Imperial College London

DrRuiTan

Faculty of EngineeringDepartment of Chemical Engineering

Academic Visitor
 
 
 
//

Contact

 

+44 (0)7596 426 629r.tan17

 
 
//

Location

 

B425Bone BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

17 results found

Wang A, Tan R, Breakwell C, Wei X, Fan Z, Ye C, Malpass-Evans R, Liu T, Zwijnenburg M, Jelfs K, McKeown N, Chen J, Song Qet al., 2022, Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage, Journal of the American Chemical Society, Vol: 144, Pages: 17198-17208, ISSN: 0002-7863

Redox-active organic materials have emerged as promising alternatives to conventional inorganicelectrode materials in electrochemical devices for energy storage. However, the deployment of redoxactive organic materials in practical lithium-ion battery devices is hindered by their undesired solubilityin electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity.Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsicmicroporosity (PIMs) that possess an open network of sub-nanometer pores and abundant accessiblecarbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solutionprocessed into thin films and polymer-carbon composites with a homogeneously dispersedmicrostructure, while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIMelectrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacitydecay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activityand solution processability may have broad utility in a variety of electrochemical devices for energystorage, sensors and electronic applications.

Journal article

Ye C, Tan R, Wang A, Chen J, Comesaña Gándara B, Breakwell C, Alvarez-Fernandez A, Fan Z, Weng J, Bezzu CG, Guldin S, Brandon N, Kucernak A, Jelfs K, McKeown N, Song Qet al., 2022, Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes, Angewandte Chemie International Edition, Vol: 61, ISSN: 1433-7851

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized polymers of intrinsic microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport selectivity. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.

Journal article

Chuai M, Yang J, Tan R, Liu Z, Yuan Y, Xu Y, Sun J, Wang M, Zheng X, Chen N, Chen Wet al., 2022, Theory-Driven Design of a Cationic Accelerator for High-Performance Electrolytic MnO<sub>2</sub>-Zn Batteries, ADVANCED MATERIALS, Vol: 34, ISSN: 0935-9648

Journal article

Ye C, Wang A, Breakwell C, Tan R, Bezzu G, Hunter-Sellars E, Williams D, Brandon N, Klusener P, Kucernak A, Jelfs K, McKeown N, Song Qet al., 2022, Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes, Nature Communications, Vol: 13, ISSN: 2041-1723

Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell.

Journal article

Xia Y, Ouyang M, Yufit V, Tan R, Regoutz A, Wang A, Mao W, Chakrabarti B, Kavei A, Song Q, Kucernak A, Brandon Net al., 2022, A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture, Nature Communications, Vol: 13, Pages: 1-13, ISSN: 2041-1723

With the rapid development of renewable energy harvesting technologies, there is a significant demand for long-duration energy storage technologies that can be deployed at grid scale. In this regard, polysulfide-air redox flow batteries demonstrated great potential. However, the crossover of polysulfide is one significant challenge. Here, we report a stable and cost-effective alkaline-based hybrid polysulfide-air redox flow battery where a dual-membrane-structured flow cell design mitigates the sulfur crossover issue. Moreover, combining manganese/carbon catalysed air electrodes with sulfidised Ni foam polysulfide electrodes, the redox flow battery achieves a maximum power density of 5.8 mW cm-2 at 50% state of charge and 55 °C. An average round-trip energy efficiency of 40% is also achieved over 80 cycles at 1 mA cm-2. Based on the performance reported, techno-economic analyses suggested that energy and power costs of about 2.5 US$/kWh and 1600 US$/kW, respectively, has be achieved for this type of alkaline polysulfide-air redox flow battery, with significant scope for further reduction.

Journal article

Yuan Y, Yang J, Liu Z, Tan R, Chuai M, Sun J, Xu Y, Zheng X, Wang M, Ahmad T, Chen N, Zhu Z, Li K, Chen Wet al., 2022, A Proton-Barrier Separator Induced via Hofmeister Effect for High-Performance Electrolytic MnO<sub>2</sub>-Zn Batteries, ADVANCED ENERGY MATERIALS, Vol: 12, ISSN: 1614-6832

Journal article

Liu X, Qian X, Tang W, Luo H, Zhao Y, Tan R, Qiao M, Gao X, Hua Y, Wang H, Zhao S, Lai C, Titirici M, Brandon N, Yang S, Wu Bet al., 2021, Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes, Journal of Energy Chemistry, Vol: 52, Pages: 385-392, ISSN: 2095-4956

Lithium metal anodes are of great interest for advanced high-energy density batteries such as lithium-air, lithium-sulfur and solid-state batteries, due to their low electrode potential and ultra-high theoretical capacity. There are, however, several challenges limiting their practical applications, which include low coulombic efficiency, the uncontrollable growth of dendrites and poor rate capability. Here, a rational design of 3D structured lithium metal anodes comprising of in-situ growth of cobalt-decorated nitrogen-doped carbon nanotubes on continuous carbon nanofibers is demonstrated via electrospinning. The porous and free-standing scaffold can enhance the tolerance to stresses resulting from the intrinsic volume change during Li plating/stripping, delivering a significant boost in both charge/discharge rates and stable cycling performance. A binary Co-Li alloying phase was generated at the initial discharge process, creating more active sites for the Li nucleation and uniform deposition. Characterization and density functional theory calculations show that the conductive and uniformly distributed cobalt-decorated carbon nanotubes with hierarchical structure can effectively reduce the local current density and more easily absorb Li atoms, leading to more uniform Li nucleation during plating. The current work presents an advance on scalable and cost-effective strategies for novel electrode materials with 3D hierarchical microstructures and mechanical flexibility for lithium metal anodes.

Journal article

Tuffnell JM, Morzy JK, Kelly ND, Tan R, Song Q, Ducati C, Bennett TD, Dutton SEet al., 2020, Comparison of the ionic conductivity properties of microporous and mesoporous MOFs infiltrated with a Na-ion containing IL mixture, Dalton Transactions: an international journal of inorganic chemistry, Vol: 49, Pages: 15914-15924, ISSN: 1477-9226

IL@MOF (IL: ionic liquid; MOF: metal–organic framework) materials have been proposed as a candidate for solid-state electrolytes, combining the inherent non-flammability and high thermal and chemical stability of the ionic liquid with the host–guest interactions of the MOF. In this work, we compare the structure and ionic conductivity of a sodium ion containing IL@MOF composite formed from a microcrystalline powder of the zeolitic imidazolate framework (ZIF), ZIF-8 with a hierarchically porous sample of ZIF-8 containing both micro- and mesopores from a sol–gel synthesis. Although the crystallographic structures were shown to be the same by X-ray diffraction, significant differences in particle size, packing and morphology were identified by electron microscopy techniques which highlight the origins of the hierarchical porosity. After incorporation of Na0.1EMIM0.9TFSI (abbreviated to NaIL; EMIM = 1-ethyl-3-methylimidazolium; TFSI = bis(trifluoromethylsulfonyl)imide), the hierarchically porous composite exhibited a 40% greater filling capacity than the purely microporous sample which was confirmed by elemental analysis and digestive proton NMR. Finally, the ionic conductivity properties of the composite materials were probed by electrochemical impedance spectroscopy. The results showed that despite the 40% increased loading of NaIL in the NaIL@ZIF-8micro sample, the ionic conductivities at 25 °C were 8.4 × 10−6 and 1.6 × 10−5 S cm−1 for NaIL@ZIF-8meso and NaIL@ZIF-8micro respectively. These results exemplify the importance of the long range, continuous ion pathways contributed by the microcrystalline pores, as well as the limited contribution from the discontinuous mesopores to the overall ionic conductivity.

Journal article

Liu X, Ouyang M, Orzech M, Niu Y, Tang W, Chen J, Naylor Marlow M, Puhan D, Zhao Y, Tan R, Brankin C, Haworth N, Zhao S, Wang H, Childs P, Margadonna S, Wagemaker M, Pan F, Brandon N, George C, Wu Bet al., 2020, In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices, Energy Storage Materials, Vol: 30, Pages: 329-336, ISSN: 2405-8297

Hierarchical 1D carbon structures are attractive due to their mechanical, chemical and electrochemical properties however the synthesis of these materials can be costly and complicated. Here, through the combination of inexpensive acetylacetonate salts of Ni, Co and Fe with a solution of polyacrylonitrile (PAN), self-assembling carbon-metal fabrics (CMFs) containing unique 1D hierarchical structures can be created via easy and low-cost heat treatment without the need for costly catalyst deposition nor a dangerous hydrocarbon atmosphere. Microscopic and spectroscopic measurements show that the CMFs form through the decomposition and exsolution of metal nanoparticle domains which then catalyze the formation of carbon nanotubes through the decomposition by-products of the PAN. These weakly bound nanoparticles form structures similar to trichomes found in plants, with a combination of base-growth, tip-growth and peapod-like structures, where the metal domain exhibits a core(graphitic)-shell(disorder) carbon coating where the thickness is in-line with the metal-carbon binding energy. These CMFs were used as a cathode in a flexible zinc-air battery which exhibited superior performance to pure electrospun carbon fibers, with their metallic nanoparticle domains acting as bifunctional catalysts. This work therefore unlocks a potentially new category of composite metal-carbon fiber based structures for energy storage applications and beyond.

Journal article

Zuo P, Li Y, Wang A, Tan R, Liu Y, Liang X, Sheng F, Tang G, Ge L, Wu L, Song Q, McKeown NB, Yang Z, Xu Tet al., 2020, Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage, Angewandte Chemie International Edition, Vol: 59, Pages: 9564-9573, ISSN: 1433-7851

Membranes with fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells and redox flow batteries. Here we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. This was achieved by synthesizing polymers with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively-charged subnanometer-sized confined ionic channels. The facilitated transport of protons and cations through these membranes, as well as high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell. This membrane design strategy paves the way for producing a new-generation of ion-exchange membranes for electrochemical energy conversion and storage applications.

Journal article

Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, Ye C, Zhou X, Darwich BP, Fan Z, Turcani L, Jackson E, Chen L, Chong SY, Li T, Jelfs KE, Cooper AI, Brandon NP, Grey CP, McKeown NB, Song Qet al., 2020, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage, Nature Materials, Vol: 19, Pages: 195-202, ISSN: 1476-1122

Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes.

Journal article

Tan R, Wang A, Malpass-Evans R, Williams R, Zhao EW, Liu T, Ye C, Zhou X, Darwich BP, Fan Z, Turcani L, Jackson E, Chen L, Chong SY, Li T, Jelfs KE, Cooper AI, Brandon NP, Grey CP, McKeown NB, Song Qet al., 2020, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage (December, 10.1038/S41563-019-0536-8, 2019), NATURE MATERIALS, Vol: 19, Pages: 251-251, ISSN: 1476-1122

Journal article

Xu J, Liu X, Zhang Z, Wang L, Tan R, Zhang Det al., 2019, Controllable generation of nanofibers through a magnetic-field-assisted electrospinning design, Materials Letters, Vol: 247, Pages: 19-24, ISSN: 0167-577X

© 2019 Electrospinning technology is taken as the most versatile process to generate continuous nanofibers. However, effects should be taken to achieve better understanding and precisely control the actual mechanics in the formation of nanofibers through better system design. In this article, the diameter and the deposition area of the as-prepared nanofibers can be controlled by added helix tube which can provide external electric-magnetic field. The spinning process can be controlled employing a magnetic flux (B) analytical model which is based on the magnetic field calculation model of the solution and the electrostatic charge repulsion in the jet. This method includes the thermo-mechanical properties based on as-prepared electrospun nanofiber films and the capability of tribology-mechanical and mathematical physics. A novel investigation of the whole output increase at per unit spinning area is presented in this article to describe the whipping instability which is an important feature of the Taylor Cone phenomenon. The present design and process for electrospinning are based on a solution differential calculus, which a single stainless steel spinning nozzle can generate multi-squirt flow. With the purpose of providing useful jet initial behaviour design for the further technology applications, we attempt to set up a differential calculus method with evenly distributed circumferential electric field, yet giving more design guidance to produce controllable nanofibers through magnetic-field-assisted electrospinning technology.

Journal article

Yin C, Liu X, Wei J, Tan R, Zhou J, Ouyang M, Wang H, Cooper SJ, Wu B, George C, Wang Qet al., 2019, “All-in-Gel” design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance, Journal of Materials Chemistry A, Vol: 7, Pages: 8826-8831, ISSN: 2050-7488

Ionogels are semi-solid, ion conductive and mechanically compliant materials that hold promise for flexible, shape-conformable and all-solid-state energy storage devices. However, identifying facile routes for manufacturing ionogels into devices with highly resilient electrode/electrolyte interfaces remains a challenge. Here we present a novel all-in-gel supercapacitor consisting of an ionogel composite electrolyte and bucky gel electrodes processed using a one-step method. Compared with the mechanical properties and ionic conductivities of pure ionogels, our composite ionogels offer enhanced self-recovery (retaining 78% of mechanical robustness after 300 cycles at 60% strain) and a high ionic conductivity of 8.7 mS cm−1, which is attributed to the robust amorphous polymer phase that enables facile permeation of ionic liquids, facilitating effective diffusion of charge carriers. We show that development of a supercapacitor with these gel electrodes and electrolytes significantly improves the interfacial contact between electrodes and electrolyte, yielding an area specific capacitance of 43 mF cm−2 at a current density of 1.0 mA cm−2. Additionally, through this all-in-gel design a supercapacitor can achieve a capacitance between 22–81 mF cm−2 over a wide operating temperature range of −40 °C to 100 °C at a current density of 0.2 mA cm−2.

Journal article

Houghton A, Tan R, Wang A, Song Qet al., 2018, Metal-Organic Framework Composite Membranes for Energy Storage Applications, UK MOF Symposium

Conference paper

Wang A, Tan R, Malpass-Evans R, McKeown N, Song Qet al., 2018, Polymer Membranes of Intrinsic Microporosity for Molecular Separations and Energy Storage, UK MOF Symposium

Conference paper

Hodgson P, Sceats M, Majumder K, Hills T, Song Q, Fennel P, Gao R, Tan R, MacFarlane D, Forsyth M, Howlett Pet al., 2018, Nano-active electrode materials, Pages: 373-374

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01419144&limit=30&person=true