Imperial College London

DrRebeccaBell

Faculty of EngineeringDepartment of Earth Science & Engineering

Reader in Tectonics
 
 
 
//

Contact

 

+44 (0)20 7594 0903rebecca.bell

 
 
//

Location

 

2.37aRoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

137 results found

El-Yamani MS, John CM, Bell R, 2024, Mechanism of island dolostones formation in the Cretaceous calcitic ocean: insights from the Mid-Pacific Guyots, Marine and Petroleum Geology, Vol: 163, ISSN: 0264-8172

Dolomite is common in carbonate successions. There is an ongoing debate about the origin of ancient massive dolostones. Recent studies suggest widespread syndepositional and early-burial dolomitisation by normal and near-normal seawater, in the rock record, than previously recognised. Seawater dolomitisation is ubiquitous in Cenozoic islands but Cretaceous counterparts are rare, except for Resolution and Allison guyots, Mid-Pacific Mountains. We explored their dolomitisation conditions and the implications on our understanding of Cretaceous normal seawater syndepositional and near-surface dolomitisation. Integrating geochemical and borehole data reveals temporal overlap between 87Sr/86Sr ages of dolomites, and K/Ar and 40Ar/39Ar ages of the basement. Dolomites near basaltic basement exhibit 42-times Fe-enrichment compared to normal seawater dolomites. Host-rock thermal modelling suggested that δ18Odol temperatures are ∼18–29 °C higher than concurrent temperatures. Seismic interpretation and seismic facies forward modelling demonstrate a spatial overlap between dolomites and magmatic sills in both guyots. Accordingly, magmatically driven hydrothermal dolomitisation is proposed, which promoted dolomitisation by providing high heat flow, increasing seawater circulation, and overcoming limited dolomitisation potential of Cretaceous seawater. The H2O–CO2–SO2–HCl-rich magmatic-hydrothermal acidic fluids would mix with seawater causing slight modification by leaching Mg and Fe from basaltic basement. Consequently, magmatically active Cretaceous islands had greater potential for seawater dolomitisation than counterparts with ceased magmatism, due to increased heat flux and slight increase in Mg:Ca of dolomitising fluids. Our findings imply that deep-seated island dolostones don't only form by deep cold seawater below calcite saturation depth. Instead, magmatism appears crucial in this study and potentially other locations (e.g. Xisha Is

Journal article

Wrona T, Pan I, Bell RE, Jackson CA-L, Gawthorpe RL, Fossen H, Osagiede EE, Brune Set al., 2023, Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis, Solid Earth, Vol: 14, Pages: 1181-1195, ISSN: 1869-9510

Understanding where normal faults are located is critical for an accurate assessment of seismic hazard; the successful exploration for, and production of, natural (including low-carbon) resources; and the safe subsurface storage of CO2. Our current knowledge of normal fault systems is largely derived from seismic reflection data imaging, intracontinental rifts and continental margins. However, exploitation of these data sets is limited by interpretation biases, data coverage and resolution, restricting our understanding of fault systems. Applying supervised deep learning to one of the largest offshore 3-D seismic reflection data sets from the northern North Sea allows us to image the complexity of the rift-related fault system. The derived fault score volume allows us to extract almost 8000 individual normal faults of different geometries, which together form an intricate network characterised by a multitude of splays, junctions and intersections. Combining tools from deep learning, computer vision and network analysis allows us to map and analyse the fault system in great detail and in a fraction of the time required by conventional seismic interpretation methods. As such, this study shows how we can efficiently identify and analyse fault systems in increasingly large 3-D seismic data sets.

Journal article

Gase AC, Bangs NL, Saffer DM, Han S, Miller PK, Bell RE, Arai R, Henrys SA, Kodaira S, Davy R, Frahm L, Barker DHNet al., 2023, Subducting volcaniclastic-rich upper crust supplies fluids for shallow megathrust and slow slip, Science Advances, Vol: 9, Pages: 1-14, ISSN: 2375-2548

Recurring slow slip along near-trench megathrust faults occurs at many subduction zones, but for unknown reasons, this process is not universal. Fluid overpressures are implicated in encouraging slow slip; however, links between slow slip, fluid content, and hydrogeology remain poorly known in natural systems. Three-dimensional seismic imaging and ocean drilling at the Hikurangi margin reveal a widespread and previously unknown fluid reservoir within the extensively hydrated (up to 47 vol % H2O) volcanic upper crust of the subducting Hikurangi Plateau large igneous province. This ~1.5 km thick volcaniclastic upper crust readily dewaters with subduction but retains half of its fluid content upon reaching regions with well-characterized slow slip. We suggest that volcaniclastic-rich upper crust at volcanic plateaus and seamounts is a major source of water that contributes to the fluid budget in subduction zones and may drive fluid overpressures along the megathrust that give rise to frequent shallow slow slip.

Journal article

Hao Y, Bell R, Rao Y, Fan R, Wang Yet al., 2023, Prediction of Permian karst reservoirs in the Yuanba gas field, northern Sichuan basin, China, Marine and Petroleum Geology, Vol: 154, Pages: 1-12, ISSN: 0264-8172

Karst reservoir has great hydrocarbon potential, however karst reservoir prediction is inhibited by the strong lateral and vertical heterogeneity of karstification which in turn results in recognition difficulty when geological and geophysical methods are used in isolation. Combined geological and geophysical methods, including core observation, thin section analysis, well log interpretation, seismic attributes and seismic inversion are applied to understand the depositional environment, types of karstification, the geophysical response and distribution of karst reservoir and the controls over and evolution model of karst reservoir in Permian Yuanba gas field, northern Sichuan Basin. The results show that there are four types of major seismic facies recognized in the study area, which correspond to platform margin reef, carbonate platform, platform margin inter-bay and platform margin slope. Karstification can be divided into three zones: the supergene karst zone, the vertical seepage zone and the horizontal underflow zone, among which the supergene karst zone have the strongest karstification. Karstification is highlighted with low seismic impedance, low Poisson's ratio, and high seismic attenuation on seismic inversion as well as micro scale paleo geomorphology recognized by trend surface analysis. By comparing the distribution of karstification with paleo geomorphology, fault distribution and gas contents, it can be observed that the karstification have a good matching relationship with these factors. The dominant type of karstification is epigenic karst, which is strongly influenced by depositional facies and paleo geomorphology. Fracture networks have contributed to karstification but are not the dominant factor of karst formation. The integration of geological and geophysical methods can predict karst reservoir with high accuracy within large area and can be applied to karst reservoir hydrocarbon exploration of similar geological setting.

Journal article

Alghuraybi A, Bell R, Jackson C, 2023, A snapshot of the earliest stages of normal fault growth, Tektonika, Vol: 1, Pages: 11-31, ISSN: 2976-548X

Observations of how faults lengthen and accrue displacement during the very earliest stages of their growth are limited, reflecting the fact that the early syn-kinematic sediments that record this growth are often deeply buried and difficult to image with geophysical data. Here, we use borehole and high-quality 3D seismic reflection data from SW Barents Sea, offshore Norway to quantify the lateral propagation (c. 0.38 – 3.4 mm/year) and displacement accumulation (c. 0.0062 – 0.025 mm/year) rates (averaged over 6.2 Myr) for several long (up to 43 km), moderate displacement (up to 155 m), syn-kinematic faults that we argue provide a unique, essentially ‘fossilised’ snapshot of the earliest stage of fault growth. We show that lateral propagation rates were up to 300 times faster than displacement rates during the initial ~25% of fault lifespan, suggesting that these faults lengthened much more rapidly than they accrued displacement. Our inference of rapid lengthening is also supported by geometric observations including: (i) low Dmax/Lmax (<0.01) scaling relationships, ii) high (>5) length/height aspect ratios, iii) broad, bell-shaped throw-length profiles, and iv) hangingwall depocenters forming during deposition of the first seismically detectable stratigraphic unit spanning the length of the fault. We suggest that the high ratio between lateral propagation rate and displacement rate is likely due to relative immaturity of the studied fault system, an interpretation that supports the ‘constant-length’ fault growth model. Our results highlight the need to document both displacement and lateral propagation rates to further our understanding of how faults evolve across various temporal and spatial scales.

Journal article

Husein SS, Fraser A, Roberts GG, Bell Ret al., 2023, New insights into the stratigraphic evolution of southwest Britain: Implications for Triassic salt and hydrocarbon prospectivity, Petroleum Geoscience, Vol: 29, Pages: 1-19, ISSN: 1354-0793

The discovery of Wytch Farm field in the Wessex Basin, and Kinsale Head field in the North Celtic Sea Basin in the early 1970s, led to exploration interest offshore in the Western Approaches Trough. Despite this activity, little evidence for prospective hydrocarbon resources has been found. To better understand the failures and analyse remaining hydrocarbon potential in this region, we make use of a large collection of new seismic reflection and well data to map Carboniferous to Neogene stratigraphy. The improved seismic imaging has allowed a better interpretation of the hitherto poorly understood, salt-related structures in the South Melville and the Plymouth Bay basins. The implications of the new interpretations for Carnian (Late Triassic), and Carboniferous stratigraphic and geodynamic evolution are assessed and contextualised with regional salt deposition in the Wessex, Bristol, and South Celtic Sea basins. From a petroleum system perspective, the Lias and Carboniferous source rocks are evaluated and modelled to analyse the maturity and evolution of the petroleum systems. We conclude that the Lias is an ineffective petroleum system due to timing and source maturation risk. However, the Triassic salt and associated subcropping faults have produced several possible pre-salt hydrocarbon traps. The traps may be charged from sporadic Mid-Late Carboniferous coal-bearing post-orogenic basins, a petroleum system previously overlooked.

Journal article

Wrona T, Whittaker AC, Bell RE, Gawthorpe RL, Fossen H, Jackson CA-L, Bauck MSet al., 2023, Rift kinematics preserved in deep-time erosional landscape below the northern North Sea, Basin Research, Vol: 35, Pages: 744-761, ISSN: 0950-091X

Our understanding of continental rifting is, in large parts, derived from the stratigraphic record. This record is, however, incomplete as it does not often capture the geomorphic and erosional signal of rifting. New 3D seismic reflection data reveal a Late Permian-Early Triassic landscape incised into the pre-rift basement of the northern North Sea. This landscape, which covers at least 542 km2, preserves a drainage system bound by two major tectonic faults. A quantitative geomorphic analysis of the drainage system reveals 68 catchments, with channel steepness and knickpoint analysis of catchment-hosted palaeo-rivers showing that the landscape preserved a >2 Myr long period of transient tectonics. We interpret that this landscape records a punctuated uplift of the footwall of a major rift-related normal fault (Vette Fault) at the onset of rifting. The landscape was preserved by a combination of relatively rapid subsidence in the hangingwall of a younger fault (Øygarden Fault) and burial by post-incision sediments. As such, we show how and why erosional landscapes are preserved in the stratigraphic record, and how they can help us understand the tectono-stratigraphic evolution of ancient continental rifts.

Journal article

Joffe A, Jackson CA-L, Steinberg J, Bell RE, Makovsky Yet al., 2023, Origin and kinematics of a basin-scale, non-polygonal, layer-bound normal fault system in the Levant Basin, eastern Mediterranean, Basin Research, Vol: 35, Pages: 662-691, ISSN: 0950-091X

Polygonal, layer-bound normal faults can extend over very large areas (>2,000,000 km2) of sedimentary basins. Best developed in very fine-grained rocks, these faults are thought to form during early burial in response to a range of diagenetic processes, including compaction and water expulsion. Local deviations from this idealised polygonal pattern are common; however, basin-scale, layer-bound faults with non-polygonal map view are not well-documented and accordingly, their genesis is not well understood. In this study, we use 3D seismic reflection data, biostratigraphy and well logs from the Southern Levant Basin, offshore Israel, to develop an age-constrained seismic-stratigraphic framework and determine the geometry and kinematics of such basin-scale fault system. The faults tip out downwards along an Eocene Unconformity, but unlike layer-bound faults in the Northern Levant Basin, they do not reach the base of the Messinian evaporites, instead tipping out upwards at the top Langhian. On average, the faults in the Southern Levant Basin are 6.3 km long, have an average throw of 120 m, and consistently strike NW-SE. Throw-depth plots, accompanied by thickness changes, indicate that the faults accumulated growth strata during the Late Burdigalian and are spatially and kinematically associated with a WSW-ESE-striking strike-slip fault. Unlike true polygonal faults, these faults propagated through ca. 2 km-thick sandstone-prone Oligocene-Miocene strata. Whereas previous studies from the Northern Levant Basin associate fault nucleation and growth with burial-related diagenesis, the sandstone-prone character of the Oligocene-Miocene suggests that this process cannot be readily applied to the Southern Levant Basin. Instead, we highlight potential tectonic events that occurred during and may have triggered thin-skinned extension at times of fault growth.

Journal article

Wang M, Barnes PM, Morgan JK, Bell RE, Moore GF, Wang M, Fagereng A, Savage H, Gamboa D, Harris RN, Henrys S, Mountjoy J, Tréhu AM, Saffer D, Wallace L, Petronotis Ket al., 2023, Compactive deformation of incoming calcareous pelagic sediments, northern Hikurangi subduction margin, New Zealand: Implications for subduction processes, Earth and Planetary Science Letters, Vol: 605, Pages: 1-15, ISSN: 0012-821X

Calcareous rocks are commonly found in subduction zones, but few studies have investigated the consolidation and compactive deformation of these rocks prior to subduction, and their potential effects on subduction and accretionary processes are thus poorly understood. Using drilling data obtained during International Ocean Discovery Program (IODP) Expeditions 372 and 375 combined with 2D and 3D seismic reflection data, the structure, growth history, and slip rates of normal faults identified in the incoming pelagic sedimentary sequences of the Hikurangi Margin were investigated. A seismic coherence depth slice and vertical profiles show that these faults exhibit polygonal structure that has rarely been documented at subduction margins. The polygonal faults are closely spaced and layer-bound within sequences dominated by pelagic carbonate and calcareous mudstone of Paleocene-Pliocene age. Kinematic modeling and 2D displacement analysis reveal that fault throws decrease toward the upper and lower tipline. In detail, two groups of throw profiles are defined by locations of displacement maxima, possibly reflecting lateral variations in physical properties. The polygonal fault system (PFS) likely formed by syneresis processes that involve diagenetically induced shear failure and volumetric contraction of the pelagic unit associated with fluid escape. Fault growth sequences reveal multiple, weakly correlated intervals of contemporaneous seafloor deformation and sedimentation and allow estimates of fault slip rates. We find evidence for a significant increase in typical slip rates from 0.5-3 m/Ma during pelagic sedimentation to >20 m/Ma following the onset of terrigenous sedimentation. These observations suggest that rapid loading of the pelagic sediments by the trench-wedge facies was associated with renewed and faster growth of the PFS. The PFS will eventually be transported into the base of the accretionary wedge, enhancing geometric roughness and heterogeneity of ma

Journal article

Magee C, Reeve MT, Jackson CA-L, Bell RE, Bastow IDet al., 2023, Reply to Alves et al. (2022) discussion on "Stratigraphic record of continental breakup, offshore NW Australia" by Reeve et al. (2022), Basin Research, Vol: 35, Pages: 483-486, ISSN: 0950-091X

Journal article

Lathrop BA, Jackson CAL, Bell RE, Rotevatn Aet al., 2023, (, 10.31223/x58s7g), Frontiers in Earth Science, Vol: 11

In the published article, there was an error. In the Abstract and Conclusions, it states that active faults are over-displaced. They are actually under-displaced. This does not change the findings of the work, and the body of the paper states this correctly. A correction has been made to the Abstract. This sentence previously stated: “active faults tend to be over-displaced compared to inactive faults”. The corrected sentence is: “active faults tend to be under-displaced compared to inactive faults”. A correction has been made to section 7 Conclusion. This sentence previously stated: “4) active faults tend to be over-displaced compared to inactive faults”. The corrected sentence is “4) active faults tend to be under-displaced compared to inactive faults”. The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Journal article

El-Yamani MS, John CM, Bell R, 2022, Stratigraphic evolution and karstification of a Cretaceous Mid-Pacific atoll (Resolution Guyot) resolved from core-log-seismic integration and comparison with modern and ancient analogues, Basin Research, Vol: 34, Pages: 1536-1566, ISSN: 0950-091X

Atolls are faithful recorders helping us understand eustatic variations, the evolution of carbonate production through time, and changes in magmatic hotspots activity. Several early Cretaceous Mid-Pacific atolls were previously investigated through ocean drilling, but due to the low quality of vintage seismic data available, few spatial constraints exist on their stratigraphic evolution and large-scale diagenesis. Here, we present results from an integrated core-log-seismic study at Resolution Guyot and comparison with modern and ancient analogues. We identify six seismic-stratigraphic units: (1) platform initiation with aggradation and backstepping through the Hauterivian which ended by platform emersion; (2) reflooding of the platform with progradation and aggradation through the Barremian till the early-Aptian when ocean anoxic event 1a resulted in incipient drowning; (3) platform backstepping till the mid-Aptian when the platform shifted to progradation and aggradation till the mid-Albian; (4) platform emersion; (5) reflooding with backstepping ending at the latest-Albian by platform emersion; and (6) final drowning. The stratigraphic surfaces bounding these units are coeval with some of the Cretaceous eustatic events, which suggest an eustatic control on the evolution of this atoll and confirm that several previously reported sea-level variations in the early Cretaceous are driven by eustasy. Changes in subsidence and carbonate production rates and suspected later magmatism have also impacted the stratigraphic evolution. The suspected later magmatism could lead to environmental perturbations and potentially platform demise. Contrary to previous studies, we identify two emersion events during the mid- and late-Albian which resulted in intensive meteoric dissolution and karstification. The platform margin syndepositional fractures interacted with the subaerial exposure events by focusing the dissolution which formed vertically stacked flank-margin fracture-cave s

Journal article

Hughes A, Rood D, DeVecchio DE, Whittaker AC, Bell RE, Wilcken KM, Corbett LB, Bierman PR, Swanson BJ, Rockwell TKet al., 2022, Tectonic controls on Quaternary landscape evolution in the Ventura basin, southern California, quantified using cosmogenic isotopes and topographic analyses, Geological Society of America Bulletin, Vol: 134, Pages: 2245-2266, ISSN: 0016-7606

The quantification of rates for the competing forces of tectonic uplift and erosion has important implications for understanding topographic evolution. Here, we quantify the complex interplay between tectonic uplift, topographic development, and erosion recorded in the hanging walls of several active reverse faults in the Ventura basin, southern California, USA. We use cosmogenic 26Al/10Be isochron burial dating and 10Be surface exposure dating to construct a basin-wide geochronology, which includes burial dating of the Saugus Formation: an important, but poorly dated, regional Quaternary strain marker. Our ages for the top of the exposed Saugus Formation range from 0.36 +0.18/-0.22 Ma to 1.06 +0.23/-0.26 Ma and our burial ages near the base of shallow marine deposits, which underlie the Saugus Formation, increase eastwards from 0.55 +0.08/-0.07 Ma to 3.30 +0.30/-0.42 Ma. Our geochronology is used the calculate a rapid long-term fault throw rate of 4.7–6.3 mm yr-1 since ~1.5 Ma for the San Cayetano fault and a slip rate of 1.3–3.0 mm yr-1 since ~1.5 Ma for the Oak Ridge fault, both of which agree with contemporary reverse slip rates derived from GPS data. We also calculate total cosmogenic nuclide (TCN)-derived catchment-averaged erosion rates that range from 0.18–2.21mm yr-1 and discuss the applicability of TCN-derived catchment-averaged erosion rates in rapidly-uplifting, landslide-prone landscapes. We compare patterns in erosion rates and tectonic rates to fluvial response times and geomorphic landscape parameters to show that in young, rapidly-uplifting mountain belts, catchments may attain a quasi-steady state on timescales <105 years, even if catchment-averaged erosion rates are still 34 adjusting to tectonic forcing.

Journal article

Morgan JK, Solomon EA, Fagereng A, Savage HM, Wang M, Meneghini F, Barnes PM, Bell RE, French ME, Bangs NL, Kitajima H, Saffer DM, Wallace LMet al., 2022, Seafloor overthrusting causes ductile fault deformation and fault sealing along the Northern Hikurangi Margin, Earth and Planetary Science Letters, Vol: 593, Pages: 1-13, ISSN: 0012-821X

IODP Site U1518, drilled during IODP Expeditions 372 and 375, penetrated a large-offset (∼6 km) thrust, the Pāpaku fault, rising from a megathrust that hosts recurring slow slip events along the Hikurangi margin. Although drilling intersected the fault zone at only ∼300 m below the seafloor within porous silty mudstone, it exhibits intense tectonic ductile deformation, including finely banded mudstones contorted into decimeter-scale folds; elongate mudstone clasts with grain tail complexes; stacked and truncated silt beds in distorted mudstones; and soft sediment injections. Locally, these ductile features are overprinted by brittle deformation, including normal faults, fracture arrays, and breccias. The more consolidated hanging wall is dominated by brittle structures, whereas the footwall exhibits ductile and brittle deformation that decreases in intensity with depth. The intense tectonic ductile deformation and asymmetric distribution of structures across the fault zone at Site U1518 can be explained by seafloor overthrusting. The emplacement of the hanging wall upon the footwall flat overrode high-porosity, undeformed, and previously unburied sediments, localizing shear deformation within these weak sediments. In contrast, the overconsolidated hanging wall preferentially experienced brittle deformation during folding and displacement. Interstitial pore water geochemical profiles at Site U1518 show a repetition of near-seafloor diagenetic sequences below the fault, consistent with overthrusting of previously unburied strata. The preserved diagenetic profiles in the footwall suggest that overthrusting occurred within the last 50-100 kyr, and indicate little along- or across-fault fluid flow at the location of Site U1518. Thus the Pāpaku fault appears to define a low-permeability seal that restricts footwall consolidation, maintaining locally high pore fluid pressures and low fault strength. If similar low permeability structures occur elsewhere along the m

Journal article

Leah H, Fagereng A, Bastow I, Bell R, Lane V, Henrys S, Jacobs K, Fry Bet al., 2022, The northern Hikurangi margin three-dimensional plate interface in New Zealand remains rough 100 km from the trench, Geology, Vol: 50, Pages: 1256-1260, ISSN: 0091-7613

At the northern Hikurangi margin (North Island, New Zealand), shallow slow slip events (SSEs) frequently accommodate subduction-interface plate motion from landward of the trench to <20 km depth. SSEs may be spatially related to geometrical interface heterogeneity, though kilometer-scale plate-interface roughness imaged by active-source seismic methods is only constrained offshore at <12 km depth. Onshore constraints are comparatively lacking, but we mapped the Hikurangi margin plate interface using receiver functions from data collected by a dense 22 × 10 km array of 49 broadband seismometers. The plate interface manifests as a positive-amplitude conversion (velocity increase with depth) dipping west from 10 to 17 km depth. This interface corroborates relocated earthquake hypocenters, seismic velocity models, and downdip extrapolation of depth-converted two-dimensional active-source lines. Our mapped plate interface has kilometer-amplitude roughness we interpret as oceanic volcanics or seamounts, and is 1–4 km shallower than the regional-scale plate-interface model used in geodetic inversions. Slip during SSEs may thus have different magnitudes and/or distributions than previously thought. We show interface roughness also leads to shear-strength variability, where slip may nucleate in locally weak areas and propagate across areas of low shear-strength gradient. Heterogeneous shear strength throughout the depth range of the northern Hikurangi margin may govern the nature of plate deformation, including the localization of both slow slip and hazardous earthquakes.

Journal article

Lathrop B, Bell R, Jackson C, Rotevatn Aet al., 2022, Displacement/length scaling relationships for normal faults; a review, critique, and revised compilation, Frontiers in Earth Science, Vol: 10, ISSN: 2296-6463

The relationship between normal fault displacement (D) and length (L) varies due to numerous factors, including fault size, maturity, basin tectonic history, and host rock lithology. Understanding how fault D and L relate is useful, given related scaling laws are often used to help refine interpretations of often incomplete, subsurface datasets, which has implications for hydrocarbon and low-carbon energy applications. Here we provide a review of D/L scaling laws for normal faults, discuss factors that could influence these relationships, including both geological factors and errors in measurement, and provide a critique of previously published D/L databases. We then present our newly assembled database of 4059 normal faults from 66 sources that include explicit information on: 1) faultlength and displacement, 2) host rock lithology, 3) host basin tectonic history, and 4) maturity, as well as fault D and L through time when these data are available. We find an overall scaling law of D = 0.3L0.92, which is similar to previously published scaling equations and that varies in response to the aforementioned geological factors. Our data show thatsmall faults (<1 m length) tend to be over-displaced compared to larger faults, active faults tend to be over-displaced compared to inactive faults, and faults with stiffer host rock lithologies, like igneous and carbonate rocks, tend to be under-displaced with respect to faults within softer, more compliant host rocks, like clastic sedimentary rocks. Our dynamicD/L through time data show that faults follow the hybrid fault growth model, i.e., they initially lengthen, during which time they will appear under-displaced, before accumulating displacement. To the best of our knowledge, this is the first comprehensive, integrated, critical study of D/L scaling laws for normal faults and the factors influencing their growth. These revised relationships can now be utilized for predicting fault length or displacement when only one var

Journal article

Pan S, Naliboff J, Bell R, Jackson Cet al., 2022, Bridging spatiotemporal scales of normal fault growth during continental extension using high-resolution 3D numerical models, G3: Geochemistry, Geophysics, Geosystems: an electronic journal of the earth sciences, Vol: 23, Pages: 1-16, ISSN: 1525-2027

Continental extension is accommodated by the development of kilometer-scale normal faults, which grow during meter-scale slip events that occur over millions of years. However, reconstructing the entire lifespan of a fault remains challenging due to a lack of observational data with spatiotemporal scales that span the early stage (<106 yrs) of fault growth. Using three-dimensional numerical simulations of continental extension and novel methods for extracting the locations of faults, we quantitatively examine the key factors controlling the growth of rift-scale fault networks over 104–106 yrs. Early formed faults (<100 kyrs from initiation) exhibit scaling ratios consistent with those characterizing individual earthquake ruptures, before evolving to be geometrically and kinematically similar to more mature structures developed in natural fault networks. Whereas finite fault lengths are rapidly established (<100 kyrs), active deformation is transient, migrating both along- and across-strike. Competing stress interactions determine the distribution of active strain, which oscillates between being distributed and localized. Higher rates of extension (10 mm yr−1) lead to more prominent stress redistributions through time, promoting episodic localized slip events. Our findings demonstrate that normal fault growth and the related occurrence of cumulative slip is more complex than that currently inferred from displacement patterns on now-inactive structures, which only provide a space- and time-averaged picture of fault kinematics and related seismic hazard.

Journal article

Reeve MT, Magee C, Jackson CA-L, Bell RE, Bastow IDet al., 2022, Stratigraphic record of continental breakup, offshore NW Australia, BASIN RESEARCH, Vol: 34, Pages: 1220-1243, ISSN: 0950-091X

Journal article

Redpath D, Jackson CA, Bell RE, 2022, Mechanical stratigrpahy controls normal fault growth and dimensions, outer Kwanza basin, offshore Angola, Tectonics, Vol: 41, ISSN: 0278-7407

Mechanical stratigraphy controls the growth patterns and dimensions of relatively small normal faults, yet how it influences the development of much larger structures remains unclear. Here, we use 3D seismic reflection data from the Outer Kwanza Basin, offshore Angola to constrain the geometry and kinematics of several normal faults formed in a deep-water clastic succession. The faults are up to 6.3-km long and 1.9-km tall and have up to 44 m of throw. Aspect ratios and lower-tip throw gradients are greater for faults that terminate downward at a c. 100 m thick, mass-transport complex (MTC; up to 5.2 and 0.12) than for those that offset it (up to 2.7 and 0.01). Faults that offset the MTC invariably have >30 m of throw. Based on their geometric properties and throw patterns, we interpret that the faults nucleated above the MTC and propagated down toward it. Upon encountering this unit, which we infer behaved in a more ductile manner than encasing strata, tip propagation was halted until tip stresses were sufficiently high (corresponding to minimum throw of c. 30 m) to breach it. Faults with smaller throw were unable to breach the MTC. We argue that using only geometric criteria to determine fault growth patterns can mask the significant control mechanical stratigraphy has on fault kinematics. Mechanical stratigraphy is therefore a key control on the growth of large, seismic-scale normal faults, in a similar way to that observed for far smaller structures

Journal article

Alghuraybi A, Bell R, Jackson C, 2022, Role of normal fault growth in controlling sealing juxtaposition relationships, SW Barents Sea, offshore Norway

Faults prevent fluid migration either by juxtaposing sealing lithologies against non-sealing ones, or by forming fine-grained impermeable fault rocks. Fault juxtaposition geometries, stratigraphic architectures and sedimentological flow properties represent the essential building blocks of subsurface flow models. These components are often associated with significant uncertainty especially in areas of poor seismic quality. Fault growth patterns can considerably influence the development of fault geometries, stratigraphic architectures, and facies distribution within fault-bounded depocenters. Therefore, analyzing fault growth histories and accounting for them in subsurface fluid flow modelling workflows can help mitigate some of the uncertainty in these models and increase their predictability. Here, we use age-constrained 3D seismic reflection and borehole data to analyze two faults from the SW Barents Sea, offshore northern Norway, one of which appears to have grown in accordance with the propagating fault model, whereas the other has geometric and kinematic properties more consistent with the constant-length model. Our study shows that despite having developed in the same basin and having similar tectonic origins, local variation in nucleation time and strain localization can lead to the development of fault systems with diverse kinematic histories, which in turns controls the formation and distribution of favorable sealing juxtaposition relationships.

Conference paper

Alghuraybi A, Bell RE, Jackson CA-L, 2021, The geometric and temporal evolution of fault-related folds constrain normal fault growth patterns, Barents Sea, offshore Norway, Basin Research, Vol: 34, ISSN: 0950-091X

Extensional growth folds form ahead of the tips of propagating normal faults. These folds can accommodate a considerable amount of extensional strain and they may control rift geometry. Fold-related surface deformation may also control the sedimentary evolution of syn-rift depositional systems. Thus, by examining the stratigraphic record, we can constrain the four-dimensional evolution of extensional growth folds, which in turn provides a record of fault growth and broader rift history. Here, we use high-quality 3D seismic reflection and borehole data from the SW Barents Sea, offshore northern Norway to determine the geometric and temporal evolution of extensional growth folds associated with a large, long-lived, basement-rooted fault. We show that the fault grew via the linkage of four segments, and that fault growth was associated with the formation of fault-parallel and fault-perpendicular folds that accommodated a substantial portion (10%–40%) of the total extensional strain. Several periods of fault-propagation folding occurred in response to the periodic burial of the fault, with individual folding events (ca. 25 and 32 Myr) lasting a considered part of the ca. 130 Myr rift period. Our study supports previous suggestions that continuous (i.e. folding) as well as discontinuous (i.e. faulting) deformation must be explicitly considered when assessing total strain in an extensional setting. We also show that changes in the architecture of growth strata record alternating periods of folding and faulting and that the margins of rift-related depocentres may be characterised by basinward-dipping monoclines as opposed to fault-bound scarps. Our findings have broader implications for our understanding of the structural, physiographic and tectonostratigraphic evolution of rift basins.

Journal article

Davy R, Frahm L, Bell R, Arai R, Barker D, Henrys S, Bangs N, Morgan J, Warner Met al., 2021, Generating high‐fidelity reflection images directly from full‐waveform inversion: Hikurangi Subduction Zone case study, Geophysical Research Letters, Vol: 48, Pages: 1-10, ISSN: 0094-8276

Full-waveform inversion (FWI) can resolve subsurface physical properties to high resolutions, yet high-performance computing resources have only recently made it practical to invert for high frequencies. A benefit of high-frequency FWI is that recovered velocity models can be differentiated in space to produce high-quality depth images (FWI images) of a comparable resolution to conventional reflection images.Here, we demonstrate the generation of high-fidelity reflection images directly from the FWI process. We applied FWI up to 38 Hz to seismic data across the Hikurangi subduction margin. The resulting velocity models and FWI images reveal a complex faulting system, sediment deformation, and bottom-simulating reflectors within the shallow accretionary prism. Our FWI images agree with conventional reflection images and better resolve horizons around the Pāpaku thrust fault. Thus, FWI imaging has the potential to replace conventional reflection imaging whilst also providing physical property models that assist geological interpretations.

Journal article

Pan S, Bell RE, Jackson CA-L, Naliboff Jet al., 2021, Evolution of normal fault displacement and length as continental lithosphere stretches, Basin Research, Vol: 34, Pages: 121-140, ISSN: 0950-091X

Continental rifting is accommodated by the development of normal fault networks. Fault growth patterns control their related seismic hazards, and the tectonostratigraphic evolution and resource and CO2 storage potential of rifts. Our understanding of fault evolution is largely derived by observing the final geometry and displacement (D)-length (L) characteristics of active and inactive fault arrays, and by subsequently inferring their kinematics. We can rarely determine how these geometric properties change through time, and how the growth of individual fault arrays relate to the temporal evolution of their host networks. Here we use 3D seismic reflection and borehole data from the Exmouth Plateau, NW Shelf, Australia to determine the growth of rift-related, crustal-scale fault arrays and networks over geological timescales (>106 Ma). The excellent-quality seismic data allows us to reconstruct the entire Jurassic-to-Early Cretaceous fault network over a relatively large area (ca. 1,200 km2). We find that fault trace lengths were established early, within the first ca. 7.2 Myr of rifting, and that along-strike migration of throw maxima towards the centre of individual fault arrays occurred after ca. 28.5 Myr of rifting. Faults located in stress shadows become inactive and appear under-displaced relative to adjacent larger faults, onto which strain localises as rifting proceeds. This implies that the scatter frequently observed in D-L plots can simply reflect fault growth and network maturity. We show that by studying complete rift-related normal networks, rather than just individual fault arrays, we can better understand how faults grow and more generally how continental lithosphere deforms as it stretches.

Journal article

Shmela AK, Paton DA, Collier RE, Bell REet al., 2021, Normal fault growth in continental rifting: insights from changes in displacement and length fault populations due to increasing extension in the Central Kenya Rift, Tectonophysics, Vol: 814, ISSN: 0040-1951

This study examines the scaling relationship between fault length and displacement for the purpose of gaining a better understanding of the evolution of normal faults within the central Kenya Rift. 620 normal faults were manually mapped from a digital elevation model (DEM), with 30 m2 resolution and an estimated maximum displacement of ~40–~6030 m and fault lengths of 1270 ‐ 60,600 m. To assess the contribution of fault populations to the strain accommodation from south to north, the study area has been divided into three zones of fault populations based upon their average fault orientations; zone 1 in the north is dominated by NNE striking faults, zone 2 in the centre of the rift is characterised by NNW to NNE fault trends, whereas zone 3 in the south is characterised by NNW striking fault systems. Extensional strain was estimated by summing fault heaves across six transects along the rift, which showed a progressive increase of strain from south to north. The fault length and displacement data in the three zones fit to a power law distribution. The cumulative distributions of fault length populations showed similar fractal dimension (D) in the three zones. The cumulative displacement distributions for the three zones showed a decrease in the Power-law fractal dimension with increasing strain, which implies that the strain is increasingly localized onto larger faults as the fault system becomes more evolved from south to north. Increasing displacement with increasing strain while the fault length remains almost constant may indicate that the fault system could be evolving in accordance with a constant length fault growth model, where faults lengthen quickly and then accrue displacement. Results of this study suggest that the process of progressively increasing fault system maturity and strain localization onto large faults can be observed even over a relatively small area (240 × 150 km) within the rift system. It is also suggested that patterns of fault

Journal article

Merry T, Bastow I, Kounoudis R, Ogden C, Bell R, Jones Let al., 2021, The influence of the North Anatolian Fault and a fragmenting slab architecture on upper mantle seismic anisotropy in the eastern Mediterranean, G3: Geochemistry, Geophysics, Geosystems: an electronic journal of the earth sciences, Vol: 22, Pages: 1-26, ISSN: 1525-2027

The eastern Mediterranean hosts, within the span of a few hundred kilometers, extensional, strike-slip, and collision tectonics above a set of fragmenting subducting slabs. Slab roll-back, toroidal flow, and lithospheric dripping/delamination processes are also believed to be operating. Associated asthenospheric flow and lithospheric de formation are expected to manifest as seismic anisotropy, measurable via study of SKS shear wave splitting. Surprisingly, previous SKS splitting investigations have resolved only long wavelength patterns of anisotropy in the region, interpreting them as large scale asthenospheric flow; moreover, no anisotropic signature has been associated with the North Anatolian Fault (NAF), unlike other major strike-slip plate boundaries world wide. We present a 29-year record of SKS splitting observations, revealing hitherto unrecognized short-length-scale variations in anisotropy, and backazimuthal variations of splitting parameters that attest to multi-layered anisotropy. Lithospheric anisotropy beneath the NAF exhibits fast directions either fault-parallel or intermediate between the principle extensional strain rate axis and fault strike, diagnostic of a relatively low strained transcurrent mantle shear zone. Elsewhere, anisotropy is consistent with as thenospheric flow through tomographically-imaged slab gaps, and driven by Hellenic trench retreat. Evidence for westward flow of asthenosphere driving Anatolian plate motion is lacking. Shorter splitting delay times and nulls in central Anatolia suggest weaker azimuthal anisotropy in the asthenosphere, supporting models that invoke ver tical mantle flow patterns (lithospheric dripping/asthenospheric upwelling). Thus, we conclude that the signal of mantle anisotropy more closely reflects the lithospheric de formation, complex slab architecture and geodynamic diversity of the region than pre36 viously recognized.

Journal article

Rodriguez CR, Jackson CA-L, Bell RE, Roteva AN, Francis Met al., 2021, Deep-water reservoir distribution on a salt-influenced slope, Santos Basin, offshore Brazil, AAPG BULLETIN, Vol: 105, Pages: 1679-1720, ISSN: 0149-1423

Journal article

Wrona T, Pan I, Bell RE, Gawthorpe RL, Fossen H, Brune Set al., 2021, 3D seismic interpretation with deep learning: A brief introduction, The Leading Edge, Vol: 40, Pages: 524-532, ISSN: 1070-485X

Understanding the internal structure of our planet is a fundamental goal of the earth sciences. As direct observations are restricted to surface outcrops and borehole cores, we rely on geophysical data to study the earth's interior. In particular, seismic reflection data showing acoustic images of the subsurface provide us with critical insights into sedimentary, tectonic, and magmatic systems. However, interpretations of these large 2D grids or 3D seismic volumes are time-consuming, even for a well-trained person or team. Here, we demonstrate how to automate and accelerate the analysis of these increasingly large seismic data sets with machine learning. We are able to perform typical seismic interpretation tasks such as mapping tectonic faults, salt bodies, and sedimentary horizons at high accuracy using deep convolutional neural networks. We share our workflows and scripts, encouraging users to apply our methods to similar problems. Our methodology is generic and flexible, allowing an easy adaptation without major changes. Once trained, these models can analyze large volumes of data within seconds, opening a new pathway to study the processes shaping the internal structure of our planet.

Journal article

Lathrop BA, Jackson CA-L, Bell RE, Rotevatn Aet al., 2021, Normal Fault Kinematics and the Role of Lateral Tip Retreat: An Example From Offshore NW Australia, TECTONICS, Vol: 40, ISSN: 0278-7407

Journal article

Reeve MT, Magee C, Bastow ID, McDermott C, Jackson CA-L, Bell RE, Prytulak Jet al., 2021, Nature of the cuvier abyssal plain crust, offshore NW Australia, Journal of the Geological Society, Vol: 178, Pages: 1-17, ISSN: 0016-7649

Magnetic stripes have long been assumed to be indicative of oceanic crust. However, continental crust heavily intruded by magma can also record magnetic stripes. We re-evaluate the nature of the Cuvier Abyssal Plain (CAP), offshore NW Australia, which hosts magnetic stripes and has previously been defined as oceanic crust. We show that chemical data from a basalt within the CAP, previously described as an enriched mid-ocean ridge basalt, could equally be interpreted to contain evidence of contamination by continental material. We also recognize seaward-dipping reflector sequences in seismic reflection data across the CAP. Borehole data from overlying sedimentary rocks suggests that these seaward-dipping reflectors were emplaced in a shallow water (<200 m depth) or subaerial environment. Our results indicate that the CAP may not be unambiguous oceanic crust, but may instead consist of a spectrum of heavily intruded continental crust through to fully oceanic crust. If the CAP represents such a continent–ocean transition zone, then the adjacent unambiguous oceanic crust would be located >500 km further offshore NW Australia than currently thought. This would impact plate tectonic reconstructions, as well as heat flow and basin modelling studies. Our work also supports the growing consensus that magnetic stripes cannot, by themselves, be used to determine crustal affinity.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00674641&limit=30&person=true