Imperial College London

Rachel Buchan

Faculty of MedicineNational Heart & Lung Institute

Honorary Research Officer
 
 
 
//

Contact

 

+44 (0)20 7352 8121 ext 88145rachel.buchan

 
 
//

Location

 

2047Sydney StreetRoyal Brompton Campus

//

Summary

 

Publications

Publication Type
Year
to

61 results found

Tayal U, gregson J, Buchan R, Whiffin N, Halliday B, Lota A, Roberts A, Baksi A, Voges I, Jarman J, Baruah R, Frenneaux M, Cleland J, Barton P, Pennell D, Ware J, Cook S, Prasad Set al., 2021, Moderate excess alcohol consumption and adverse cardiac remodelling in dilated cardiomyopathy, Heart, ISSN: 1355-6037

Objective The effect of moderate excess alcohol consumption is widely debated and has not been well defined in dilated cardiomyopathy (DCM). There is need for a greater evidence base to help advise patients. We sought to evaluate the effect of moderate excess alcohol consumption on cardiovascular structure, function and outcomes in DCM. Methods Prospective longitudinal observational cohort study. Patients with DCM (n=604) were evaluated for a history of moderate excess alcohol consumption (UK government guidelines; >14 units/week for women, >21 units/week for men) at cohort enrollment, had cardiovascular magnetic resonance and were followed up for the composite endpoint of cardiovascular death, heart failure and arrhythmic events. Patients meeting criteria for alcoholic cardiomyopathy were not recruited. ResultsDCM patients with a history of moderate excess alcohol consumption (n=98, 16%) had lower biventricular function and increased chamber dilatation of the left ventricle, right ventricle and left atrium, as well as increased left ventricular hypertrophy compared to patients without moderate alcohol consumption. They were more likely to be male (alcohol excess group– n =92, 94% vs n =306, 61%, p=<0.001). After adjustment for biological sex, moderate excess alcohol was not associated with adverse cardiac structure. There was no difference in mid-wall myocardial fibrosis between groups. Prior moderate excess alcohol consumption did not affect prognosis (HR 1.29, 0.73 to 2.26, p=0.38) during median follow up of 3.9 years. ConclusionDilated cardiomyopathy patients with moderate excess alcohol consumption have adverse cardiac structure and function at presentation but this is largely due to biological sex. Alcohol may contribute to sex-specific phenotypic differences in DCM. These findings help to inform lifestyle discussions for patients with dilated cardiomyopathy.

Journal article

Simoes Monteiro de Marvao A, McGurk K, Zheng S, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F, Statton B, Dawes T, Savioli N, Halliday B, Xu X, Buchan R, Baksi A, Quinlan M, Tokarczuk P, Tayal U, Francis C, Whiffin N, Theotokis A, Zhang X, Jang M, Berry A, Pantazis A, Barton P, Rueckert D, Prasad S, Walsh R, Ho C, Cook S, Ware J, O'Regan Det al., 2021, Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy, Journal of the American College of Cardiology, ISSN: 0735-1097

Background: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomereencoding genes, but little is known about the clinical significance of these variants in thegeneral population.Objectives: To compare lifetime outcomes and cardiovascular phenotypes according to thepresence of rare variants in sarcomere-encoding genes amongst middle-aged adults.Methods: We analysed whole exome sequencing and cardiac magnetic resonance (CMR)imaging in UK Biobank participants stratified by sarcomere-encoding variant status.Results: The prevalence of rare variants (allele frequency <0.00004) in HCM-associatedsarcomere-encoding genes in 200,584 participants was 2.9% (n=5,712; 1 in 35), and theprevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was0.25% (n=493, 1 in 407). SARC-HCM-P/LP variants were associated with increased risk ofdeath or major adverse cardiac events compared to controls (HR 1.69, 95% CI 1.38 to 2.07,p<0.001), mainly due to heart failure endpoints (HR 4.23, 95% CI 3.07 to 5.83, p<0.001). In21,322 participants with CMR, SARC-HCM-P/LP were associated with asymmetric increasein left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p<0.001) buthypertrophy (≥13mm) was only present in 18.4% (n=9/49, 95% CI 9 to 32%). SARC-HCMP/LP were still associated with heart failure after adjustment for wall thickness (HR 6.74,95% CI 2.43 to 18.7, p<0.001).Conclusions: In this population of middle-aged adults, SARC-HCM-P/LP variants have lowaggregate penetrance for overt HCM but are associated with increased risk of adversecardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absoluteevent rates are low, identification of these variants may enhance risk stratification beyondfamilial disease.

Journal article

Lota A, 2021, Prognostic significance of non-ischaemic patterns of myocardial fibrosis in patients with normal left ventricular volumes and ejection fraction – the FINALIZE study, JACC: Cardiovascular Imaging, ISSN: 1876-7591

Background: Non-ischaemic patterns of late gadolinium enhancement (LGE) with normal left ventricular volumes and ejection fraction are increasingly detected on cardiovascular magnetic resonance (CMR) but their prognostic significance, and consequently management, is uncertain. Objectives: To investigate the prognostic significance of LGE in patients without coronary artery disease and with normal range LV volumes and ejection fraction. Methods: Patients with mid-wall/subepicardial LGE and normal LV volumes, wall thickness and ejection fraction on CMR were enrolled and compared to a control group without LGE.57 The primary outcome was actual or aborted sudden cardiac death (SCD). Results: Of 748 patients enrolled, 401 had LGE and 347 did not. Median age was 50 years (IQR 38-61), LV ejection fraction 66% (IQR 62-70) and 287 (38%) were women. Scan indications included chest pain (40%), palpitation (33%) and breathlessness (13%). Nopatient experienced SCD and only one LGE+ patient (0.13%) had an aborted SCD in the 11th follow-up year. Over a median of 4.3years, thirty patients (4.0%) died. All-cause mortality was similar for LGE+/- patients (3.7% vs 4.3%; p=0.71) and was associated with age (H 2.04 per 10-years; 95%CI 1.46-2.79; p<0.001). Twenty-one LGE+ and 4 LGE- patients had an unplanned CV hospitalisation (HR 7.22; 95%CI 4.26-21.17; p<0.0001). Conclusion: There was a low SCD risk during long-term follow-up in patients with LGE but otherwise normal LV volumes and ejection fraction. Mortality was driven by age and not LGE presence, location or extent, although the latter was associated with greater CV hospitalisation for suspected myocarditis and symptomatic ventricular tachycardia.

Journal article

de Marvao A, McGurk KA, Zheng SL, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F, Statton B, Dawes TJW, Savioli N, Halliday BP, Xu X, Buchan RJ, Baksi AJ, Quinlan M, Tokarczuk P, Tayal U, Francis C, Whiffin N, Theotokis PI, Zhang X, Jang M, Berry A, Pantazis A, Barton PJR, Rueckert D, Prasad SK, Walsh R, Ho CY, Cook SA, Ware JS, ORegan DPet al., 2021, Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants, Publisher: Cold Spring Harbor Laboratory

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We compared outcomes and cardiovascular phenotypes in UK Biobank participants with whole exome sequencing stratified by sarcomere-encoding variant status.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The prevalence of rare variants (allele frequency &lt;0.00004) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n=5,727; 1 in 35), of which 0.24% (n=474, 1 in 423) were pathogenic or likely pathogenic variants (SARC-P/LP). SARC-P/LP variants were associated with increased risk of death or major adverse cardiac events compared to controls (HR 1.68, 95% CI 1.37-2.06, p&lt;0.001), mainly due to heart failure (HR 4.40, 95% CI 3.22-6.02, p&lt;0.001) and arrhythmia (HR 1.55, 95% CI 1.18-2.03, p=0.002). In 21,322 participants with cardiac magnetic resonance imaging, SARC-P/LP were associated with increased left ventricular maximum wall thickness (10.9±2.7 vs 9.4±1.6 mm, p&lt;0.001) and concentric remodelling (mass/volume ratio: 0.63±0.12 vs 0.58±0.09 g/mL, p&lt;0.001), but hypertrophy (≥13mm) was only present in 16% (n=7/43, 95% CI 7-31%). Other rare sarcomere-encoding variants had a weak effect on wall thickness (9.5±1.7 vs 9.4±1.6 mm, p=0.002) with no combined excess cardiovascular risk (HR 1.00 95% CI 0.92-1.08, p=0.9).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>In the general population, SARC-P/LP variants have low aggregate penetrance for overt HCM bu

Working paper

Ware J, Tadros R, Francis C, Xu X, Matthews P, watkins H, Bezzina Cet al., 2021, Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect, Nature Genetics, Vol: 53, Pages: 128-134, ISSN: 1061-4036

The heart muscle diseases hypertrophic (HCM) and dilated (DCM) cardiomyopathies are leading causes of sudden death and heart failure in young otherwise healthy individuals. We conducted genome-wide association studies (GWAS) and multi-trait analyses in HCM (1,733 cases), DCM (5,521 cases), and nine left ventricular (LV) traits in 19,260 UK Biobank participants with structurally-normal hearts. We identified 16 loci associated with HCM, 13 with DCM, and 23 with LV traits. We show strong genetic correlations between LV traits and cardiomyopathies, with opposing effects in HCM and DCM. Two-sample Mendelian randomization supports a causal association linking increased contractility with HCM risk. A polygenic risk score (PRS) explains a significant portion of phenotypic variability in carriers of HCM-causing rare variants. Our findings thus provide evidence that PRS may account for variability in Mendelian diseases. More broadly, we provide insights into how genetic pathways may lead to distinct disorders through opposing genetic effects.

Journal article

Zhang X, Walsh R, Whiffin N, Buchan R, Midwinter W, Wilk A, Govind R, Li N, Ahmad M, Mazzarotto F, Roberts A, Theotokis P, Mazaika E, Allouba M, de Marvao A, Pua CJ, Day SM, Ashley E, Colan SD, Michels M, Pereira AC, Jacoby D, Ho CY, Olivotto I, Gunnarsson GT, Jefferies J, Semsarian C, Ingles J, ORegan DP, Aguib Y, Yacoub MH, Cook SA, Barton PJR, Bottolo L, Ware JSet al., 2021, Disease-specific variant pathogenicity prediction significantly improves variant interpretation in inherited cardiac conditions, Genetics in Medicine, Vol: 23, Pages: 69-79, ISSN: 1098-3600

Background: Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical genome interpretation. State-of-the-art machine learning tools are useful for genome-wide variant prioritisation but remain imprecise. Since the relationship between molecular consequence and likelihood of pathogenicity varies between genes with distinct molecular mechanisms, we hypothesised that a disease-specific classifier may outperform existing genome-wide tools. Methods: We present a novel disease-specific variant classification tool, CardioBoost, that estimates the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and arrhythmias, trained with variants of known clinical effect. To benchmark against state-of-the-art genome-wide pathogenicity classification tools, we assessed classification of hold-out test variants using both overall performance metrics, and metrics of high-confidence (&gt;90%) classifications relevant to variant interpretation. We further evaluated the prioritisation of variants associated with disease and patient clinical outcomes, providing validations that are robust to potential mis-classification in gold-standard reference datasets.Results: CardioBoost has higher discriminating power than published genome-wide variant classification tools in distinguishing between pathogenic and benign variants based on overall classification performance measures with the highest area under the Precision-Recall Curve as 91% for cardiomyopathies and as 96% for inherited arrhythmias. When assessed at high-confidence (&gt;90%) classification thresholds, prediction accuracy is improved by at least 120% over existing tools for both cardiomyopathies and arrhythmias, with significantly improved sensitivity and specificity. Finally, CardioBoost improves prioritisation of variants significantly associated with disease, and stratifies survival of patients with cardiomyopathies, confirming biologically relevant vari

Journal article

Aguib Y, Allouba M, Afify A, Halawa S, El-Khatib M, Sous M, Galal A, Abdelrahman E, Shehata N, El Sawy A, Elmaghawry M, Anwer S, Kamel O, El Mozy W, Khedr H, Kharabish A, Thabet N, Theotokis P, Buchan R, Govind R, Whiffin N, Walsh R, Aguib H, ElGuindy A, O'Regan D, Cook S, Barton P, Ware J, Yacoub Met al., 2020, The Egyptian collaborative cardiac genomics (ECCO-GEN) Project: defining a healthy volunteer cohort, npj Genomic Medicine, Vol: 5, Pages: 1-8, ISSN: 2056-7944

The integration of comprehensive genomic and phenotypic data from diverse ethnic populations offers unprecedented opportunities towards advancements in precision medicine and novel diagnostic technologies. Current reference genomic databases are not representative of the global human population, making variant interpretation challenging, especially in underrepresented populations such as the North African population. To address this, the Egyptian Collaborative Cardiac Genomics (ECCO-GEN) Project launched a study comprising 1,000 individuals free of cardiovascular disease (CVD). Here, we present the first 391 Egyptian healthy volunteers (EHVols) recruited to establish a pilot phenotyped control cohort. All individuals underwent detailed clinical investigation, including cardiac MRI, and were sequenced using a targeted panel of 174 genes with reported roles in inherited cardiac conditions (ICC). We identified 1,262 variants in 27 cardiomyopathy genes of which 15.1% were not captured in current global and regional genetic reference databases (here: gnomAD and Great Middle Eastern (GME) Variome). The ECCO-GEN project aims at defining the genetic landscape of an understudied population and providing individual-level genetic and phenotypic data to support future studies in CVD and population genetics.

Journal article

Pua CJ, Tham N, Chin CW, Walsh R, Khor CC, Toepfer CN, Repetti GG, Garfinkel AC, Ewoldt JF, Cloonan P, Chen CS, Lim SQ, Cai J, Loo LY, Kong SC, Chiang CWK, Whiffin N, de Marvao A, Lio PM, Hii AA, Yang CX, Le TT, Bylstra Y, Lim WK, Teo JX, Padilha K, Venturini G, Pan B, Govind R, Buchan RJ, Barton PJ, Tan P, Foo R, Yip JWL, Wong RCC, Chan WX, Pereira AC, Tang HC, Jamuar SS, Ware JS, Seidman JG, Seidman CE, Cook SAet al., 2020, Genetic studies of hypertrophic cardiomyopathy in Singaporeans identify variants in TNNI3 and TNNT2 that are common in Chinese patients, Circulation: Genomic and Precision Medicine, Vol: 13, Pages: 424-434, ISSN: 2574-8300

Background - To assess the genetic architecture of hypertrophic cardiomyopathy (HCM) in patients of predominantly Chinese ancestry.Methods - We sequenced HCM disease genes in Singaporean patients (n=224) and Singaporean controls (n=3,634), compared findings with additional populations and Caucasian HCM cohorts (n=6,179) and performed in vitro functional studies.Results - Singaporean HCM patients had significantly fewer confidently interpreted HCM disease variants (Pathogenic (P)/Likely Pathogenic (LP):18%, p<0.0001) but an excess of variants of unknown significance (exVUS: 24%, p<0.0001), as compared to Caucasians (P/LP: 31%, exVUS: 7%). Two missense variants in thin filament encoding genes were commonly seen in Singaporean HCM (TNNI3:p.R79C, disease allele frequency (AF)=0.018; TNNT2:p.R286H, disease AF=0.022) and are enriched in Singaporean HCM when compared with Asian controls (TNNI3:p.R79C, Singaporean controls AF=0.0055, p=0.0057, gnomAD-East Asian (gnomAD-EA) AF=0.0062, p=0.0086; TNNT2:p.R286H, Singaporean controls AF=0.0017, p<0.0001, gnomAD-EA AF=0.0009, p<0.0001). Both these variants have conflicting annotations in ClinVar and are of low penetrance (TNNI3:p.R79C, 0.7%; TNNT2:p.R286H, 2.7%) but are predicted to be deleterious by computational tools. In population controls, TNNI3:p.R79C carriers had significantly thicker left ventricular walls compared to non-carriers while its etiological fraction is limited (0.70, 95% CI: 0.35-0.86) and thus TNNI3:p.R79C is considered a VUS. Mutant TNNT2:p.R286H iPSC-CMs show hypercontractility, increased metabolic requirements and cellular hypertrophy and the etiological fraction (0.93, 95% CI: 0.83-0.97) support the likely pathogenicity of TNNT2:p.R286H.Conclusions - As compared to Caucasians, Chinese HCM patients commonly have low penetrance risk alleles in TNNT2 or TNNI3 but exhibit few clinically actionable HCM variants overall. This highlights the need for greater study of HCM genetics in non-Caucasian pop

Journal article

Turro E, Astle WJ, Megy K, Graef S, Greene D, Shamardina O, Allen HL, Sanchis-Juan A, Frontini M, Thys C, Stephens J, Mapeta R, Burren OS, Downes K, Haimel M, Tuna S, Deevi SVV, Aitman TJ, Bennett DL, Calleja P, Carss K, Caulfield MJ, Chinnery PF, Dixon PH, Gale DP, James R, Koziell A, Laffan MA, Levine AP, Maher ER, Markus HS, Morales J, Morrell NW, Mumford AD, Ormondroyd E, Rankin S, Rendon A, Richardson S, Roberts I, Roy NBA, Saleem MA, Smith KGC, Stark H, Tan RYY, Themistocleous AC, Thrasher AJ, Watkins H, Webster AR, Wilkins MR, Williamson C, Whitworth J, Humphray S, Bentley DR, Kingston N, Walker N, Bradley JR, Ashford S, Penkett CJ, Freson K, Stirrups KE, Raymond FL, Ouwehand WHet al., 2020, Whole-genome sequencing of patients with rare diseases in a national health system, Nature, Vol: 583, Pages: 96-102, ISSN: 0028-0836

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.

Journal article

Allouba M, Aguib Y, Walsh R, Afify A, Theotokis P, Galal A, Halawa S, Shorbagy S, Ibrahim AM, Kassem HS, Ellithy A, Buchan R, Hosny M, Whiffin N, Elguindy A, Anwer S, Cook SA, Ware JS, Barton PJ, Yacoub Met al., 2020, Analysis of HCM in an understudied population reveals a new mechanism of pathogenicity, Publisher: Cold Spring Harbor Laboratory

Hypertrophic Cardiomyopathy (HCM) is an inherited disease characterized by genetic and phenotypic heterogeneity. MYH7 represents one of the main sarcomere-encoding genes associated with HCM. Missense variants in this gene cause HCM through gain-of-function actions, whereby variants produce an abnormal activated protein which incorporates into the sarcomere as a "poison peptide". Here we report a frameshift variant in MYH7, c.5769delG, that is associated with HCM in an Egyptian cohort (3.3%) compared with ethnically-matched controls. This variant is absent from previously published large-scale Caucasian HCM cohorts. We further demonstrate strong evidence of co-segregation of c.5769delG with HCM in a large family (LOD score: 3.01). The predicted sequence of the variant MYH7 transcript shows that the frameshift results in a premature termination codon (PTC) downstream of the last exon-exon junction of the gene that is expected to escape nonsense-mediated decay (NMD). RNA sequencing of myocardial tissue obtained from a patient with the variant during surgical myectomy confirmed the expression of the variant MYH7 transcript. Our analysis reveals a new mechanism of pathogenicity in the understudied Egyptian population whereby distal PTC in MYH7 may lead to the expression of an abnormal protein.

Working paper

Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, de Marvao A, Dawes T, Felkin LE, Ahmad M, Theotokis PI, Edwards E, Ing AI, Thomson KL, Chan LLH, Sim D, Baksi AJ, Pantazis A, Roberts AM, Watkins H, Funke B, O'Regan D, Olivotto I, Barton PJR, Prasad SK, Cook SA, Ware JS, Walsh Ret al., 2020, Re-evaluating the genetic contribution of monogenic dilated cardiomyopathy, Circulation, Vol: 141, Pages: 387-398, ISSN: 0009-7322

Background: Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 DCM patients across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60,706 individuals in order to identify clinically interpretable genes robustly associated with dominant monogenic DCM.Methods: We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 DCM patients and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 DCM patients sequenced in diagnostic laboratories and the ExAC database for replication and meta-analysis.Results: Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1 and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult DCM patients and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Whilst the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value since novel variants will be uninterpretable and their diagnostic yield is minimal.Conclusion: In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating into high interpretability in diagnostic testing. The

Journal article

Walsh R, Mazzarotto F, Whiffin N, Buchan R, Li N, Felkin L, Thomson KL, Watkins H, Barton PJR, Olivotto I, Cook SA, Bezzina CR, Ware JSet al., 2019, Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases, 52nd Conference of the European-Society-of-Human-Genetics (ESHG), Publisher: NATURE PUBLISHING GROUP, Pages: 1720-1720, ISSN: 1018-4813

Conference paper

Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H, Smith AM, Toepfer CN, Getz K, Gorham J, Patel P, Ito K, Willcox JA, Arany Z, Li J, Owens AT, Govind R, Nuñez B, Mazaika E, Bayes-Genis A, Walsh R, Finkelman B, Lupon J, Whiffin N, Serrano I, Midwinter W, Wilk A, Bardaji A, Ingold N, Buchan R, Tayal U, Pascual-Figal DA, de Marvao A, Ahmad M, Garcia-Pinilla JM, Pantazis A, Dominguez F, John Baksi A, O'Regan DP, Rosen SD, Prasad SK, Lara-Pezzi E, Provencio M, Lyon AR, Alonso-Pulpon L, Cook SA, DePalma SR, Barton PJR, Aplenc R, Seidman JG, Ky B, Ware JS, Seidman CEet al., 2019, Genetic variants associated with cancer therapy-induced cardiomyopathy, Circulation, Vol: 140, Pages: 31-41, ISSN: 0009-7322

BackgroundCancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and pre-existing cardiovascular disorders. These parametersincompletely account for substantial inter-individual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM.MethodsWe studied 213 CCM patients from three cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped breast cancer adults (n=73) and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including nine pre-specified genes were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas (TCGA) participants(n=2053), healthy volunteers(n=445), and ancestry-matchedreference population. Clinical characteristics and outcomes were assessed, stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice.ResultsCCM was diagnosed 0.4-9 years after chemotherapy; 90% of these patients received anthracyclines. Adult CCM patients had cardiovascular risk factors similar to the U.S. population. Among nine prioritized genes CCM patients had more rare protein-altering variants than comparative cohorts (p≤1.98e-04). Titin-truncating variants (TTNtv) predominated, occurring in 7.5% CCM patients versus 1.1% TCGA participants (p=7.36e-08), 0.7% healthy volunteers (p=3.42e-06), and 0.6% reference population (p=5.87e-14). Adult CCM patients with TTNtv experienced more heart failure and atrial fibrillation (p=0.003)and impaired myocardial recovery (p=0.03) than those without.Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wildtype (p=0.0004 and p<0.002, respectively).ConclusionsUnrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtv, increased the risk for CCM in children and adults, and adverse cardiac events

Journal article

Thomson KL, Ormondroyd E, Harper AR, Dent T, McGuire K, Baksi J, Blair E, Brennan P, Buchan R, Bueser T, Campbell C, Carr-White G, Cook S, Daniels M, Deevi SVV, Goodship J, Hayesmoore JBG, Henderson A, Lamb T, Prasad S, Rayner-Matthews P, Robert L, Sneddon L, Stark H, Walsh R, Ware JS, Farrall M, Watkins HC, NIHR BioResource Rare Diseases Consortiumet al., 2019, Analysis of 51 proposed hypertrophic cardiomyopathy genes from genome sequencing data in sarcomere negative cases has negligible diagnostic yield, Genetics in Medicine, Vol: 21, Pages: 1576-1584, ISSN: 1098-3600

PURPOSE: Increasing numbers of genes are being implicated in Mendelian disorders and incorporated into clinical test panels. However, lack of evidence supporting the gene-disease relationship can hinder interpretation. We explored the utility of testing 51 additional genes for hypertrophic cardiomyopathy (HCM), one of the most commonly tested Mendelian disorders. METHODS: Using genome sequencing data from 240 sarcomere gene negative HCM cases and 6229 controls, we undertook case-control and individual variant analyses to assess 51 genes that have been proposed for HCM testing. RESULTS: We found no evidence to suggest that rare variants in these genes are prevalent causes of HCM. One variant, in a single case, was categorized as likely to be pathogenic. Over 99% of variants were classified as a variant of uncertain significance (VUS) and 54% of cases had one or more VUS. CONCLUSION: For almost all genes, the gene-disease relationship could not be validated and lack of evidence precluded variant interpretation. Thus, the incremental diagnostic yield of extending testing was negligible, and would, we propose, be outweighed by problems that arise with a high rate of uninterpretable findings. These findings highlight the need for rigorous, evidence-based selection of genes for clinical test panels.

Journal article

Corden B, Jarman J, Whiffin N, Tayal U, Buchan R, Sehmi J, Harper A, Midwinter W, Lascelles K, Mason M, Baksi J, Pantazis A, Pennell D, Barton P, Prasad S, Wong T, Cook S, Ware Jet al., 2019, Association between titin truncating variants and life-threatening cardiac arrhythmias in patients with dilated cardiomyopathy and implantable defibrillator, JAMA Network Open, Vol: 2, Pages: 1-12, ISSN: 2574-3805

Importance There is a need for better arrhythmic risk stratification in nonischemic dilated cardiomyopathy (DCM). Titin-truncating variants (TTNtvs) in the TTN gene are the most common genetic cause of DCM and may be associated with higher risk of arrhythmias in patients with DCM.Objective To determine if TTNtv status is associated with the development of life-threatening ventricular arrhythmia and new persistent atrial fibrillation in patients with DCM and implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRT-D) devices.Design, Setting, and Participants This retrospective, multicenter cohort study recruited 148 patients with or without TTNtvs who had nonischemic DCM and ICD or CRT-D devices from secondary and tertiary cardiology clinics in the United Kingdom from February 1, 2011, to June 30, 2016, with a median (interquartile range) follow-up of 4.2 (2.1-6.5) years. Exclusion criteria were ischemic cardiomyopathy, primary valve disease, congenital heart disease, or a known or likely pathogenic variant in the lamin A/C gene. Analyses were performed February 1, 2017, to May 31, 2017.Main Outcome and Measures The primary outcome was time to first device-treated ventricular tachycardia of more than 200 beats/min or first device-treated ventricular fibrillation. Secondary outcome measures included time to first development of persistent atrial fibrillation.Results Of 148 patients recruited, 117 adult patients with nonischemic DCM and an ICD or CRT-D device (mean [SD] age, 56.9 [12.5] years; 76 [65.0%] men; 106 patients [90.6%] with primary prevention indications) were included. Having a TTNtv was associated with a higher risk of receiving appropriate ICD therapy (shock or antitachycardia pacing) for ventricular tachycardia or fibrillation (hazard ratio [HR], 4.9; 95% CI, 2.2-10.7; P < .001). This association was independent of all covariates, including midwall fibrosis measured by late gadolinium enhanc

Journal article

Wei W, Tuna S, Keogh MJ, Smith KR, Aitman TJ, Beales PL, Bennett DL, Gale DP, Bitner-Glindzicz MAK, Black GC, Brennan P, Elliott P, Flinter FA, Floto RA, Houlden H, Irving M, Koziell A, Maher ER, Markus HS, Morrell NW, Newman WG, Roberts I, Sayer JA, Smith KGC, Taylor JC, Watkins H, Webster AR, Wilkie AOM, Williamson C, Attwood A, Brown M, Brod NC, Crisp-Hihn A, Davis J, Deevi SVV, Dewhurst EF, Edwards K, Erwood M, Fox J, Frary AJ, Hu F, Jolley J, Kingston N, Linger R, Mapeta R, Martin J, Meacham S, Papadia S, Rayner-Matthews PJ, Samarghitean C, Shamardina O, Simeoni I, Staines S, Staples E, Stark H, Stephens J, Titterton C, Tuna S, von Ziegenweidt J, Watt C, Whitehorn D, Wood Y, Yates K, Yu P, James R, Ashford S, Penkett CJ, Stirrups KE, Bariana T, Lentaigne C, Sivapalaratnam S, Westbury SK, Allsup DJ, Bakchoul T, Biss T, Boyce S, Collins J, Collins PW, Curry NS, Downes K, Dutt T, Erber WN, Evans G, Everington T, Favier R, Gomez K, Greene D, Gresele P, Hart D, Kazmi R, Kelly AM, Lambert M, Madan B, Mangles S, Mathias M, Millar C, Obaji S, Peerlinck K, Roughley C, Schulman S, Scully M, Shapiro SE, Sibson K, Simeoni I, Sims MC, Tait RC, Talks K, Thys C, Toh C-H, Van Geet C, Westwood J-P, Papadia S, Mumford AD, Ouwehand WH, Freson K, Laffan MA, Tan RYY, Harkness K, Mehta S, Muir KW, Hassan A, Traylor M, Drazyk AM, Markus HS, Parry D, Ahmed M, Kazkaz H, Vandersteen AM, Aitman TJ, Ormondroyd E, Thomson K, Dent T, Brennan P, Buchan RJ, Bueser T, Carr-White G, Cook S, Daniels MJ, Harper AR, Ware JS, Watkins H, Dixon PH, Chambers J, Cheng F, Estiu MC, Hague WM, Marschall H-U, Vazquez-Lopez M, Williamson C, Arno G, Dewhurst EF, Erwood M, French CE, Michaelides M, Moore AT, Sanchis-Juan A, Carss K, Webster AR, Raymond FL, Chinnery PF, Griffiths P, Horvath R, Hudson G, Jurkute N, Pyle A, Wei W, Yu-Wai-Man P, Whitworth J, Adlard J, Ahmed M, Armstrong R, Brewer C, Casey R, Cole TRP, Evans DG, Greenhalgh L, Hanson HL, Hoffman J, Izatt L, Kumar A, Lalloo F, Ong KR, Park S-M, Searet al., 2019, Germline selection shapes human mitochondrial DNA diversity, Science, Vol: 364, ISSN: 0036-8075

INTRODUCTIONOnly 2.4% of the 16.5-kb mitochondrial DNA (mtDNA) genome shows homoplasmic variation at >1% frequency in humans. Migration patterns have contributed to geographic differences in the frequency of common genetic variants, but population genetic evidence indicates that selection shapes the evolving mtDNA phylogeny. The mechanism and timing of this process are not clear.Unlike the nuclear genome, mtDNA is maternally transmitted and there are many copies in each cell. Initially, a new genetic variant affects only a proportion of the mtDNA (heteroplasmy). During female germ cell development, a reduction in the amount of mtDNA per cell causes a “genetic bottleneck,” which leads to rapid segregation of mtDNA molecules and different levels of heteroplasmy between siblings. Although heteroplasmy is primarily governed by random genetic drift, there is evidence of selection occurring during this process in animals. Yet it has been difficult to demonstrate this convincingly in humans.RATIONALETo determine whether there is selection for or against heteroplasmic mtDNA variants during transmission, we studied 12,975 whole-genome sequences, including 1526 mother–offspring pairs of which 45.1% had heteroplasmy affecting >1% of mtDNA molecules. Harnessing both the mtDNA and nuclear genome sequences, we then determined whether the nuclear genetic background influenced mtDNA heteroplasmy, validating our findings in another 40,325 individuals.RESULTSPreviously unknown mtDNA variants were less likely to be inherited than known variants, in which the level of heteroplasmy tended to increase on transmission. Variants in the ribosomal RNA genes were less likely to be transmitted, whereas variants in the noncoding displacement (D)–loop were more likely to be transmitted. MtDNA variants predicted to affect the protein sequence tended to have lower heteroplasmy levels than synonymous variants. In 12,975 individuals, we identified a correlation between

Journal article

Mazzarotto F, Tayal P, Buchan R, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, De Marvao A, Felkin L, Dawes T, Ahmad M, Edwards E, Ing A, Thomson K, Chan L, Sim D, Baksi J, Pantazis A, Roberts A, Watkins H, Funke B, O'Regan D, Olivotto I, Barton P, Prasad S, Cook S, Ware J, Walsh Ret al., 2019, RE-EVALUATING THE GENETIC CONTRIBUTION OF MONOGENIC DILATED CARDIOMYOPATHY, Annual Conference of the British-Cardiovascular-Society (BCS) - Digital Health Revolution, Publisher: BMJ PUBLISHING GROUP, Pages: A100-A100, ISSN: 1355-6037

Conference paper

Rhodes CJ, Batai K, Bleda M, Haimel M, Southgate L, Germain M, Pauciulo MW, Hadinnapola C, Aman J, Girerd B, Arora A, Knight J, Hanscombe KB, Karnes JH, Kaakinen M, Gall H, Ulrich A, Harbaum L, Cebola I, Ferrer J, Lutz K, Swietlik EM, Ahmad F, Amouyel P, Archer SL, Argula R, Austin ED, Badesch D, Bakshi S, Barnett C, Benza R, Bhatt N, Bogaard HJ, Burger CD, Chakinala M, Church C, Coghlan JG, Condliffe R, Corris PA, Danesino C, Debette S, Elliott CG, Elwing J, Eyries M, Fortin T, Franke A, Frantz RP, Frost A, Garcia JGN, Ghio S, Ghofrani H-A, Gibbs JSR, Harley J, He H, Hill NS, Hirsch R, Houweling AC, Howard LS, Ivy D, Kiely DG, Klinger J, Kovacs G, Lahm T, Laudes M, Machado RD, Ross RVM, Marsolo K, Martin LJ, Moledina S, Montani D, Nathan SD, Newnham M, Olschewski A, Olschewski H, Oudiz RJ, Ouwehand WH, Peacock AJ, Pepke-Zaba J, Rehman Z, Robbins I, Roden DM, Rosenzweig EB, Saydain G, Scelsi L, Schilz R, Seeger W, Shaffer CM, Simms RW, Simon M, Sitbon O, Suntharalingam J, Tang H, Tchourbanov AY, Thenappan T, Torres F, Toshner MR, Treacy CM, Noordegraaf AV, Waisfisz Q, Walsworth AK, Walter RE, Wharton J, White RJ, Wilt J, Wort SJ, Yung D, Lawrie A, Humbert M, Soubrier F, Trégouët D-A, Prokopenko I, Kittles R, Gräf S, Nichols WC, Trembath RC, Desai AA, Morrell NW, Wilkins MR, UK NIHR BioResource Rare Diseases Consortium, UK PAH Cohort Study Consortium, US PAH Biobank Consortiumet al., 2019, Genetic determinants of risk in pulmonary arterial hypertension: international case-control studies and meta-analysis, Lancet Respiratory Medicine, Vol: 7, Pages: 227-238, ISSN: 2213-2600

BackgroundRare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes.MethodsWe did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses.FindingsA locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13 × 10–15) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65 × 10–20) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69 × 10–12; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-media

Journal article

Walsh R, Mazzarotto F, Whiffin N, Buchan R, Midwinter W, Wilk A, Li N, Felkin L, Ingold N, Govind R, Ahmad M, Mazaika E, Allouba M, Zhang X, de Marvao A, Day SM, Ashley E, Colan SD, Michels M, Pereira AC, Jacoby D, Ho CY, Thomson KL, Watkins H, Barton PJR, Olivotto I, Cook SA, Ware JSet al., 2019, Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: The case of hypertrophic cardiomyopathy, Genome Medicine, Vol: 11, ISSN: 1756-994X

BackgroundInternational guidelines for variant interpretation in Mendelian disease set stringent criteria to report a variant as (likely) pathogenic, prioritising control of false-positive rate over test sensitivity and diagnostic yield. Genetic testing is also more likely informative in individuals with well-characterised variants from extensively studied European-ancestry populations. Inherited cardiomyopathies are relatively common Mendelian diseases that allow empirical calibration and assessment of this framework.MethodsWe compared rare variants in large hypertrophic cardiomyopathy (HCM) cohorts (up to 6179 cases) to reference populations to identify variant classes with high prior likelihoods of pathogenicity, as defined by etiological fraction (EF). We analysed the distribution of variants using a bespoke unsupervised clustering algorithm to identify gene regions in which variants are significantly clustered in cases.ResultsAnalysis of variant distribution identified regions in which variants are significantly enriched in cases and variant location was a better discriminator of pathogenicity than generic computational functional prediction algorithms. Non-truncating variant classes with an EF ≥ 0.95 were identified in five established HCM genes. Applying this approach leads to an estimated 14–20% increase in cases with actionable HCM variants, i.e. variants classified as pathogenic/likely pathogenic that might be used for predictive testing in probands’ relatives.ConclusionsWhen found in a patient confirmed to have disease, novel variants in some genes and regions are empirically shown to have a sufficiently high probability of pathogenicity to support a “likely pathogenic” classification, even without additional segregation or functional data. This could increase the yield of high confidence actionable variants, consistent with the framework and recommendations of current guidelines. The techniques outlined offer a consisten

Journal article

Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Salazar-Mendiguchia J, Garcia-Pinilla JM, Pascual-Figal DA, Nunez J, Guzzo-Merello G, Gonzalez-Vioque E, Bardaji A, Manito N, Lopez-Garrido MA, Padron-Barthe L, Edwards E, Whiffin N, Walsh R, Buchan RJ, Midwinter W, Wilk A, Prasad S, Pantazis A, Baski J, O'Regan DP, Alsonso-Pulpon A, Cook SA, Lara-Pezzi E, Barton PJ, Garcia-Pavia Pet al., 2018, A genetic etiology for alcohol-induced cardiac toxicity, Journal of the American College of Cardiology, Vol: 71, Pages: 2293-2302, ISSN: 0735-1097

Background: Alcoholic cardiomyopathy (ACM) is defined by a dilated and impaired left ventricle due to chronic excess alcohol consumption. It is largely unknown what factors determine cardiac toxicity on exposure to alcohol.Objectives: We sought to evaluate the role of variation in cardiomyopathy-associated genes in the pathophysiology of ACM, and to examine the effects of alcohol intake and genotype on DCM severity.Methods: We characterized 141 ACM cases, 716 dilated cardiomyopathy (DCM) cases and 445 healthy volunteers. We compared the prevalence of rare, protein-altering variants in 9 genes associated with inherited DCM. We evaluated the effect of genotype and alcohol-consumption on phenotype in DCM.Results: Variants in well-characterized DCM-causing genes were more prevalent in patients with ACM than controls (13.5% vs 2.9%; P=1.2e-05), but similar between patients with ACM and DCM (19.4%; P=0.12) and with a predominant burden of Titin-truncating variants (TTNtv, 9.9%). Separately, we identified an interaction between TTN genotype and excess alcohol consumption in a cohort of DCM patients not meeting ACM criteria. On multivariate analysis, DCM patients with a TTNtv who consumed excess alcohol had an 8.7% absolute reduction in ejection fraction (95% CI -2.3 to -15.1, P<0.007) compared with those without TTNtv and excess alcohol consumption. The presence of TTNtv did not predict phenotype, outcome or functional recovery on treatment in ACM patients. Conclusions: TTNtv represent a prevalent genetic predisposition for ACM, and are also associated with a worse LVEF in DCM patients who consume alcohol above recommended levels. Familial evaluation and genetic testing should be considered in patients presenting with ACM.

Journal article

de Marvao A, Biffi C, Walsh R, Doumou G, Dawes T, Shi W, Bai W, Berry A, Buchan R, Pierce I, Tokarczuk P, Statton B, Francis C, Duan J, Quinlan M, Felkin L, Le T-T, Bhuva A, Tang HC, Barton P, Chin CW-L, Rueckert D, Ware J, Prasad S, O'Regan DP, Cook SAet al., 2018, Defining The Effects Of Genetic Variation Using Machine Learning Analysis Of CMRs: A Study In Hypertrophic Cardiomyopathy And In A Healthy Population, Joint Meeting of the British-Society-of-Cardiovascular-Imaging/British-Society-of-Cardiovascular-CT, British-Society-of-Cardiovascular-Magnetic-Resonance and British-Nuclear-Cardiac-Society on British Cardiovascular Imaging, Publisher: BMJ PUBLISHING GROUP, Pages: A7-A8, ISSN: 1355-6037

Conference paper

Whiffin N, walsh R, Govind R, Edwards M, Ahmad M, Zhang X, Tayal U, Buchan R, Midwinter W, Wilk A, Najgebauer H, Francis C, Wilkinson S, Monk T, Brett L, O'Regan D, Prasad S, Morris-Rosendahl D, Barton P, Edwards E, Ware J, Cook Set al., 2018, CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation, Genetics in Medicine, Vol: 20, Pages: 1246-1254, ISSN: 1098-3600

PurposeInternationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (http://www.cardioclassifier.org), a semiautomated decision-support tool for inherited cardiac conditions (ICCs).MethodsCardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.ResultsWe benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher’s P = 1.1  ×  10−18), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.ConclusionCardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.

Journal article

Walsh R, Buchan R, Wilk A, John S, Felkin L, Thomson KL, Chiaw TH, Chin Woon Loong C, Jian Pua C, Raphael C, Prasad S, Barton P, Funke B, Watkins H, Ware J, Cook SAet al., 2017, Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes, European Heart Journal, Vol: 38, Pages: 3461-3468, ISSN: 1522-9645

Aim: Hypertrophic cardiomyopathy (HCM)exhibits genetic heterogeneity that is dominated by variation in eight sarcomericgenes.Genetic variation in a large number of non-sarcomeric genes has also been implicated in HCM but not formally assessed. Here we used very large case and control cohorts to determine the extent to which variation in non-sarcomeric genes contributes to HCM.Methods and results: We sequenced known and putative HCM genes ina new large prospective HCM cohort (n=804) and analysed data alongside the largest published series of clinically genotyped HCM patients (n=6179), previously published HCM cohorts and reference population samples from the Exome Aggregation Consortium (ExAC, n=60,706) to assess variation in 31 genes implicated in HCM. We foundno significant excess of rare (minor allele frequency < 1:10,000 in ExAC)protein-alteringvariants over controls for most genes tested and conclude that novel variantsin these genes are rarely interpretable, even for genes with previous evidence of co-segregation (e.g. ACTN2). To provide an aid for variant interpretation, weintegratedHCM gene sequencedata with aggregatedpedigreeand functional data and suggest ameans of assessing genepathogenicity in HCMusing this evidence. Conclusions: We show that genetic variation in the majority of non-sarcomeric genes implicated in HCM is not associated with the condition, reinforce the fact that the sarcomeric gene variation is the primary cause of HCM known to date and underscore that the aetiology of HCM is unknown in the majority ofpatients.

Journal article

Corden B, Jarman J, Whiffin N, Tayal U, Buchan R, Sehmi J, Harper A, Midwinter W, Lascelles K, Markides V, Mason M, Pennell DJ, Barton PJ, Prasad SK, Wong T, Cook SA, Ware JSet al., 2017, Titin Truncating Variants Predict Life-threatening Arrhythmias in Patients With Dilated Cardiomyopathy, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Corden B, Jarman J, Whiffin N, Tayal U, Buchan R, Sehmi J, Harper A, Midwinter W, Lascelles K, Markides V, Mason M, Pennell DJ, Barton PJ, Prasad SK, Wong T, Cook SA, Ware JSet al., 2017, Titin Truncating Variants Predict Life-threatening Arrhythmias in Patients With Dilated Cardiomyopathy, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: American Heart Association, Pages: E96-E96, ISSN: 0009-7322

Introduction: There is an urgent need for better arrhythmic risk stratification in non-ischaemic dilated cardiomyopathy (DCM), where the benefit of ICD implantation is unclear. Titin truncating variants (TTNtv) are the commonest genetic cause of DCM and are associated with early onset non-sustained ventricular tachycardia (NSVT) and atrial fibrillation (AF) in these patients.Hypothesis: We hypothesize that TTNtv status can predict potentially life threatening ventricular tachycardia (VT) or fibrillation (VF) and development of new persistent AF in DCM patients with CRT-D or ICD devices.Methods: We studied 117 DCM patients with an ICD or CRT-D and documented device-recorded arrhythmia over a median period of 4.2 years. Patients were stratified by TTN genotype (28 positive for a TTNtv, 89 negative). The primary outcome was time to first device-treated VT >200bpm or VF. Secondary outcome measures included time to first development of persistent AF.Results: TTNtv predicted the risk of receiving an appropriate ICD therapy for VT/VF (hazard ratio [HR] = 4.9, 95% confidence interval [CI]=2.3-10.7, P<0.0001). This association was independent of all covariates, including replacement fibrosis measured by late-gadolinium enhancement (LGE), (adjusted HR = 8.2, 95% CI 1.9-36.5, P=0.005). Individuals with both a TTNtv and fibrosis had a markedly greater risk for appropriate device therapy than those with neither (HR = 16.6, CI 3.5-79.3, P<0.0001). TTNtv were also a risk factor for developing new persistent AF (HR = 4.4, 95% CI = 1.45-13.1, P=0.006).Conclusion: TTNtv status is an important risk factor for clinically significant arrhythmia in patients with DCM and CRT-D or ICD devices. TTNtv status alone, or more powerfully in combination with fibrosis imaging by MRI, may provide an effective approach for risk stratifying the need for ICD therapy in DCM patients.

Conference paper

Tayal U, Newsome S, Buchan R, Whiffin N, Halliday B, Lota A, Roberts A, Baksi AJ, Voges I, Midwinter W, Wilk A, Govind R, Walsh R, Daubeney P, Jarman JWE, Baruah R, Frenneaux M, Barton PJ, Pennell D, Ware JS, Prasad SK, Cook SAet al., 2017, Phenotype and clinical outcomes of titin cardiomyopathy, Journal of the American College of Cardiology, Vol: 70, Pages: 2264-2274, ISSN: 0735-1097

Background Improved understanding of dilated cardiomyopathy (DCM) due to titin truncation (TTNtv) may help guide patient stratification.Objectives The purpose of this study was to establish relationships among TTNtv genotype, cardiac phenotype, and outcomes in DCM.Methods In this prospective, observational cohort study, DCM patients underwent clinical evaluation, late gadolinium enhancement cardiovascular magnetic resonance, TTN sequencing, and adjudicated follow-up blinded to genotype for the primary composite endpoint of cardiovascular death, and major arrhythmic and major heart failure events.Results Of 716 subjects recruited (mean age 53.5 ± 14.3 years; 469 men [65.5%]; 577 [80.6%] New York Heart Association function class I/II), 83 (11.6%) had TTNtv. Patients with TTNtv were younger at enrollment (49.0 years vs. 54.1 years; p = 0.002) and had lower indexed left ventricular mass (5.1 g/m2 reduction; padjusted = 0.03) compared with patients without TTNtv. There was no difference in biventricular ejection fraction between TTNtv+/− groups. Overall, 78 of 604 patients (12.9%) met the primary endpoint (median follow-up 3.9 years; interquartile range: 2.0 to 5.8 years), including 9 of 71 patients with TTNtv (12.7%) and 69 of 533 (12.9%) without. There was no difference in the composite primary outcome of cardiovascular death, heart failure, or arrhythmic events, for patients with or without TTNtv (hazard ratio adjusted for primary endpoint: 0.92 [95% confidence interval: 0.45 to 1.87]; p = 0.82).Conclusions In this large, prospective, genotype-phenotype study of ambulatory DCM patients, we show that prognostic factors for all-cause DCM also predict outcome in TTNtv DCM, and that TTNtv DCM does not appear to be associated with worse medium-term prognosis.

Journal article

Rossi R, Scotton C, Barton P, Buchan R, Walsh R, Cook S, Milting H, Bonne G, Brand T, Ferlini Aet al., 2017, POPDC1 gene mutation screening in patients with LGMD and heart disturbances: a mutation load effect?, 22nd International Annual Congress of the World-Muscle-Society (WMS), Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: S140-S140, ISSN: 0960-8966

Conference paper

Biffi C, Simoes Monteiro de Marvao A, Attard M, Dawes T, Whiffin N, Bai W, Shi W, Francis C, Meyer H, Buchan R, Cook S, Rueckert D, O'Regan DPet al., 2017, Three-dimensional Cardiovascular Imaging-Genetics: A Mass Univariate Framework, Bioinformatics, ISSN: 1367-4803

Motivation: Left ventricular (LV) hypertrophy is a strong predictor of cardiovascular outcomes, but its genetic regulation remains largely unexplained. Conventional phenotyping relies on manual calculation of LV mass and wall thickness, but advanced cardiac image analysis presents an opportunity for highthroughput mapping of genotype-phenotype associations in three dimensions (3D).Results: High-resolution cardiac magnetic resonance images were automatically segmented in 1,124 healthy volunteers to create a 3D shape model of the heart. Mass univariate regression was used to plot a 3D effect-size map for the association between wall thickness and a set of predictors at each vertex in the mesh. The vertices where a significant effect exists were determined by applying threshold-free cluster enhancement to boost areas of signal with spatial contiguity. Experiments on simulated phenotypic signals and SNP replication show that this approach offers a substantial gain in statistical power for cardiac genotype-phenotype associations while providing good control of the false discovery rate. This framework models the effects of genetic variation throughout the heart and can be automatically applied to large population cohorts.Availability: The proposed approach has been coded in an R package freely available at https://doi.org/10.5281/zenodo.834610 together with the clinical data used in this work.

Journal article

Whiffin N, Walsh R, Govind R, Edwards M, Ahmad M, Zhang X, Tayal U, Buchan R, Midwinter W, Wilk AE, Najgebauer H, Francis C, Wilkinson S, Monk T, Brett L, O'Regan DP, Prasad SK, Morris-Rosendahl DJ, Barton PJR, Edwards E, Ware JS, Cook SAet al., 2017, CardioClassifier – demonstrating the power of disease- and gene-specific computational decision support for clinical genome interpretation, Publisher: Cold Spring Harbor Laboratory

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Purpose</jats:title><jats:p>Internationally-adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.cardioclassifier.org">www.cardioclassifier.org</jats:ext-link>), a semi-automated decision-support tool for inherited cardiac conditions (ICCs).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>CardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support varian interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We benchmarked CardioClassifier on 57 expertly-curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically-actionable variants (64/219 vs 156/219, Fisher’s <jats:bold>P</jats:bold>=1.1x10-18), with important false positives; illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually-curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.</jats:p></jats:sec><jats:sec><jat

Working paper

Tayal U, Newsome S, Walsh R, Voges I, Whiffin N, Buchan R, Halliday B, Lota A, Barton PJ, Baruah R, Jarman J, Frenneaux M, Ware JS, Cook SA, Prasad SKet al., 2017, Defining the genetic architecture of dilated cardiomyopathy- insights from population genetic variation and the role of titin, Publisher: OXFORD UNIV PRESS, Pages: 821-822, ISSN: 0195-668X

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00451951&limit=30&person=true