and function of induced cellular immune responses compared to placebo, in an HIV positive clade B cohort on antiretroviral therapy (ART). The GTU®MultiHIV B DNA vaccine DNA vaccine encoded a MultiHIV B clade fusion protein to target the cellular response. Overall the vaccine and regimens were safe and well-tolerated. There were robust pre-vaccination IFN-γ responses with no measurable change following vaccination compared to placebo. However, modest intracellular cytokine staining (ICS) responses were seen in the TC+IM group. A high proportion of individuals demonstrated potent viral inhibition at baseline that was not improved by vaccination. These results show that HIV positive subjects with nadir CD4+ counts ≥250 on suppressive ART display potent levels of cellular immunity and viral inhibition, and that DNA vaccination alone is insufficient to improve such responses. These data suggest that more potent prime-boost vaccination strategies are likely needed to improve pre-existing responses in similar HIV-1 cohorts (This study has been registered at http://ClinicalTrials.gov under registration no. NCT02457689).

Journal article

Fu M, Hu K, Hu H, Ni F, Du T, Shattock RJ, Hu Qet al., 2019, Antigenicity and immunogenicity of HIV-1 gp140 with different combinations of glycan mutation and V1/V2 region or V3 crown deletion, VACCINE, Vol: 37, Pages: 7501-7508, ISSN: 0264-410X

Journal article

Abraham S, Juel HB, Bang P, Cheeseman HM, Dohn RB, Cole T, Kristiansen MP, Korsholm KS, Lewis D, Olsen AW, McFarlane LR, Day S, Knudsen S, Moen K, Ruhwald M, Kromann I, Andersen P, Shattock RJ, Follmann Fet al., 2019, Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial, Lancet Infectious Diseases, Vol: 19, Pages: 1091-1100, ISSN: 1473-3099

BACKGROUND: Chlamydia is the most common sexually transmitted bacterial infection worldwide. National screening programmes and antibiotic treatment have failed to decrease incidence, and to date no vaccines against genital chlamydia have been tested in clinical trials. We aimed to assess the safety and immunogenicity, in humans, of a novel chlamydia vaccine based on a recombinant protein subunit (CTH522) in a prime-boost immunisation schedule. METHODS: This phase 1, first-in-human, double-blind, parallel, randomised, placebo-controlled trial was done at Hammersmith Hospital in London, UK, in healthy women aged 19-45 years. Participants were randomly assigned (3:3:1) to three groups: CTH522 adjuvanted with CAF01 liposomes (CTH522:CAF01), CTH522 adjuvanted with aluminium hydroxide (CTH522:AH), or placebo (saline). Participants received three intramuscular injections of 85 μg vaccine (with adjuvant) or placebo to the deltoid region of the arm at 0, 1, and 4 months, followed by two intranasal administrations of 30 μg unadjuvanted vaccine or placebo (one in each nostril) at months 4·5 and 5·0. The primary outcome was safety and the secondary outcome was humoral immunogenicity (anti-CTH522 IgG seroconversion). This study is registered with Clinicaltrials.gov, number NCT02787109. FINDINGS: Between Aug 15, 2016, and Feb 13, 2017, 35 women were randomly assigned (15 to CTH522:CAF01, 15 to CTH522:AH, and five to placebo). 32 (91%) received all five vaccinations and all participants were included in the intention-to-treat analyses. No related serious adverse reactions were reported, and the most frequent adverse events were mild local injection-site reactions, which were reported in all (15 [100%] of 15) participants in the two vaccine groups and in three (60%) of five participants in the placebo group (p=0·0526 for both comparisons). Intranasal vaccination was not associated with a higher frequency of related local reactions (reported in seven [47%]

Journal article

Blakney AK, McKay PF, Yus BI, Aldon Y, Shattock RJet al., 2019, Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA, Gene Therapy, Vol: 26, Pages: 363-372, ISSN: 0969-7128

Self-amplifying RNA (saRNA) is a promising biotherapeutic tool that has been used as a vaccine against both infectious diseases and cancer. saRNA has been shown to induce protein expression for up to 60 days and elicit immune responses with lower dosing than messenger RNA (mRNA). Because saRNA is a large (~9500 nt), negatively charged molecule, it requires a delivery vehicle for efficient cellular uptake and degradation protection. Lipid nanoparticles (LNPs) have been widely used for RNA formulations, where the prevailing paradigm is to encapsulate RNA within the particle, including the first FDA-approved small-interfering siRNA therapy. Here, we compared LNP formulations with cationic and ionizable lipids with saRNA either on the interior or exterior of the particle. We show that LNPs formulated with cationic lipids protect saRNA from RNAse degradation, even when it is adsorbed to the surface. Furthermore, cationic LNPs deliver saRNA equivalently to particles formulated with saRNA encapsulated in an ionizable lipid particle, both in vitro and in vivo. Finally, we show that cationic and ionizable LNP formulations induce equivalent antibodies against HIV-1 Env gp140 as a model antigen. These studies establish formulating saRNA on the surface of cationic LNPs as an alternative to the paradigm of encapsulating RNA.

Journal article

Progatzky F, Jha A, Wane M, Thwaites RS, Makris S, Shattock RJ, Johansson C, Openshaw PJ, Bugeon L, Hansel TT, Dallman MJet al., 2019, Induction of innate cytokine responses by respiratory mucosal challenge with R848 in zebrafish, mice and humans, Journal of Allergy and Clinical Immunology, Vol: 144, Pages: 342-345.e7, ISSN: 0091-6749

We compared live zebrafish, mouse and human nasal challenge responses to the TLR7/8 agonist resiquimod (R848). We found remarkably similar induction of mediators in the three species, offering novel mucosal models of innate anti-viral immunity.

Journal article

Kis Z, Shattock R, Shah N, Kontoravdi Cet al., 2019, Correction: Emerging technologies for low‐cost, rapid vaccine manufacture, Biotechnology Journal, Vol: 14, Pages: 1-2, ISSN: 1860-6768

Journal article

Blakney AK, McKay PF, Christensen D, Yus BI, Aldon Y, Follmann F, Shattock RJet al., 2019, Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA, Journal of Controlled Release, Vol: 304, Pages: 65-74, ISSN: 0168-3659

Self-amplifying RNA (saRNA) is well suited as a vaccine platform against chlamydia, as it is relatively affordable and scalable, has been shown to induce immunity against multivalent antigens, and can result in protein expression for up to 60 days. Cationic adjuvant formulations (CAFs) have been previously investigated as an adjuvant for protein subunit vaccines; here we optimize the CAFs for delivery of saRNA in vivo and observe the immunogenicity profile in the context of both cellular and humoral immunity against the major outer membrane protein (MOMP) of Chlamydia trachomatis. We tested both liposomal and emulsion based CAFs with solid and fluid phase lipids, with or without the TLR agonists R848 and 3M-052, for in vitro transfection efficiency and cytotoxicity. We then optimized the RNA/delivery system ratio for in vivo delivery using saRNA coding for firefly luciferase (fLuc) as a reporter protein in vivo. We observed that while the fluid phase liposome formulations showed the highest in vitro transfection efficiency, the fluid and solid phase liposomes had equivalent luciferase expression in vivo. Incorporation of R848 or 3M-052 into the formulation was not observed to affect the delivery efficiency of saRNA either in vitro or in vivo. MOMP-encoding saRNA complexed with CAFs resulted in both MOMP-specific cellular and humoral immunity, and while there was a slight enhancement of IFN-γ+ T-cell responses when R848 was incorporated into the formulation, the self-adjuvanting effects of RNA appeared to dominate the immune response. These studies establish that CAFs are efficient delivery vehicles for saRNA both for in vitro transfections and in vivo immunogenicity and generate cellular and humoral responses that are proportionate to protein expression.

Journal article

Sliepen K, Han BW, Bontjer I, Mooij P, Garces F, Behrens A-J, Rantalainen K, Kumar S, Sarkar A, Brouwer PJM, Hua Y, Tolazzi M, Schermer E, Torres JL, Ozorowski G, van der Woude P, de la Pena AT, van Breemen MJ, Camacho-Sanchez JM, Burger JA, Medina-Ramirez M, Gonzalez N, Alcami J, LaBranche C, Scarlatti G, van Gils MJ, Crispin M, Montefiori DC, Ward AB, Koopman G, Moore JP, Shattock RJ, Bogers WM, Wilson IA, Sanders RWet al., 2019, Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence, Nature Communications, Vol: 10, ISSN: 2041-1723

Stabilized HIV-1 envelope glycoproteins (Env) that resemble the native Env are utilized in vaccination strategies aimed at inducing broadly neutralizing antibodies (bNAbs). To limit the exposure of rare isolate-specific antigenic residues/determinants we generated a SOSIP trimer based on a consensus sequence of all HIV-1 group M isolates (ConM). The ConM trimer displays the epitopes of most known bNAbs and several germline bNAb precursors. The crystal structure of the ConM trimer at 3.9 Å resolution resembles that of the native Env trimer and its antigenic surface displays few rare residues. The ConM trimer elicits strong NAb responses against the autologous virus in rabbits and macaques that are significantly enhanced when it is presented on ferritin nanoparticles. The dominant NAb specificity is directed against an epitope at or close to the trimer apex. Immunogens based on consensus sequences might have utility in engineering vaccines against HIV-1 and other viruses.

Journal article

Blakney AK, McKay PF, Ibarzo Yus B, Hunter JE, Dex EA, Shattock RJet al., 2019, The skin you're in: Design of experiments optimization of lipid nanoparticle self-amplifying RNA formulations in human skin explants, ACS Nano, Vol: 13, ISSN: 1936-0851

Messenger RNA (mRNA) is a promising tool for biotherapeutics, and self-amplifying mRNA (saRNA) is particularly advantageous as it results in abundant protein expression and production is easily scalable. While mRNA therapeutics have been shown to be highly effective in small animals, the outcomes do not scale linearly when these formulations are translated to dose-escalation studies in humans. Here, we utilize a Design of Experiments (DoE) approach to optimize the formulation of saRNA lipid nanoparticles in human skin explants. We first observed that luciferase expression from saRNA peaked after 11 days in human skin. Using DoE inputs of complexing lipid identity, lipid nanoparticle dose, lipid concentration, particle concentration, and ratio of zwitterionic to cationic lipids, we optimized the saRNA-induced luciferase expression in skin explants. Lipid identity and lipid concentration were found to be significant parameters in the DoE model, and the optimized formulation resulted in ~7-fold increase in luciferase expression relative to initial DOTAP formulation. Using flow cytometry, we observed that optimized formulations delivered the saRNA to ~2% of the resident cells in the human skin explants. Although immune cells make up only 7% of the total population of cells in skin, immune cells were found to express ~50% of the RNA. This study demonstrates the powerful combination of using a DoE approach paired with clinically relevant human skin explants to optimize nucleic acid formulations. We expect that this system will be useful for optimizing both formulation and molecular designs of clinically translational nucleic acid vaccines and therapeutics.

Journal article

McKay P, Cizmeci D, Aldon Y, Maertzdorf J, Weiner J, Kaufmann S, Lewis D, van den Berg R, Del Giudice G, Shattock Ret al., 2019, Identification of potential biomarkers of vaccine inflammation in mice, eLife, Vol: 8, ISSN: 2050-084X

Systems vaccinology approaches have been used successfully to define early signatures of the vaccine-induced immune response. However, the possibility that transcriptomics can also identify a correlate or surrogate for vaccine inflammation has not been fully explored. We have compared four licensed vaccines with known safety profiles, as well as three agonists of Toll-like receptors (TLRs) with known inflammatory potential, to elucidate the transcriptomic profile of an acceptable response to vaccination versus that of an inflammatory reaction. In mice, we looked at the transcriptomic changes in muscle at the injection site, the lymph node that drained the muscle, and the peripheral blood mononuclear cells (PBMCs)isolated from the circulating blood from 4 hr after injection and over the next week. A detailed examination and comparative analysis of these transcriptomes revealed a set of novel biomarkers that are reflective of inflammation after vaccination. These biomarkers are readily measurable in the peripheral blood, providing useful surrogates of inflammation, and provide a way to select candidates with acceptable safety profiles.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00698655&limit=30&person=true&page=3&respub-action=search.html