Imperial College London

Professor Sir Roy Anderson FRS, FMedSci

Faculty of MedicineSchool of Public Health

Professor in Infectious Disease Epidemiology
 
 
 
//

Contact

 

roy.anderson Website

 
 
//

Assistant

 

Mrs Clare Mylchreest +44 (0)7766 331 301

 
//

Location

 

LG35Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Kura:2019:10.1371/journal.pntd.0007349,
author = {Kura, K and Truscott, JE and Toor, J and Anderson, RM},
doi = {10.1371/journal.pntd.0007349},
journal = {PLoS Neglected Tropical Diseases},
pages = {1--21},
title = {Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination},
url = {http://dx.doi.org/10.1371/journal.pntd.0007349},
volume = {13},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Mass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitation are required. Ideally a vaccine is needed to ensure long term benefits and eliminate the need for repeated drug treatment since infection does not seem to induce lasting protective immunity. Currently, a candidate vaccine is under trial in a baboon animal model, and very encouraging results have been reported. In this paper, we develop an individual-based stochastic model to evaluate the effect of a vaccine with similar properties in humans to those recorded in baboons in achieving the World Health Organization (WHO) goals of morbidity control and elimination as a public health problem in populations living in a variety of transmission settings. MDA and vaccination assuming different durations of protection and coverage levels, alone or in combination, are examined as treatment strategies to reach the WHO goals of the elimination of morbidity and mortality in the coming decade. We find that the efficacy of a vaccine as an adjunct or main control tool will depend critically on a number of factors including the average duration of protection it provides, vaccine efficacy and the baseline prevalence prior to immunization. In low prevalence settings, simulations suggest that the WHO goals can be achieved for all treatment strategies. In moderate prevalence settings, a vaccine that provides 5 years of protection, can achieve both goals within 15 years of treatment. In high prevalence settings, by vaccinating at age 1, 6 and 11 we can achieve the morbidity control with a probability of nearly 0.89 but we cannot achieve elimination as a public health problem goal. A combined vaccination and MDA treatment plan has the greatest chance of achieving the WHO goals in the shorter t
AU - Kura,K
AU - Truscott,JE
AU - Toor,J
AU - Anderson,RM
DO - 10.1371/journal.pntd.0007349
EP - 21
PY - 2019///
SN - 1935-2727
SP - 1
TI - Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
T2 - PLoS Neglected Tropical Diseases
UR - http://dx.doi.org/10.1371/journal.pntd.0007349
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000473779100011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007349
UR - http://hdl.handle.net/10044/1/72412
VL - 13
ER -