Imperial College London


Faculty of Natural SciencesCentre for Environmental Policy

Snr Research Fellow (IPCC Working Group III Head of TSU Sci)



+44 (0)20 7594 7306r.slade




405Weeks BuildingSouth Kensington Campus





Publication Type

69 results found

Haughey E, Neogi S, Portugal-Pereira J, van Diemen R, Slade RBet al., 2023, Sustainable intensification and carbon sequestration research in agricultural systems: A systematic review, ENVIRONMENTAL SCIENCE & POLICY, Vol: 143, Pages: 14-23, ISSN: 1462-9011

Journal article

Baudry G, Costa L, Di Lucia L, Slade Ret al., 2023, An interactive model to assess pathways for agriculture and food sector contributions to country-level net-zero targets, COMMUNICATIONS EARTH & ENVIRONMENT, Vol: 4

Journal article

Halttunen K, Staffell I, Slade R, 2022, Climate change and the future of the oil industry: perspectives from the front line of the transition, 12th International Sustainability Transitions Conference. Mainstreaming sustainability transitions: From research towards impact

Conference paper

Halttunen K, Slade R, Staffell I, 2022, “We don't want to be the bad guys”: Oil industry's sensemaking of the sustainability transition paradox, Energy Research and Social Science, Vol: 92, Pages: 102800-102800, ISSN: 2214-6296

The operating model of the global oil industry is not compatible with the goals of the Paris Agreement. For the industry, there is a fundamental tension between two competing mandates: the pressure to contribute to the social goal of climate change mitigation, and the need to perform financially and meet obligations to shareholders in activities that directly contribute to climate change. To explore the range of responses to the tension, we interview professionals from large international oil companies who work or have worked in climate related roles. This is novel data from a professional group that has not previously been interviewed in depth about climate change. We develop a framework of six archetypical responses to tension within the oil industry. Examples of strategic responses include accepting the paradox to choose priorities other than climate change mitigation and confronting the paradox to demand changes to the way the oil industry operates. Examples of defensive responses include the transfer of responsibility and projection of tension to other stakeholders. Responses calling for change in the oil industry are the most common among people who have left the industry and the least common for participants from companies headquartered outside of Europe. In a field marked by controversies and value-based debates, a better understanding of the views of people working on the energy transition inside the oil industry provides new insight into the discussion about possible routes to the sustainability transition.

Journal article

Bricout A, Slade R, Staffell I, Halttunen Ket al., 2022, From the geopolitics of oil and gas to the geopolitics of the energy transition: Is there a role for European supermajors?, Energy Research and Social Science, Vol: 88, ISSN: 2214-6296

The energy transition is changing the corporate positioning of European international oil companies (IOCs). Developments such as Russia's invasion of Ukraine in 2022 and the gas market volatility of 2021 have brought energy geopolitics to the fore and further complicated the landscape in which these companies operate. By combining data from literature and semi-structured interviews with key experts, this work explores how the influence of the European IOCs on the geopolitics of oil, gas, and renewable energy sources might evolve in the transition. We find that European IOCs continue to have geopolitical influence, but it has been diminished by the rise of national oil companies. If fossil fuels are phased down globally, the reduction in oil activities of these companies is likely to further reduce their geopolitical power. While European IOCs may continue to be active in the gas market, this is unlikely to render them significant geopolitical influence given that they may become common rather than dominant market players. The same is true for the IOCs' role in renewable energy markets, although here European IOCs may seek to gain more influence by becoming significant intermediaries and global experts. As the energy transition progresses, many experts expect the political and market landscape around energy to become more fragmented, reducing the overall geopolitical influence of IOCs. Recent events such as the war in Ukraine do not change the overall conclusions, although it remains to be seen whether they will slow down or speed up the IOCs' involvement in the energy transition.

Journal article

Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, Olivier JGJ, Wiedenhofer D, Mattioli G, Al Khourdajie A, House J, Pachauri S, Figueroa M, Saheb Y, Slade R, Hubacek K, Sun L, Ribeiro SK, Khennas S, de la Rue du Can S, Chapungu L, Davis SJ, Bashmakov I, Dai H, Dhakal S, Tan X, Geng Y, Gu B, Minx Jet al., 2022, A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018, Environmental Research Letters, Vol: 17, ISSN: 1748-9326

Journal article

Gibson M, Pereira JP, Slade R, Rogelj Jet al., 2022, Agent-based modelling of future dairy and plant-based milk consumption for UK climate targets, JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, Vol: 25, ISSN: 1460-7425

A reduction in the production and consumption of meat and dairy across much of the world is critical for climate change mitigation, the alleviation of ecological stress, and improved health. We update an agent-based model (ABM) of historic UK milk consumption and apply it to scenarios of dairy reduction and adoption of plant-based milk (PBM) out to 2050. The updated model is comprised of a cognitive function, where agents perceive the physical, health and environmental characteristics of milk choice, which is modified by habit and social influence. We use European Social Survey 2018 and British Social Attitudes 2008 survey data to empirically inform the model. Taking a backcasting approach, we calibrate parameters against published UK dairy reduction targets (2030 and 2050), and test how different price relationships, and characterisations of environmental concern, may affect simulated milk consumption from 2020 to 2050. Scenarios for core targets (20% less dairy by 2030 and 35% by 2050) largely produced plausible consumption trajectories. However, at current pricing of dairy and PBM, simulated consumption was mostly unable to deliver on desired core targets, but this improved markedly with dairy prices set to organic levels. The influence of changing environmental concern on milk choice resulted in higher levels of dairy milk reduction. When modelled as transient, intense shocks to public concern, consumption patterns did not fundamentally change. However, small, incremental but permanent changes to concern did produce structural changes to consumption patterns, with dairy falling below plant-based alternatives at around 2030. This study is the first to apply an ABM in the context of scenarios for dairy reduction and PBM adoption in service to UK climate-related consumption targets. It can serve as valuable bottom-up, alternative, evidence on the feasibility of dietary shift targets, and poses policy implications for how to address impediments to behavioural change

Journal article

Halttunen K, Slade R, Staffell I, 2022, What if we never run out of oil? From certainty of “peak oil” to “peak demand”, Energy Research and Social Science, Vol: 85, Pages: 1-6, ISSN: 2214-6296

The COVID-19 pandemic sent the oil industry into turmoil on a scale not seen since the 1970s. While the sector appears to be recovering, questions remain about the extent to which the pandemic has offered a glimpse into the possible future of the industry. This future is critical to the success of climate change mitigation, which requires significant cuts to the carbon dioxide emissions from using oil for energy. Therefore, it makes sense to consider future scenarios in which global oil demand peaks and then declines alongside scenarios of continued demand growth. This is a significant departure from historical development of oil demand and the dominant discussion of many decades about “peak oil” and the fear of demand outstripping readily available supply. The implications of peaking oil demand would be massive, not only for the oil industry but also for society as whole. There is not enough understanding of what the impacts would be, or how to prepare for them. The research community needs to take a clear-eyed view of potential futures of oil, which includes considering scenarios in which demand goes into long-term decline.

Journal article

Di Lucia L, Slade R, Khan J, 2022, Decision-making fitness of methods to understand Sustainable Development Goal interactions, Nature Sustainability, Vol: 5, Pages: 131-138, ISSN: 2398-9629

The integrated nature of the Sustainable Development Goals (SDGs) presents a challenge to implementing the 2030 Agenda. Analytical methods to support decision-makers are often developed without explicitly incorporating decision-makers’ views and experience. Here, we investigate whether existing methods are fit-for-purpose in supporting decision-makers at national and subnational levels. We identify prominent methods for SDG interaction analysis, which we then evaluate by engaging directly (via a survey and interviews) with method developers and decision-makers in Sweden. We find that decision-makers prioritize methods that are simple and flexible to apply and able to provide directly actionable and understandable results. They are less concerned with the accuracy, precision, completeness or quantitative nature of the knowledge. Prominent categories of methods include self-assessment, expert judgement, literature-based, statistical analyses and modelling. Interviewed decision-makers consider these methods in line with the features prioritized in the survey but highlight low performance on features they value highly, such as the extent to which results are actionable and overall ease of use. Methods developers have limited awareness of decision-makers’ priorities and requirements, so hindering methodological advancement. They should focus on the practical value of applications to support decision-makers, resource-constrained organizations and those seeking to evaluate multiple cases.

Journal article

Calvin K, Cowie A, Berndes G, Arneth A, Cherubini F, Portugal-Pereira J, Grassi G, House J, Johnson FX, Popp A, Rounsevell M, Slade R, Smith Pet al., 2021, Bioenergy for climate change mitigation: scale and sustainability, Global Change Biology Bioenergy, Vol: 13, Pages: 1346-1371, ISSN: 1757-1693

Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top-down integrated assessment models or bottom-up modelling, and studies that do not rely on modelling. We summarize the state of knowledge concerning potential co-benefits and adverse side effects of bioenergy systems and discuss limitations of modelling studies used to analyse consequences of bioenergy expansion. The implications of bioenergy supply on mitigation and other sustainability criteria are context dependent and influenced by feedstock, management regime, climatic region, scale of deployment and how bioenergy alters energy systems and land use. Depending on previous land use, widespread deployment of monoculture plantations may contribute to mitigation but can cause negative impacts across a range of other sustainability criteria. Strategic integration of new biomass supply systems into existing agriculture and forest landscapes may result in less mitigation but can contribute positively to other sustainability objectives. There is considerable variation in evaluations of how sustainability challenges evolve as the scale of bioenergy deployment increases, due to limitations of existing models, and uncertainty over the future context with respect to the many variables that influence alternative uses of biomass and land. Integrative policies, coordinated institutions and improved governance mechanisms to enhance co-benefits and minimize adverse side effects can reduce the risks of large-scale deployment of bioenergy. Further, conservation and efficiency measures for energy, land and biomass can support greater flexibility in achieving climate change mitigation and adaptation.

Journal article

Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, Olivier JGJ, Wiedenhofer D, Mattioli G, Khourdajie AA, House J, Pachauri S, Figueroa M, Saheb Y, Slade R, Hubacek K, Sun L, Ribeiro SK, Khennas S, de la Rue du Can S, Chapungu L, Davis SJ, Bashmakov I, Dai H, Dhakal S, Tan X, Geng Y, Gu B, Minx Jet al., 2021, A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018, Environmental Research Letters, Vol: 16, Pages: 1-31, ISSN: 1748-9326

Global greenhouse gas (GHG) emissions can be traced to five economic sectors: energy, industry, buildings, transport and AFOLU (agriculture, forestry and other land uses). In this topical review, we synthesise the literature to explain recent trends in global and regional emissions in each of these sectors. To contextualise our review, we present estimates of GHG emissions trends by sector from 1990 to 2018, describing the major sources of emissions growth, stability and decline across ten global regions. Overall, the literature and data emphasise that progress towards reducing GHG emissions has been limited. The prominent global pattern is a continuation of underlying drivers with few signs of emerging limits to demand, nor of a deep shift towards the delivery of low and zero carbon services across sectors. We observe a moderate decarbonisation of energy systems in Europe and North America, driven by fuel switching and the increasing penetration of renewables. By contrast, in rapidly industrialising regions, fossil-based energy systems have continuously expanded, only very recently slowing down in their growth. Strong demand for materials, floor area, energy services and travel have driven emissions growth in the industry, buildings and transport sectors, particularly in Eastern Asia, Southern Asia and South-East Asia. An expansion of agriculture into carbon-dense tropical forest areas has driven recent increases in AFOLU emissions in Latin America, South-East Asia and Africa. Identifying, understanding, and tackling the most persistent and climate-damaging trends across sectors is a fundamental concern for research and policy as humanity treads deeper into the Anthropocene.

Journal article

Gibson M, Slade R, Pereira JP, Rogelj Jet al., 2021, Comparing mechanisms of food choice in an agent-based model of milk consumption and substitution in the UK, JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION, Vol: 24, ISSN: 1460-7425

Substitution of food products will be key to realising widespread adoption of sustainable diets. We present an agent-based model of decision-making and influences on food choice, and apply it to historically observed trends of British whole and skimmed (including semi) milk consumption from 1974 to 2005. We aim to give a plausible representation of milk choice substitution, and test different mechanisms of choice consideration. Agents are consumers that perceive information regarding the two milk choices, and hold values that inform their position on the health and environmental impact of those choices. Habit, social influence and post-decision evaluation are modelled. Representative survey data on human values and long-running public concerns empirically inform the model. An experiment was run to compare two model variants by how they perform in reproducing these trends. This was measured by recording mean weekly milk consumption per person. The variants differed in how agents became disposed to consider alternative milk choices. One followed a threshold approach, the other was probability based. All other model aspects remained unchanged. An optimisation exercise via an evolutionary algorithm was used to calibrate the model variants independently to observed data. Following calibration, uncertainty and global variance-based temporal sensitivity analysis were conducted. Both model variants were able to reproduce the general pattern of historical milk consumption, however, the probability-based approach gave a closer fit to the observed data, but over a wider range of uncertainty. This responds to, and further highlights, the need for research that looks at, and compares, different models of human decision-making in agent-based and simulation models. This study is the first to present an agent-based modelling of food choice substitution in the context of British milk consumption. It can serve as a valuable pre-curser to the modelling of dietary shift and sustainable

Journal article

Halttunen K, Slade R, Staffell I, 2021, The future of the oil industry in a "Well Below 2 Degree" world: a company-level agent-based simulation, Energy, COVID, and Climate Change, 1st IAEE Online Conference, Publisher: IAEE

Conference paper

Di Lucia L, Peterson S, Sevigné-Itoiz E, Atzori A, Usai D, Slade R, Bauen Aet al., 2020, Using participatory system dynamics modelling to quantify indirect land use changes of biofuel projects, Journal of Land Use Science, Vol: 16, Pages: 111-128, ISSN: 1747-423X

The use of biomass to produce biofuels can lead to both direct and indirect Land Use Change (LUC). While the causes underlying LUCs are complex their quantification is a scientific challenge that hinders decision-making. Here we demonstrate the application of participatory modelling in combination with System Dynamics techniques to the analysis of the land-change dynamics associated with biofuel supply chains. The ambition is to provide decision-makers with useful and credible knowledge of direct and indirect LUCs. We illustrate the application of the approach by applying it to a real‐world project for the production of advanced biofuels in Sardinia (Italy). The results show that the land use displacements vary in intensity and persistence depending on the crop management regime applied and the future development of the market of sheep cheese. The results were considered credible by actors with direct knowledge of the ‘real’ system and useful by decision makers .

Journal article

Halttunen K, Staffell I, Slade R, Green R, Saint-Drenan Y-M, Jansen Met al., 2020, Global assessment of the merit-order effect and revenue cannibalisation for variable renewable energy, Publisher: Elsevier

The rapid growth of wind and solar power has been a major driver for decarbonisation worldwide. They tend to reduce wholesale electricity prices, both the time-weighted average (the merit‑order effect) and their own output-weighted average (price cannibalisation). Whilst these effects have been widely observed, most previous studies focus on single countries. Here, we compare 37 electricity markets across Europe, North America, Australia and Japan and explore variations between them.Merit-order and cannibalisation effects are observed in nearly all countries studied. However, only in Germany, Spain, Poland, Portugal, Denmark and California can renewable output explain more than 10% of variation in wholesale electricity prices. The global average merit‑order effect is €0.68±€0.54 /MWh per percentage point increase in variable renewable energy penetration, and this falls with higher penetration. Revenues captured by wind farms decrease by 0.23% (€0.16 /MWh) for each percentage point increase of wind penetration and by 1.94% (€0.90 /MWh) for solar PV.

Working paper

Gibson MF, Rao ND, Slade RB, Pereira JP, Rogelj Jet al., 2020, The role of energy in mitigating grain storage losses in India and the impact for nutrition, Resources, Conservation and Recycling, Vol: 163, ISSN: 0921-3449

Globally, India's population is amongst the most severely impacted by nutrient deficiency, yet millions of tonnes of food are lost along the supply chain before reaching consumers. Across food groups, grains represent the largest share of daily calories and overall losses by mass in India. This study quantifies energy input to minimise storage losses across India, responsible for up to a quarter of grain losses. In doing so, we explore links between three Sustainable Development Goals-SDG2, SDG7, and SDG12-, and provide insight for development of joined up agriculture and health policy in the country. Focusing on rice, wheat, maize, bajra, and sorghum, we quantify one route to reduce losses in supply chains, by modelling the energy input to maintain favourable climatic conditions in modern silo storage. We quantify key nutrients (calories, protein, zinc, iron, vitamin A) contained within these losses, and calculate roughly how much deficiency in these dietary components could be reduced if grain losses were eliminated. Our modelling indicates that maize has the highest energy input intensity for storage, at 110 (18) kWh per tonne of grain (kWh/t), and wheat the lowest, at 72 (14) kWh/t. This energy cost represents 8%-16% of the energy input required in grain production. We estimate if grain losses across the supply chain were saved and targeted to India's nutritionally deficient population, average protein deficiency could reduce by 46±4%, calorie by 27±2%, zinc by 26±2% and iron by 11±1%.

Journal article

Di Lucia L, Sevigne-Itoiz E, Peterson S, Bauen A, Slade Ret al., 2019, Project level assessment of indirect land use changes arising from biofuel production, Global Change Biology Bioenergy, Vol: 11, Pages: 1361-1375, ISSN: 1757-1693

The use of land resources has a strong influence on the sustainability of biofuel production. An assessment of both direct and indirect changes in land use is necessary if an accurate assessment of sustainability is to be made. An increasing number of studies have developed approaches to estimate the Indirect Land Use Change (ILUC) impacts of biofuels at global, national or regional level, but assessing ILUC remains a challenging task and estimates vary widely. In this study, we suggest that a socially motivated, project level approach can provide robust insight into the conditions affecting land use change dynamics. We developed a causal‐descriptive approach named ILUC Project ASsessment Tool (ILUC PAST) for project level assessment of ILUC. It uses a tiered multitool analysis—from local to global—combined with extensive stakeholder engagement. A real‐world project for the production of cellulosic ethanol in Sardinia (Italy) was used to evaluate the tool and benchmark the results against two alternatives for project level assessment: the ‘Low Indirect Impact Biofuel’ methodology and the ‘iLUC Club’ method. The results of the case study of advanced biofuels suggest that the quantitative estimates of ILUC combined with the in‐depth understanding of the cause‐and‐effect dynamics provided by ILUC PAST are sufficiently credible, salient and legitimate to support project level and local decision‐making.

Journal article

Albanito F, Hastings A, Fitton N, Richards M, Martin M, Mac Dowell N, Bell D, Taylor SC, Butnar I, Li P-H, Slade R, Smith Pet al., 2019, Mitigation potential and environmental impact of centralized versus distributed BECCS with domestic biomass production in Great Britain, Global Change Biology Bioenergy, Vol: 11, Pages: 1234-1252, ISSN: 1757-1693

New contingency policy plans are expected to be published by the United Kingdom government to set out urgent actions, such as carbon capture and storage, greenhouse gas removal and the use of sustainable bioenergy to meet the greenhouse gas reduction targets of the 4th and 5th Carbon Budgets. In this study, we identify two plausible bioenergy production pathways for bioenergy with carbon capture and storage (BECCS) based on centralized and distributed energy systems to show what BECCS could look like if deployed by 2050 in Great Britain. The extent of agricultural land available to sustainably produce biomass feedstock in the centralized and distributed energy systems is about 0.39 and 0.5 Mha, providing approximately 5.7 and 7.3 MtDM/year of biomass respectively. If this land‐use change occurred, bioenergy crops would contribute to reduced agricultural soil GHG emission by 9 and 11 urn:x-wiley:17571693:media:gcbb12630:gcbb12630-math-0001/year in the centralized and distributed energy systems respectively. In addition, bioenergy crops can contribute to reduce agricultural soil ammonia emissions and water pollution from soil nitrate leaching, and to increase soil organic carbon stocks. The technical mitigation potentials from BECCS lead to projected CO2 reductions of approximately 18 and 23 urn:x-wiley:17571693:media:gcbb12630:gcbb12630-math-0002/year from the centralized and distributed energy systems respectively. This suggests that the domestic supply of sustainable biomass would not allow the emission reduction target of 50 urn:x-wiley:17571693:media:gcbb12630:gcbb12630-math-0003/year from BECCS to be met. To meet that target, it would be necessary to produce solid biomass from forest systems on 0.59 or 0.49 Mha, or alternatively to import 8 or 6.6 MtDM/year of biomass for the centralized and distributed energy system respectively. The spatially explicit results of this study can serve to identify the regional differences in the potential capture of CO2 from BECC

Journal article

Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley Jet al., 2019, IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable landmanagement, food security, and greenhouse gas fluxes in terrestrial ecosystems, Publisher: Intergovernmental Panel on Climate Change (IPCC)


, 2019, IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems Summary for Policymakers, ISBN: 1111910227


Slade R, 2018, Global Warming of 1.5oC, IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways,in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Geneva, Switzerland, Publisher: World Meteorological Organization


Pearce P, Slade R, 2018, Feed-in tariffs for solar microgeneration: Policy evaluation and capacity projections using a realistic agent-based model, Energy Policy, Vol: 116, Pages: 95-111, ISSN: 0301-4215

Since 2010, over 700,000 small-scale solar photovoltaic (PV) systems have been installed by households in Great Britain and registered under the feed-in tariff (FiT) scheme. This paper introduces a new agent-based model which simulates this adoption by considering decision-making of individual households based on household income, social network, total capital cost of the PV system, and the payback period of the investment, where the final factor takes into account the economic effect of FiTs. After calibration using Approximate Bayesian Computation, the model successfully simulates observed cumulative and average capacity installed over the period 2010–2016 using historically accurate FiTs; setting different tariffs allows investigation of alternative policy scenarios. Model results show that using simple cost control measures, more installation by October 2016 could have been achieved at lower subsidy cost. The total cost of supporting capacity installed during the period 2010–2016, totalling 2.4 GW, is predicted to be £14 billion, and costs to consumers significantly exceed predictions. The model is further used to project capacity installed up to 2022 for several PV cost, electricity price, and FiT policy scenarios, showing that current tariffs are too low to significantly impact adoption, and falling PV costs are the most important driver of installation.

Journal article

Slade RB, Di Lucia L, adams P, 2018, How Policy Makers Learnedto Start Worrying and Fell Out of LoveWith Bioenergy, Greenhouse gas balances of bioenergy systems, Editors: Thornley, Adams, Publisher: Academic Press (Elsevier)

Bioenergy has come to be given a prominent role in national energy strategies in more than 60 countries around the world. The impetus for these policies draws on a range of motivations: improving energy security, diversifying agricultural production stimulating rural development, job creation, and reducing greenhouse gas (GHG) emissions. Arguably GHG reductions was never the main driver for bioenergy policy, yet controversy over the extent, timing and duration of carbon savings threatens to derail policy initiatives to drive up deployment. This paper analyses current controversies around bioenergy in the context of historic developments in the United States, Brazil or European Union. It addresses two key questions: “how did we end up in this policy mess?” And, “how do we get out of it?” Policy makers have faced three broad challenges to whether policies introduced to support bioenergy can genuinely contribute to GHG mitigation. The first is that carbon accounting frameworks misrepresent the carbon saving benefits of bioenergy, potentially leading policy makers to support policies that have unintended and undesirable consequences. The second is that increasing biomass production on agricultural land can directly, or indirectly, lead to increasing carbon emissions. The third challenge is that increased use of forest biomass does nothing to reduce emissions in the short term but can only reduce carbon emissions in the distant future. We examine the evidence around each of these challenges and critically evaluate the policy responses. We argue that the greatest risk lies in political loss of confidence and institutional paralysis. Whereas the greatest opportunity lies in the co-evolution of bioenergy production and governance systems, drawing on the collective judgment of stakeholders involved in experiential, interactive and deliberative decision making processes.

Book chapter

Change IPOC, 2018, Global Warming of 1.5°C An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty

Mitigation pathways compatible with 1.5°C in the context of sustainable development (draft, 4 June 2018) -- Chapter 3. Impacts of 1.5°C global warming on natural and human systems (draft, 2 June 2018) -- Chapter 4.


van Diemen R, Pathak M, Correia de Oliveira de Portugal Pereira J, Shukla PR, Skea J, Slade Ret al., 2017, The Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report Cycle, 2015 – 2022: Cities and Mitigation


Dale VH, Kline KL, Parish ES, Cowie AL, Emory R, Malmsheimer RW, Slade R, Smith CTT, Wigley TBB, Bentsen NS, Berndes G, Bernier P, Brandão M, Chum HL, Diaz-Chavez R, Egnell G, Gustavsson L, Schweinle J, Stupak I, Trianosky P, Walter A, Whittaker C, Brown M, Chescheir G, Dimitriou I, Donnison C, Goss Eng A, Hoyt KP, Jenkins JC, Johnson K, Levesque CA, Lockhart V, Negri MC, Nettles JE, Wellisch Met al., 2017, Status and prospects for renewable energy using wood pellets from the southeastern United States, GCB Bioenergy, Vol: 9, Pages: 1296-1305, ISSN: 1757-1693

Global Change Biology Bioenergy Published by John Wiley & Sons Ltd. The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, ‘How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?’ To address this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and

Journal article

Mawhood RK, Gazis E, de Jong S, Hoefnagels R, Slade Ret al., 2016, Production pathways for renewable jet fuel: a review of commercialisation status and future prospects, Biofuels, Bioproducts and Biorefining, Vol: 10, Pages: 462-484, ISSN: 1932-1031

Aviation is responsible for an increasing share of anthropogenic CO2 emissions.Decarbonisation to 2050 is expected to rely on renewable jet fuel (RJF) derived frombiomass, but this represents a radical departure from the existing regime of petroleumbasedfuels. Increased market deployment will require significant cost reductions, alongsideadaptation of existing supply chains and infrastructure.This article maps development and manufacturing efforts for six RJF production pathwaysexpected to reach commercialisation in the next 5-10 years. A Rapid Evidence Assessmentwas conducted to evaluate the technological and commercial maturity of each pathway andprogress towards international certification, using the Commercial Aviation Alternative FuelsInitiative’s Fuel Readiness Level (FRL) framework. Planned and operational facilities havebeen catalogued alongside partnerships with the aviation industry. Policy and economicfactors likely to affect future development and deployment are considered.Hydroprocessed Esters and Fatty Acids (FRL 9) is the most developed pathway. It is ASTMcertified, has fuelled the majority of RJF flights to date, and is produced at threecommercial-scale facilities. Fischer-Tropsch derived fuels are moving towards the start-up offirst commercial facilities (FRL 7-8), although widespread deployment seems unlikely undercurrent market conditions. The Direct Sugars to Hydrocarbons conversion pathway (FRL 5-7)is being championed by Amyris and Total in Brazil, but has yet to be demonstrated at scale.Other pathways are in the demonstration and pilot phases (FRL 4-6).Despite growing interest in RJF, demand and production volumes remain negligible.Development of supportive policy is likely to be critical to future deployment.

Journal article

Fradera R, Slawson D, Gosling L, Lakeman-Fraser P, Makuch K, Makuch Z, Madani K, Martin K, Slade R, Geohegan H, Moffat A, Haklay Met al., 2016, Exploring the Nexus Through Citizen Science (new connections in food, energy, water and the environment) An ESRC Investment., Exploring the Nexus Through Citizen Science (new connections in food, energy, water and the environment) An ESRC Investment., Publisher: ESRC

As global population increases, the connections between food, water, energy and the environment at global and regional scales become ever more important. The complexity and inter-connectedness of these relationships challenge policymakers, scientists, businesses andcitizens to find acceptable ways forward, but there are no easy solutions. This is the ‘nexus’.Citizen science can provide a powerful mechanism to help tackle these environmental and social challenges. In this thinkpiece we draw on the experiences of citizen science practitioners, particularly from the environmental sector. Citizens are the guardians of their local environment and, arguably, often know the places where they live better than regulators, policymakers and industry. Local citizens will usuallybe the first to notice changes in their immediate environment, whether instant changes (such as a pollution spill) or gradual (such as species decline). Citizen science can generate and broaden out the kinds of data that are considered in the investigation of environmental issues.Benefits of participating in citizen science include raised awareness, increased education, greater involvement, more participatory democracy, and increased ownership of solutions. Participation may also bring wider social, health and wellbeing benefits. Professionalscientists in turn benefit from the data submitted by volunteers, the value of which can be estimated at many millions of pounds per year.Some of the generic challenges to successful citizen science will be heightened in the context of understanding and dealing with nexus issues. These include extending citizen science (which is normally conducted at local level) to regional and global scales, optimising thecollection of data through better coordination between practitioners, empowering citizens and businesses to take more control of the conception and design of citizen science activities, and understanding the motivations, attitudes and practices of all


McLaughlin O, Mawhood B, Jamieson C, Slade Ret al., 2015, Rice straw for bioenergy: the effectiveness of policymaking and implementation in Asia, 24th European Biomass Conference and Exhibition, Publisher: EUBCE

Globally, rice straw is the third largest agricultural residue, behind sugarcane bagasse and maize straw.Approximately one billion tonnes of rice straw are produced annually, but only a small proportion of this is used. Theprimary management strategies of rice straw farmers are burning in the fields and mulching. Burning producesharmful carcinogenic and greenhouse gas emissions and mulching releases high levels of methane which have aneven greater greenhouse gas effect than the CO2 released from burning. In comparison, using rice straw for bioenergyhas considerable advantages.This study examines the barriers to the use of rice straw for bioenergy, and the effectiveness of the existing policymechanisms in seven major rice producing nations: Bangladesh, China, India, Indonesia, the Philippines, Thailandand Vietnam.Data on policy effectiveness was obtained from semi-structured interviews with experts on rice straw use, basedat the International Rice Research Institute (IRRI) based in the Philippines. This was combined with a detailedevaluation of existing government policies and a ranking exercise to identify which policy aspects were consideredmost successful to prohibit burning and encourage bioenergy use.Barriers to the widespread use of rice straw which can be categorised into biochemical, logistical andinfrastructural. The biochemical barriers include the low nutritive quality, high lignin and silica content whichcomplicates the breaking down of rice straw into its useful components. The logistical barriers are the wide dispersalof rice straw and intra-annual fluctuations in availability and the resulting issues created in transporting the resourcein sufficient quantity to where it can be utilised at the right time. The final group of barriers include the culturalpractices of rice straw farmers, fossil fuel subsidies skewing the market and the support systems in place forconventional substitutes of rice straw products, such as the infrastructure in place to proces

Conference paper

Mawhood RK, Slade R, Shah N, 2015, Policy options to promote perennial energy crops: the limitations of the English Energy Crops Scheme and the role for agent-based modelling in policy design, Wellesbourne, UK, Association of Applied Biologists: Biomass and Energy Crops V, Publisher: Association of Applied Biologists, Pages: 143-153, ISSN: 0265-1491

The UK government’s bioenergy strategy anticipates the cultivation of between 300,000 and 900,000 ha of energy crops by 2030. Yet policy incentives to promote uptake of perennial energy crops (PECs), notably the English Energy Crops Scheme (ECS), have had little impact. Less than 10,000 ha of PECs were being grown in 2013. To investigate the barriers to deployment a critical literature review and stakeholder interviews were conducted. These identified numerous substantial obstacles regarding PEC economics, alignment with existing institutions and factors affecting risk perception. Many of these are interdependent and involve a broad range of stakeholders. Agent-based modelling is proposed as an approach to explore the cumulative impacts of individual stakeholders’ behaviours under alternative policy and market conditions.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00301593&limit=30&person=true