Imperial College London

Prof. Ramon Vilar

Faculty of Natural SciencesDepartment of Chemistry

Prof of Medicinal Inorganic Chemistry & Vice-Dean (Research)
 
 
 
//

Contact

 

+44 (0)20 7594 1967r.vilar Website

 
 
//

Location

 

301HMolecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Northover:2021:10.1038/s41598-021-95736-7,
author = {Northover, G and Mao, Y and Ahmed, H and Blasco, S and Vilar, R and Garcia-Espana, E and Weiss, D},
doi = {10.1038/s41598-021-95736-7},
journal = {Scientific Reports},
pages = {1--12},
title = {Effect of salinity on the zinc(II) binding efficiency of siderophore functional groups and implications for salinity tolerance mechanisms in barley},
url = {http://dx.doi.org/10.1038/s41598-021-95736-7},
volume = {11},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Bacteria, fungi and grasses use siderophores to access micronutrients. Hence, the metal binding efficiency of siderophores is directly related to ecosystem productivity. Salinization of natural solutions, linked to climate change induced sea level rise and changing precipitation patterns, is a serious ecological threat. In this study, we investigate the impact of salinization on the zinc(II) binding efficiency of the major siderophore functional groups, namely the catecholate (for bacterial siderophores), α-hydroxycarboxylate (for plant siderophores; phytosiderophores) and hydroxamate (for fungal siderophores) bidentate motifs. Our analysis suggests that the order of increasing susceptibility of siderophore classes to salinity in terms of their zinc(II) chelating ability is: hydroxamate < catecholate < α-hydroxycarboxylate. Based on this ordering, we predict that plant productivity is more sensitive to salinization than either bacterial or fungal productivity. Finally, we show that previously observed increases in phytosiderophore release by barley plants grown under salt stress in a medium without initial micronutrient deficiencies (i.e., no micronutrient limitations prior to salinization), are in line with the reduced zinc(II) binding efficiency of the α-hydroxycarboxylate ligand and hence important for the salinity tolerance of whole-plant zinc(II) status.
AU - Northover,G
AU - Mao,Y
AU - Ahmed,H
AU - Blasco,S
AU - Vilar,R
AU - Garcia-Espana,E
AU - Weiss,D
DO - 10.1038/s41598-021-95736-7
EP - 12
PY - 2021///
SN - 2045-2322
SP - 1
TI - Effect of salinity on the zinc(II) binding efficiency of siderophore functional groups and implications for salinity tolerance mechanisms in barley
T2 - Scientific Reports
UR - http://dx.doi.org/10.1038/s41598-021-95736-7
UR - https://www.nature.com/articles/s41598-021-95736-7
UR - http://hdl.handle.net/10044/1/90926
VL - 11
ER -