Imperial College London

DrRyanThwaites

Faculty of MedicineNational Heart & Lung Institute

Research Associate
 
 
 
//

Contact

 

r.thwaites

 
 
//

Location

 

Mint WingSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

49 results found

Siggins MK, Thwaites RS, Openshaw PJM, 2021, Durability of immunity to SARS-CoV-2 and other respiratory viruses: (Trends in microbiology, 29, 648-662, 2021)., Trends in Microbiology, ISSN: 0966-842X

Journal article

Drake TM, Fairfield CJ, Pius R, Knight SR, Norman L, Girvan M, Hardwick HE, Docherty AB, Thwaites RS, Openshaw PJM, Baillie JK, Harrison EM, Semple MG, ISARIC4C Investigatorset al., 2021, Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study, The Lancet Rheumatology, Vol: 3, Pages: e498-e506, ISSN: 2665-9913

Background: Early in the pandemic it was suggested that pre-existing use of non-steroidal anti-inflammatory drugs (NSAIDs) could lead to increased disease severity in patients with COVID-19. NSAIDs are an important analgesic, particularly in those with rheumatological disease, and are widely available to the general public without prescription. Evidence from community studies, administrative data, and small studies of hospitalised patients suggest NSAIDs are not associated with poorer COVID-19 outcomes. We aimed to characterise the safety of NSAIDs and identify whether pre-existing NSAID use was associated with increased severity of COVID-19 disease. Methods: This prospective, multicentre cohort study included patients of any age admitted to hospital with a confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 between Jan 17 and Aug 10, 2020. The primary outcome was in-hospital mortality, and secondary outcomes were disease severity at presentation, admission to critical care, receipt of invasive ventilation, receipt of non-invasive ventilation, use of supplementary oxygen, and acute kidney injury. NSAID use was required to be within the 2 weeks before hospital admission. We used logistic regression to estimate the effects of NSAIDs and adjust for confounding variables. We used propensity score matching to further estimate effects of NSAIDS while accounting for covariate differences in populations. Results: Between Jan 17 and Aug 10, 2020, we enrolled 78 674 patients across 255 health-care facilities in England, Scotland, and Wales. 72 179 patients had death outcomes available for matching; 40 406 (56·2%) of 71 915 were men, 31 509 (43·8%) were women. In this cohort, 4211 (5·8%) patients were recorded as taking systemic NSAIDs before admission to hospital. Following propensity score matching, balanced groups of NSAIDs users and NSAIDs non-users were obtained (4205 patients in each group). At hospital admission, we observed no si

Journal article

Siggins MK, Thwaites RS, Openshaw PJM, 2021, Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses, TRENDS IN MICROBIOLOGY, Vol: 29, Pages: 648-662, ISSN: 0966-842X

Journal article

Challenger JD, Foo CY, Wu Y, Yan AWC, Marjaneh MM, Liew F, Thwaites RS, Okell LC, Cunnington AJet al., 2021, Modelling upper respiratory viral load dynamics of SARS-CoV-2

<jats:title>Abstract</jats:title><jats:p>Relationships between viral load, severity of illness, and transmissibility of virus, are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response, and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with control of viral load. Neutralizing antibody correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralizing antibody. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.</jats:p>

Journal article

Ogbe A, Kronsteiner B, Skelly DT, Pace M, Brown A, Adland E, Adair K, Akhter HD, Ali M, Ali S-E, Angyal A, Ansari MA, Arancibia-Carcamo CV, Brown H, Chinnakannan S, Conlon C, de Lara C, de Silva T, Dold C, Dong T, Donnison T, Eyre D, Flaxman A, Fletcher H, Gardner J, Grist JT, Hackstein C-P, Jaruthamsophon K, Jeffery K, Lambe T, Lee L, Li W, Lim N, Matthews PC, Mentzer AJ, Moore SC, Naisbitt DJ, Ogese M, Ogg G, Openshaw P, Pirmohamed M, Pollard AJ, Ramamurthy N, Rongkard P, Rowland-Jones S, Sampson O, Screaton G, Sette A, Stafford L, Thompson C, Thomson PJ, Thwaites R, Vieira V, Weiskopf D, Zacharopoulou P, Chalk J, Kerr G, Phalora P, Csala A, Jones M, Robinson N, Brown R, Hutchings C, Provine N, Ratcliff J, Amini A, Borak M, Dimitriadis S, Fordwoh T, Horsington B, Johnson S, Morrow J, Warren Y, Wells C, Turtle L, Klenerman P, Goulder P, Frater J, Barnes E, Dunachie Set al., 2021, T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses, NATURE COMMUNICATIONS, Vol: 12, ISSN: 2041-1723

Journal article

Gupta RK, Harrison EM, Ho A, Docherty AB, Knight SR, van Smeden M, Abubakar I, Lipman M, Quartagno M, Pius R, Buchan I, Carson G, Drake TM, Dunning J, Fairfield CJ, Gamble C, Green CA, Halpin S, Hardwick HE, Holden KA, Horby PW, Jackson C, Mclean KA, Merson L, Nguyen-Van-Tam JS, Norman L, Olliaro PL, Pritchard MG, Russell CD, Scott-Brown J, Shaw CA, Sheikh A, Solomon T, Sudlow C, Swann OV, Turtle L, Openshaw PJM, Baillie JK, Semple MG, Noursadeghi M, Baillie JK, Semple MG, Openshaw PJM, Carson G, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Docherty AB, Dunning J, Filipe ADS, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AYW, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, de Silva T, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Drake TM, Fairfield CJ, Knight S, Mclean KA, Murphy D, Shaw CA, Dalton J, Lee J, Plotkin D, Girvan M, Mullaney S, Petersen C, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Ho A, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randalet al., 2021, Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study, The Lancet Respiratory Medicine, Vol: 9, Pages: 349-359, ISSN: 2213-2600

BackgroundPrognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions.MethodsWe developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal–external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London).Findings74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal–external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [–0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than

Journal article

Baumann R, Untersmayr E, Zissler UM, Eyerich S, Adcock IM, Brockow K, Biedermann T, Ollert M, Chaker AM, Pfaar O, Garn H, Thwaites RS, Togias A, Kowalski ML, Hansel T, Jakwerth C, Schmidt-Weber CBet al., 2021, Non-invasive and minimally-invasive techniques for the diagnosis and management of allergic diseases., Allergy, Vol: 76, Pages: 1010-1023, ISSN: 0105-4538

Allergic diseases of the (upper and lower) airways, the skin as well as the gastrointestinal tract, are on the rise, resulting in impaired quality of life, decreased productivity and increased healthcare costs. As allergic diseases are mostly tissue specific, local sampling methods for respective biomarkers offer the potential for increased sensitivity and specificity. Additionally, local sampling using non-invasive or minimally-invasive methods can be cost-effective and well tolerated, which may even be suitable for primary or home care sampling. Non- or minimally-invasive local sampling and diagnostics may enable a more thorough endotyping, may help to avoid under- or overdiagnosis, and may provide the possibility to approach precision prevention, due to early diagnosis of these local diseases even before they get systemically manifested and detectable. At the same time, dried blood samples may help to facilitate minimal-invasive primary or home care sampling for classical systemic diagnostic approaches. This EAACI position paper contains a thorough review of the various technologies in allergy diagnosis available on the market, which analytes or biomarkers are employed, and which samples or matrices can be used. Based on this assessment, EAACIs position is to drive these developments to efficiently identify allergy and possibly later also viral epidemics and take advantage of comprehensive knowledge to initiate preventions and treatments.

Journal article

Yates T, Zaccardi F, Islam N, Razieh C, Gillies CL, Lawson CA, Chudasama Y, Rowlands A, Davies MJ, Docherty AB, Openshaw PJ, Baillie JK, Semple MG, ISARIC4C investigators, Khunti Ket al., 2021, Obesity, ethnicity and risk of critical care, mechanical ventilation and mortality in patients admitted to hospital with COVID-19: Analysis of the ISARIC CCP-UK cohort., Obesity (Silver Spring, Md.), Vol: 29, Pages: 1223-1230, ISSN: 1071-7323

OBJECTIVE: To investigate the association of obesity with in-hospital COVID-19 outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from 6th February to 12th October 2020. Ethnicity was classified as: white, South Asian, black and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation and in-hospital mortality, adjusted for age, sex and chronic diseases. RESULTS: 54,254 (age = 76 years; 45.0% women) white, 3,728 (57 years; 41.1%) South Asian, 2,523 (58 years; 44.9%) black and 5,427 (61 years; 40.8%) other ethnicities were included. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the OR for admission to critical care, mechanical ventilation and mortality in black ethnicities with obesity were 3.91 (3.13, 4.88), 5.03 (3.94, 6.63), 1.93 (1.49, 2.51) respectively, compared to white ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in black ethnicities.

Journal article

Thwaites RS, Sanchez Sevilla Uruchurtu A, Siggins MK, Liew F, Russell CD, Moore SC, Fairfield C, Carter E, Abrams S, Short C, Thaventhiran T, Bergstrom E, Gardener Z, Ascough S, Chiu C, Docherty AB, Hunt D, Crow YJ, Solomon T, Taylor GP, Turtle L, Harrison EM, Dunning J, Semple MG, Baillie JK, Openshaw PJMet al., 2021, Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19, Science Immunology, Vol: 6, Pages: 1-17, ISSN: 2470-9468

While it is now widely accepted that host inflammatory responses contribute to lung injury, the pathways that drive severity and distinguish coronavirus disease 2019 (COVID-19) from other viral lung diseases remain poorly characterized. We analyzed plasma samples from 471 hospitalized patients recruited through the prospective multicenter ISARIC4C study and 39 outpatients with mild disease, enabling extensive characterization of responses across a full spectrum of COVID-19 severity. Progressive elevation of levels of numerous inflammatory cytokines and chemokines (including IL-6, CXCL10, and GM-CSF) were associated with severity and accompanied by elevated markers of endothelial injury and thrombosis. Principal component and network analyses demonstrated central roles for IL-6 and GM-CSF in COVID-19 pathogenesis. Comparing these profiles to archived samples from patients with fatal influenza, IL-6 was equally elevated in both conditions whereas GM-CSF was prominent only in COVID-19. These findings further identify the key inflammatory, thrombotic, and vascular factors that characterize and distinguish severe and fatal COVID-19.

Journal article

Bloom CI, Drake TM, Docherty AB, Lipworth BJ, Johnston SL, Nguyen-Van-Tam JS, Carson G, Dunning J, Harrison EM, Baillie JK, Semple MG, Cullinan P, Openshaw PJM, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Filipe AD, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AY, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, Silva TD, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Fairfield CJ, Knight SR, Mclean KA, Murphy D, Shaw CA, Dalton J, Girvan M, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randal R, Pilgrim J, Prince T, Reynolds W, Ridley PM, Sales D, Shaw VE, Shears RK, Small B, Subramaniam KS, Szemiel A, Taggart A, Tanianis-Hughes J, Thomas J, Trochu E, Tonder LV, Wilcock E, Zhang JE, Flaherty L, Maziere N, Cass E, Carracedo AD, Carlucci N, Holmes A, Massey H, Adeniji K, Agranoff D, Agwuh K, Ail D, Alegria A, Angus B, Ashish A, Atkinson D, Bari S, Barlow G, Barnass S, Barrett N, Bassford C, Baxter D, Beadsworth Met al., 2021, Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK, The Lancet Respiratory Medicine, ISSN: 2213-2600

BackgroundStudies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use.MethodsWe analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma.Findings75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI

Journal article

Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, Furniss J, Richmond A, Gountouna E, Wrobel N, Harrison D, Wang B, Wu Y, Meynert A, Griffiths F, Oosthuyzen W, Kousathanas A, Moutsianas L, Yang Z, Zhai R, Zheng C, Grimes G, Beale R, Millar J, Shih B, Keating S, Zechner M, Haley C, Porteous DJ, Hayward C, Yang J, Knight J, Summers C, Shankar-Hari M, Klenerman P, Turtle L, Ho A, Moore SC, Hinds C, Horby P, Nichol A, Maslove D, Ling L, McAuley D, Montgomery H, Walsh T, Pereira A, Renieri A, GenOMICC Investigators, ISARICC Investigators, COVID-19 Human Genetics Initiative, 23andMe Investigators, BRACOVID Investigators, Gen-COVID Investigators, Shen X, Ponting CP, Fawkes A, Tenesa A, Caulfield M, Scott R, Rowan K, Murphy L, Openshaw PJM, Semple MG, Law A, Vitart V, Wilson JF, Baillie JKet al., 2021, Genetic mechanisms of critical illness in Covid-19, Nature, Vol: 591, Pages: 92-98, ISSN: 0028-0836

Host-mediated lung inflammation is present,1 and drives mortality,2 in critical illness caused by Covid-19. Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development.3 Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study(GWAS) in 2244 critically ill Covid-19 patients from 208 UK intensive care units (ICUs). We identify and replicate novel genome-wide significant associations, on chr12q24.13 (rs10735079, p=1.65 [Formula: see text] 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), on chr19p13.2 (rs2109069, p=2.3 [Formula: see text] 10-12) near the gene encoding tyrosine kinase 2 (TYK2), on chr19p13.3 (rs2109069, p=3.98 [Formula: see text] 10-12) within the gene encoding dipeptidyl peptidase 9 (DPP9), and on chr21q22.1 (rs2236757, p=4.99 [Formula: see text] 10-8) in the interferon receptor gene IFNAR2. We identify potential targets for repurposing of licensed medications: using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease; transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice.

Journal article

Thwaites RS, Unterberger S, Chamberlain G, Gray H, Jordan K, Davies KA, Harrison NA, Sacre Set al., 2021, Expression of sterile-α and armadillo motif containing protein (SARM) in rheumatoid arthritis monocytes correlates with TLR2-induced IL-1β and disease activity, Rheumatology, Pages: 1-11, ISSN: 1462-0324

OBJECTIVE: Cartilage and bone damage in rheumatoid arthritis (RA) are associated with elevated IL-1β. The effects of IL-1β can be reduced by biological therapies that target IL-1β or TNFα. However, the mechanisms responsible for increased IL-1β and the effect of anti-TNFα have not been fully elucidated. Recently, sterile-α and armadillo motif-containing protein (SARM) was identified as a negative regulator of toll-like receptor (TLR) induced IL-1β secretion through an interaction with the inflammasome. This study set out to investigate SARM during TLR induced IL-1β secretion in RA peripheral blood monocytes and in patients commencing anti-TNFα treatment. METHODS: Monocytes were isolated from RA patients and healthy controls; disease activity was measured by DAS28. IL-1β secretion was measured by ELISA following TLR1/2, TLR4 and TLR7/8 stimulation. The mRNA expression of SARM, IL-1β and the components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome were measured by quantitative PCR. SARM protein expression was measured by western blotting. RESULTS: TLR1/2 activation induced elevated IL-1β in RA monocytes compared with heathy controls (p= 0.0009), which negatively correlated with SARM expression (p = 0.0086). Lower SARM expression also correlated with higher disease activity (p = 0.0246). Additionally, patients responding to anti-TNFα treatment demonstrated a rapid upregulation of SARM, which was not observed in non-responders. CONCLUSION: Together, these data highlight a potential contribution from SARM to RA pathophysiology where decreased SARM may lead to elevated IL-1β associated with RA pathogenesis. Furthermore, the data additionally present a potential mechanism by which TNFα blockade can modify IL-1β secretion.

Journal article

Jha A, Thwaites RS, Tunstall T, Kon OM, Shattock RJ, Hansel TT, Openshaw PJMet al., 2021, Increased nasal mucosal interferon and CCL13 response to a TLR7/8 agonist in asthma and allergic rhinitis., Journal of Allergy and Clinical Immunology, Vol: 147, Pages: 694-703.e12, ISSN: 0091-6749

BACKGROUND: Acute respiratory viral infections are a major cause of respiratory morbidity and mortality, especially in patients with preexisting lung diseases such as asthma. Toll-like receptors are critical in the early detection of viruses and in activating innate immunity in the respiratory mucosa, but there is no reliable and convenient method by which respiratory mucosal innate immune responses can be measured. OBJECTIVE: We sought to assess in vivo immune responses to an innate stimulus and compare responsiveness between healthy volunteers and volunteers with allergy. METHODS: We administered the Toll-like receptor 7/8 agonist resiquimod (R848; a synthetic analogue of single-stranded RNA) or saline by nasal spray to healthy participants without allergy (n = 12), those with allergic rhinitis (n = 12), or those with allergic rhinitis with asthma (n = 11). Immune mediators in blood and nasal fluid and mucosal gene expression were monitored over time. RESULTS: R848 was well tolerated and significantly induced IFN-α2a, IFN-γ, proinflammatory cytokines (TNF-α, IL-2, IL-12p70), and chemokines (CXCL10, C-C motif chemokine ligand [CCL]2, CCL3, CCL4, and CCL13) in nasal mucosal fluid, without causing systemic immune activation. Participants with allergic rhinitis or allergic rhinitis with asthma had increased IFN-α2a, CCL3, and CCL13 responses relative to healthy participants; those with asthma had increased induction of IFN-stimulated genes DExD/H-box helicase 58, MX dynamin-like GTPase 1, and IFN-induced protein with tetratricopeptide repeats 3. CONCLUSIONS: Responses to nasal delivery of R848 enables simple assessment of mucosal innate responsiveness, revealing that patients with allergic disorders have an increased nasal mucosal IFN and chemokine response to the viral RNA analogue R848. This highlights that dysregulated innate immune responses of the nasal mucosa in allergic individuals may be important in determining the

Journal article

Cuthbertson L, James P, Habibi M, Thwaites R, Paras A, Chiu C, Openshaw P, Cookson W, Moffatt Met al., 2020, The Effect of RSV Infection on the Respiratory Microbiome of Adults

<jats:title>Abstract</jats:title> <jats:p>Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in infants. It is being increasingly recognised as a cause of morbidity and mortality in the elderly. Microbial dysbiosis in the respiratory tract has been hypothesized to predispose individuals to severe RSV infection. This study explores changes in the bacterial community over the course of a controlled human challenge study. From 37 healthy adult patients exposed to a challenge inoculum of RSV, throat swabs were collected daily for 10 days during quarantine and on days 14 and 28 post quarantine. Swabs were processed for bacterial and viral quantification and 16S rRNA gene sequencing. Over the course of the study three clinical outcomes were observed; clinical cold (n = 17), asymptomatic infection (n = 6) or no infection (n = 14). These three outcome groups had no significant differences in the bacterial load, diversity or community composition at baseline. Over the twenty-eight days following RSV inoculation no significant changes in the bacterial community were observed between the outcome groups.This study of healthy adults revealed no major changes in the bacterial community of the respiratory tracts following RSV inoculation, suggesting that this microbial community is resilient to viral perturbations.</jats:p>

Journal article

Lin G-L, Golubchik T, Drysdale S, O'Connor D, Jefferies K, Brown A, de Cesare M, Bonsall D, Ansari MA, Aerssens J, Bont L, Openshaw P, Martinon-Torres F, Bowden R, Pollard AJet al., 2020, Simultaneous Viral Whole-Genome Sequencing and Differential Expression Profiling in Respiratory Syncytial Virus Infection of Infants, JOURNAL OF INFECTIOUS DISEASES, Vol: 222, Pages: S666-S671, ISSN: 0022-1899

Journal article

Wiseman DJ, Thwaites RS, Drysdale SB, Janet S, Donaldson GC, Wedzicha JA, Openshaw PJ, RESCEU Investigatorset al., 2020, Immunological and inflammatory biomarkers of susceptibility and severity in adult respiratory syncytial virus infections, Journal of Infectious Diseases, Vol: 222, Pages: S584-S591, ISSN: 0022-1899

BACKGROUND: . Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in young infants. However, it is also a significant pathogen in older adults. Validated biomarkers of RSV disease severity would benefit diagnostics, treatment decisions, and prophylactic interventions. This review summarizes knowledge of biomarkers for RSV disease in adults. METHODS: A literature review was performed using Ovid Medline, Embase, Global health, Scopus, and Web of Science for articles published 1946-October 2016. Nine articles were identified plus 9 from other sources. RESULTS: From observational studies of natural infection and challenge studies in volunteers, biomarkers of RSV susceptibility or disease severity in adults were: (1) lower anti-RSV neutralizing antibodies, where neutralizing antibody (and local IgA) may be a correlate of susceptibility/severity; (2) RSV-specific CD8+ T cells in bronchoalveolar lavage fluid preinfection (subjects with higher levels had less severe illness); and (3) elevated interleukin-6 (IL-6), IL-8, and myeloperoxidase levels in the airway are indicative of severe infection. CONCLUSIONS: Factors determining susceptibility to and severity of RSV disease in adults have not been well defined. Respiratory mucosal antibodies and CD8+ T cells appear to contribute to preventing infection and modulation of disease severity. Studies of RSV pathogenesis in at-risk populations are needed.

Journal article

Thwaites RS, Unterberger S, Chamberlain G, Walker-Bone K, Davies KA, Sacre Set al., 2020, TLR1/2 and 5 induce elevated cytokine levels from rheumatoid arthritis monocytes independent of ACPA or RF autoantibody status., Rheumatology, Vol: 59, Pages: 3533-3539, ISSN: 1462-0324

OBJECTIVE: RA is an autoimmune inflammatory joint disease. Both RF and ACPA are associated with more progressive disease and higher levels of systemic inflammation. Monocyte activation of toll-like receptors (TLRs) by endogenous ligands is a potential source of increased production of systemic cytokines. RA monocytes have elevated TLRs, some of which are associated with the disease activity score using 28 joints (DAS28). The aim of this study was to measure TLR-induced cytokine production from monocytes, stratified by autoantibody status, to assess if their capacity to induce cytokines is related to autoantibody status or DAS28. METHODS: Peripheral blood monocytes isolated from RA patients and healthy controls were stimulated with TLR1/2, TLR2/6, TLR4, TLR5, TLR7, TLR8 and TLR9 ligands for 18 h before measuring IL-6, TNFα and IL-10. Serum was used to confirm the autoantibody status. Cytokine levels were compared with RF, ACPA and DAS28. RESULTS: RA monocytes demonstrated significantly increased IL-6 and TNFα upon TLR1/2 stimulation and IL-6 and IL-10 upon TLR5 activation. TLR7 and TLR9 activation did not induce cytokines and no significant differences were observed between RA and healthy control monocytes upon TLR2/6, TLR4 or TLR8 activation. When stratified by ACPA or RF status there were no correlations between autoantibody status and elevated cytokine levels. However, TLR1/2-induced IL-6 did correlate with DAS28. CONCLUSIONS: Elevated TLR-induced cytokines in RA monocytes were not related to ACPA or RF status. However, TLR1/2-induced IL-6 was associated with disease activity.

Journal article

Thwaites R, 2020, A year in our understanding of COVID-19, Clinical and Experimental Immunology, Vol: 202, Pages: 146-148, ISSN: 0009-9104

The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in more than a million deaths and tens of millions of infections globally. As we approach the first anniversary of its characterisation, it is timely to consider the developments, and persistent limitations, in our understanding of this pathogen. In this special edition of Clinical and Experimental Immunology we present five reviews and research papers on crucial aspects of COVID-19.

Journal article

Thompson CP, Grayson NE, Paton RS, Bolton JS, Lourenço J, Penman BS, Lee LN, Odon V, Mongkolsapaya J, Chinnakannan S, Dejnirattisai W, Edmans M, Fyfe A, Imlach C, Kooblall K, Lim N, Liu C, López-Camacho C, McInally C, McNaughton AL, Ramamurthy N, Ratcliff J, Supasa P, Sampson O, Wang B, Mentzer AJ, Turner M, Semple MG, Baillie K, ISARIC4C Investigators, Harvala H, Screaton GR, Temperton N, Klenerman P, Jarvis LM, Gupta S, Simmonds Pet al., 2020, Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020., Euro Surveillance, Vol: 25, Pages: 1-9

BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak.

Journal article

Thwaites RS, Sevilla Uruchurtu AS, Siggins M, Liew F, Russell CD, Moore SC, Carter E, Abrams S, Short C-E, Thaventhiran T, Bergstrom E, Gardener Z, Ascough S, Chiu C, Docherty AB, Hunt D, Crow YJ, Solomon T, Taylor GP, Turtle L, Harrison EM, Semple MG, Baillie JK, Openshaw PJMet al., 2020, Elevated antiviral, myeloid and endothelial inflammatory markers in severe COVID-19

<jats:title>Introductory paragraph</jats:title><jats:p>The mechanisms that underpin COVID-19 disease severity, and determine the outcome of infection, are only beginning to be unraveled. The host inflammatory response contributes to lung injury, but circulating mediators levels fall below those in classical ‘cytokine storms’. We analyzed serial plasma samples from 619 patients hospitalized with COVID-19 recruited through the prospective multicenter ISARIC clinical characterization protocol U.K. study and 39 milder community cases not requiring hospitalization. Elevated levels of numerous mediators including angiopoietin-2, CXCL10, and GM-CSF were seen at recruitment in patients who later died. Markers of endothelial injury (angiopoietin-2 and von-Willebrand factor A2) were detected early in some patients, while inflammatory cytokines and markers of lung injury persisted for several weeks in fatal COVID-19 despite decreasing antiviral cytokine levels. Overall, markers of myeloid or endothelial cell activation were associated with severe, progressive, and fatal disease indicating a central role for innate immune activation and vascular inflammation in COVID-19.</jats:p>

Journal article

Habibi M, Thwaites R, Chang M, Jozwik A, Paras A, Kirsebom F, Varese A, Owen A, Cuthbertson L, James P, Tunstall T, Nickle D, Hansel T, Moffatt M, Johansson C, Chiu C, Openshaw Pet al., 2020, Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection, Science, Vol: 370, Pages: 1-15, ISSN: 0036-8075

INTRODUCTIONEven with intimate exposure to a virus, some people fail to become infected. Variable transmission partly depends on the dose and duration of exposure but is also governed by the immune status of the host, such as the presence of specific protective antibodies or T cells. However, for some infections, the reasons for erratic transmission are largely unknown. For example, respiratory syncytial virus (RSV) can repeatedly reinfect individuals throughout their lives despite the presence of specific immunity. Additionally, antibodies and T cells have limited efficacy against newly emergent pathogens with pandemic potential. However, the intrinsic and innate mechanisms underlying protection when people are exposed to these viruses are poorly understood.RATIONALEWe reasoned that the prior state of the respiratory mucosa’s innate defenses may contribute to the variable outcome of RSV inoculation. By performing experimental challenge of adult volunteers, we were able to measure variations in the status of the nasal mucosa before inoculation and in mucosal responses during the presymptomatic phase of infection. Neither of these phases is easily observable during natural spontaneous transmission. Our observations could then be validated using specific interventional studies in a well-established mouse model of RSV infection.RESULTSAfter nasal administration of RSV, 57% of inoculated volunteers became infected. The uptake of infection was poorly explained by specific B or T cell immunity. However, transcriptomic profiling of the nasal tissue before inoculation demonstrated a neutrophilic inflammatory signal in those destined to develop symptomatic infection, and this was associated with suppression of an early interleukin-17 (IL-17)–dominated immune response during the presymptomatic period. This was followed by symptomatic infection associated with the expression of proinflammatory cytokines. By contrast, those who resisted infection showed a transient

Journal article

Drake TM, Docherty AB, Harrison EM, Quint JK, Adamali H, Agnew S, Babu S, Barber CM, Barratt S, Bendstrup E, Bianchi S, Castillo Villegas D, Chaudhuri N, Chua F, Coker R, Chang W, Crawshaw A, Crowley LE, Dosanjh D, Fiddler CA, Forrest IA, George PM, Gibbons MA, Groom K, Haney S, Hart SP, Heiden E, Henry M, Ho L-P, Hoyles RK, Hutchinson J, Hurley K, Jones MG, Jones S, Kokosi M, Kreuter M, Mackay LS, Mahendran S, Margaritopoulos G, Molina-Molina M, Molyneaux PL, O'Brien A, O'Reilly K, Packham A, Parfrey H, Poletti V, Porter JC, Renzoni E, Rivera-Ortega P, Russell A-M, Saini G, Spencer LG, Stella GM, Stone H, Sturney S, Thickett D, Thillai M, Wallis T, Ward K, Wells AU, West A, Wickremasinghe M, Woodhead F, Hearson G, Howard L, Baillie JK, Openshaw PJM, Semple MG, Stewart I, Jenkins RG, ISARIC4C Investigatorset al., 2020, Outcome of hospitalization for COVID-19 in patients with interstitial lung disease: an international multicenter study., American Journal of Respiratory and Critical Care Medicine, Vol: 202, Pages: 1656-1665, ISSN: 1073-449X

RATIONALE: The impact of COVID-19 on patients with Interstitial Lung Disease (ILD) has not been established. OBJECTIVES: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age, sex and comorbidity matched population. METHODS: An international multicenter audit of patients with a prior diagnosis of ILD admitted to hospital with COVID-19 between 1 March and 1 May 2020 was undertaken and compared with patients, without ILD obtained from the ISARIC 4C cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished IPF from non-IPF ILD and used lung function to determine the greatest risks of death. MEASUREMENTS AND MAIN RESULTS: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity-score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching ILD patients with COVID-19 had higher mortality (HR 1.60, Confidence Intervals 1.17-2.18 p=0.003) compared with age, sex and co-morbidity matched controls without ILD. Patients with a Forced Vital Capacity (FVC) of <80% had an increased risk of death versus patients with FVC ≥80% (HR 1.72, 1.05-2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR 2.27, 1.39-3.71). CONCLUSIONS: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Journal article

Ogbe A, Kronsteiner B, Skelly DT, Pace M, Brown A, Adland E, Adair K, Akhter HD, Ali M, Ali S-E, Angyal A, Ansari MA, Arancibia-Cárcamo CV, Brown H, Chinnakannan S, Conlon C, de Lara C, de Silva T, Dold C, Dong T, Donnison T, Eyre D, Flaxman A, Fletcher H, Gardner J, Grist JT, Hackstein C-P, Jaruthamsophon K, Jeffrey K, Lambe T, Lee L, Li W, Lim N, Matthews PC, Mentzer AJ, Moore SC, Naisbitt DJ, Ogese M, Ogg G, Openshaw P, Pirmohamed M, Pollard AJ, Ramamurthy N, Rongkard P, Rowland-Jones S, Sampson O, Screaton G, Sette A, Stafford L, Thompson C, Thomson PJ, Thwaites R, Vieira V, Weiskopf D, Zacharopoulou P, Turtle L, Klenerman P, Goulder P, Frater J, Barnes E, Dunachie Set al., 2020, T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses

<jats:title>Abstract</jats:title><jats:p>A major issue in identification of protective T cell responses against SARS-CoV-2 lies in distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity generated by exposure to other coronaviruses. We characterised SARS-CoV-2 T cell immune responses in 168 PCR-confirmed SARS-CoV-2 infected subjects and 118 seronegative subjects without known SARS-CoV-2 exposure using a range of T cell assays that differentially capture immune cell function. Strong <jats:italic>ex vivo</jats:italic> ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) were found in those who had been infected by SARS-CoV-2 but were rare in pre-pandemic and unexposed seronegative subjects. However, seronegative doctors with high occupational exposure and recent COVID-19 compatible illness showed patterns of T cell responses characteristic of infection, indicating that these readouts are highly sensitive. By contrast, over 90% of convalescent or unexposed people showed proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on the choice of assay and antigen. Memory responses to specific non-spike proteins provides a method to distinguish recent infection from pre-existing immunity in exposed populations.</jats:p>

Journal article

Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, Dunning J, Fairfield CJ, Gamble C, Green CA, Gupta R, Halpin S, Hardwick HE, Holden KA, Horby PW, Jackson C, Mclean KA, Merson L, Nguyen-Van-Tam JS, Norman L, Noursadeghi M, Olliaro PL, Pritchard MG, Russell CD, Shaw CA, Sheikh A, Solomon T, Sudlow C, Swann OV, Turtle LCW, Openshaw PJM, Baillie JK, Semple MG, Docherty AB, Harrison EMet al., 2020, Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score, BMJ, Vol: 370, ISSN: 1759-2151

Objective To develop and validate a pragmatic risk score to predict mortality in patients admitted to hospital with coronavirus disease 2019 (covid-19).Design Prospective observational cohort study.Setting International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study (performed by the ISARIC Coronavirus Clinical Characterisation Consortium—ISARIC-4C) in 260 hospitals across England, Scotland, and Wales. Model training was performed on a cohort of patients recruited between 6 February and 20 May 2020, with validation conducted on a second cohort of patients recruited after model development between 21 May and 29 June 2020.Participants Adults (age >=18 years) admitted to hospital with covid-19 at least four weeks before final data extraction.Main outcome measure In-hospital mortality.Results 35 463 patients were included in the derivation dataset (mortality rate 32.2%) and 22 361 in the validation dataset (mortality rate 30.1%). The final 4C Mortality Score included eight variables readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea level, and C reactive protein (score range 0-21 points). The 4C Score showed high discrimination for mortality (derivation cohort: area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.78 to 0.79; validation cohort: 0.77, 0.76 to 0.77) with excellent calibration (validation: calibration-in-the-large=0, slope=1.0). Patients with a score of at least 15 (n=4158, 19%) had a 62% mortality (positive predictive value 62%) compared with 1% mortality for those with a score of 3 or less (n=1650, 7%; negative predictive value 99%). Discriminatory performance was higher than 15 pre-existing risk stratification scores (area under the receiver operating characteristic curve range 0.61-0.76), with sco

Journal article

Wiseman DJ, Thwaites RS, Openshaw PJM, 2020, A new role for CXCL4 in RSV disease., American Journal of Respiratory and Critical Care Medicine, Vol: 202, Pages: 1-2, ISSN: 1073-449X

Journal article

Swann OV, Holden KA, Turtle L, Pollock L, Fairfield CJ, Drake TM, Seth S, Egan C, Hardwick HE, Halpin S, Girvan M, Donohue C, Pritchard M, Patel LB, Ladhani S, Sigfrid L, Sinha IP, Olliaro PL, Nguyen-Van-Tam JS, Horby PW, Merson L, Carson G, Dunning J, Openshaw PJM, Baillie JK, Harrison EM, Docherty AB, Semple MGet al., 2020, Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study, BMJ, Vol: 370, Pages: 1-15

Objective To characterise the clinical features of children and young people admitted to hospital with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the UK and explore factors associated with admission to critical care, mortality, and development of multisystem inflammatory syndrome in children and adolescents temporarily related to coronavirus disease 2019 (covid-19) (MIS-C).Design Prospective observational cohort study with rapid data gathering and near real time analysis.Setting 260 hospitals in England, Wales, and Scotland between 17 January and 3 July 2020, with a minimum follow-up time of two weeks (to 17 July 2020).Participants 651 children and young people aged less than 19 years admitted to 138 hospitals and enrolled into the International Severe Acute Respiratory and emergency Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK study with laboratory confirmed SARS-CoV-2.Main outcome measures Admission to critical care (high dependency or intensive care), in-hospital mortality, or meeting the WHO preliminary case definition for MIS-C.Results Median age was 4.6 (interquartile range 0.3-13.7) years, 35% (225/651) were under 12 months old, and 56% (367/650) were male. 57% (330/576) were white, 12% (67/576) South Asian, and 10% (56/576) black. 42% (276/651) had at least one recorded comorbidity. A systemic mucocutaneous-enteric cluster of symptoms was identified, which encompassed the symptoms for the WHO MIS-C criteria. 18% (116/632) of children were admitted to critical care. On multivariable analysis, this was associated with age under 1 month (odds ratio 3.21, 95% confidence interval 1.36 to 7.66; P=0.008), age 10-14 years (3.23, 1.55 to 6.99; P=0.002), and black ethnicity (2.82, 1.41 to 5.57; P=0.003). Six (1%) of 627 patients died in hospital, all of whom had profound comorbidity. 11% (52/456) met the WHO MIS-C criteria, with the first patient developing symptoms in mid-March. Children

Journal article

Jefferies K, Drysdale SB, Robinson H, Clutterbuck EA, Blackwell L, McGinley J, Lin G-L, Galal U, Nair H, Aerssens J, Öner D, Langedijk A, Bont L, Wildenbeest JG, Martinon-Torres F, Rodríguez-Tenreiro Sánchez C, Nadel S, Openshaw P, Thwaites R, Widjojoatmodjo M, Zhang L, Nguyen TL-A, Giaquinto C, Giordano G, Baraldi E, Pollard AJ, Respiratory Syncytial Virus Consortium in Europe RESCEU Investigatorset al., 2020, Presumed risk factors and biomarkers for severe respiratory syncytial virus disease and related sequelae: protocol for an observational multicenter, case-control study from the respiratory syncytial virus consortium in Europe (RESCEU)., Journal of Infectious Diseases, ISSN: 0022-1899

Respiratory syncytial virus (RSV) is the leading viral pathogen associated with acute lower respiratory tract infection and hospitalization in children < 5 years of age worldwide. While there are known clinical risk factors for severe RSV infection, the majority of those hospitalized are previously healthy infants. There is consequently an unmet need to identify biomarkers that predict host response, disease severity, and sequelae. The primary objective is to identify biomarkers of severe RSV acute respiratory tract infection (ARTI) in infants. Secondary objectives include establishing biomarkers associated with respiratory sequelae following RSV infection and characterizing the viral load, RSV whole-genome sequencing, host immune response, and transcriptomic, proteomic, metabolomic and epigenetic signatures associated with RSV disease severity. Six hundred thirty infants will be recruited across 3 European countries: the Netherlands, Spain, and the United Kingdom. Participants will be recruited into 2 groups: (1) infants with confirmed RSV ARTI (includes upper and lower respiratory tract infections), 500 without and 50 with comorbidities; and (2) 80 healthy controls. At baseline, participants will have nasopharyngeal, blood, buccal, stool, and urine samples collected, plus complete a questionnaire and 14-day symptom diary. At convalescence (7 weeks ± 1 week post-ARTI), specimen collection will be repeated. Laboratory measures will be correlated with symptom severity scores to identify corresponding biomarkers of disease severity. CLINICAL TRIALS REGISTRATION: NCT03756766.

Journal article

Dunning J, Thwaites RS, Openshaw PJM, 2020, Seasonal and pandemic influenza: 100 years of progress, still much to learn, Mucosal Immunology, Vol: 13, Pages: 566-573, ISSN: 1935-3456

Influenza viruses are highly transmissible, both within and between host species. The severity of the disease they cause is highly variable, from the mild and inapparent through to the devastating and fatal. The unpredictability of epidemic and pandemic outbreaks is accompanied but the predictability of seasonal disease in wide areas of the Globe, providing an inexorable toll on human health and survival. Although there have been great improvements in understanding influenza viruses and the disease that they cause, our knowledge of the effects they have on the host and the ways that the host immune system responds continues to develop. This review highlights the importance of the mucosa in defence against infection and in understanding the pathogenesis of disease. Although vaccines have been available for many decades, they remain suboptimal in needing constant redesign and in only providing short-term protection. There are real prospects for improvement in treatment and prevention of influenza soon, based on deeper knowledge of how the virus transmits, replicates and triggers immune defences at the mucosal surface.

Journal article

Mashbat B, Bellos E, Hodeib S, Bidmos F, Thwaites RS, Lu Y, Wright VJ, Herberg JA, Klobassa DS, Zenz W, Hansel TT, Nadel S, Langford PR, Schlapbach LJ, Li M-S, Redinbo MR, Di YP, Levin M, Sancho-Shimizu Vet al., 2020, A rare mutation in SPLUNC1 underlies meningococcal disease affecting bacterial adherence and invasion, Clinical Infectious Diseases, Vol: 70, Pages: 2045-2053, ISSN: 1058-4838

BackgroundNeisseriameningitidis (Nm) is a nasopharyngeal commensal carried by healthy individuals. However, invasive infections occurs in a minority of individuals, with devastating consequences. There is evidence that common polymorphisms are associated with invasive meningococcal disease (IMD) but the contribution of rare variants other than complement has not been determined.MethodsWe identified familial cases of IMD in the UK meningococcal disease study and the European Union Life-threatening Infectious Disease Study. Candidate genetic variants were identified by whole exome sequencing of two patients with familial IMD. Candidate variants were further validated by in vitro assays.ResultsExomes of two siblings with IMD identified a novel heterozygous missense mutation in BPIFA1/SPLUNC1. Sequencing of 186 other non-familial cases identified another unrelated IMD patient with the same mutation. SPLUNC1 is an innate immune defence protein expressed in the nasopharyngeal epithelia, however, its role in invasive infections is unknown. In vitro assays demonstrated that recombinant SPLUNC1 inhibits biofilm formation by Nm, and impedes Nm adhesion and invasion of human airway cells. The dominant negative mutant rSPLUNC1 (p.G22E) showed reduced anti-biofilm activity, increased meningococcal adhesion and invasion of cells compared with wild type SPLUNC1.ConclusionsA mutation in SPLUNC1 affecting mucosal attachment, biofilm formation and invasion of mucosal epithelial cells is a new genetic cause of meningococcal disease.

Journal article

Park M, Thwaites RS, Openshaw PJM, 2020, COVID-19: Lessons from SARS and MERS., European Journal of Immunology, Vol: 50, Pages: 308-311, ISSN: 0014-2980

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00888712&limit=30&person=true