Imperial College London

DrSangeetaBhatia

Faculty of MedicineSchool of Public Health

Research Associate
 
 
 
//

Contact

 

s.bhatia Website

 
 
//

Location

 

G27Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

56 results found

Gaythorpe KAM, Bhatia S, Mangal T, Unwin HJT, Imai N, Cuomo-Dannenburg G, Walters CE, Jauneikaite E, Bayley H, Kont MD, Mousa A, Whittles LK, Riley S, Ferguson NMet al., 2021, Publisher Correction: Children's role in the COVID-19 pandemic: a systematic review of early surveillance data on susceptibility, severity, and transmissibility., Sci Rep, Vol: 11

Journal article

Bracher J, Wolffram D, Deuschel J, Gorgen K, Ketterer JL, Ullrich A, Abbott S, Barbarossa M, Bertsimas D, Bhatia S, Bodych M, Bosse N, Burgard JP, Castro L, Fairchild G, Fuhrmann J, Funk S, Gogolewski K, Gu Q, Heyder S, Hotz T, Kheifetz Y, Kirsten H, Krueger T, Krymova E, Li ML, Meinke JH, Michaud IJ, Niedzielewski K, Ozanski T, Rakowski F, Scholz M, Soni S, Srivastava A, Zielinski J, Zou D, Gneiting T, Schienle Met al., 2021, A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave, NATURE COMMUNICATIONS, Vol: 12

Journal article

Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin Met al., 2021, Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England, Science Translational Medicine, Vol: 13, Pages: 1-12, ISSN: 1946-6234

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modelling framework allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rteff ) below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900-38,400). The infection fatality ratio decreased from 1.00% (95%CrI: 0.85%-1.21%) to 0.79% (95%CrI: 0.63%-0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7%-35.2%) than those residing in the community (7.9%, 95%CrI: 5.9%-10.3%). On 2nd December 2020 England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95%CrI: 5.4%-10.2%) and 22.3% (95%CrI: 19.4%-25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission.

Journal article

Gaythorpe K, Bhatia S, Mangal T, Unwin H, Imai N, Cuomo-Dannenburg G, Walters C, Jauneikaite E, Bayley H, Kont M, Mousa A, Whittles L, Riley S, Ferguson Net al., 2021, Children’s role in the COVID-19 pandemic: a systematic review of early surveillance data on susceptibility, severity, and transmissibility, Scientific Reports, Vol: 11, Pages: 1-14, ISSN: 2045-2322

Background: SARS-CoV-2 infections have been reported in all age groups including infants, children, and adolescents. However, the role of children in the COVID-19 pandemic is still uncertain. This systematic review of early studies synthesises evidence on the susceptibility of children to SARS-CoV-2 infection, the severity and clinical outcomes in children with SARS-CoV-2 infection, and the transmissibility of SARS-CoV-2 by children in the early phases of the COVID-19 pandemic. Methods and findings: A systematic literature review was conducted in PubMed. Reviewers extracted data from relevant, peer-reviewed studies published up to July 4th 2020 during the first wave of the SARS-CoV-2 outbreak using a standardised form and assessed quality using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. For studies included in the meta-analysis, we used a random effects model to calculate pooled estimates of the proportion of children considered asymptomatic or in a severe or critical state. We identified 2,775 potential studies of which 128 studies met our inclusion criteria; data were extracted from 99, which were then quality assessed. Finally, 29 studies were considered for the meta-analysis that included information of symptoms and/or severity, these were further assessed based on patient recruitment. Our pooled estimate of the proportion of test positive children who were asymptomatic was 21.1% (95% CI: 14.0 - 28.1%), based on 13 included studies, and the proportion of children with severe or critical symptoms was 3.8% (95% CI: 1.5 - 6.0%), based on 14 included studies. We did not identify any studies designed to assess transmissibility in children and found that susceptibility to infection in children was highly variable across studies.Conclusions: Children’s susceptibility to infection and onward transmissibility relative to adults is still unclear and varied widely between studies. However, it is evident that most children e

Journal article

Djaafara A, Whittaker C, Watson OJ, Verity R, Brazeau N, Widyastuti, Oktavia D, Adrian V, Salama N, Bhatia S, Nouvellet P, Sherrard-Smith E, Churcher T, Surendra H, Lina RN, Ekawati LL, Lestari KD, Andrianto A, Thwaites G, Baird JK, Ghani A, Elyazar IRF, Walker Pet al., 2021, Using syndromic measures of mortality to capture the dynamics of COVID-19 in Java, Indonesia in the context of vaccination roll-out, BMC Medicine, Vol: 19, ISSN: 1741-7015

Background: As in many countries, quantifying COVID-19 spread in Indonesia remains challenging due to testing limitations. In Java, non-pharmaceutical interventions (NPIs) were implemented throughout 2020. However, as a vaccination campaign launches, cases and deaths are rising across the island. Methods: We used modelling to explore the extent to which data on burials in Jakarta using strict COVID-19 protocols (C19P) provide additional insight into the transmissibility of the disease, epidemic trajectory, and the impact of NPIs. We assess how implementation of NPIs in early 2021 will shape the epidemic during the period of likely vaccine roll-out. Results: C19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than reported. Transmission estimates using these data suggest earlier, larger, and more sustained impact of NPIs. Measures to reduce sub-national spread, particularly during Ramadan, substantially mitigated spread to more vulnerable rural areas. Given current trajectory, daily cases and deaths are likely to increase in most regions as the vaccine is rolled-out. Transmission may peak in early 2021 in Jakarta if current levels of control are maintained. However, relaxation of control measures is likely to lead to a subsequent resurgence in the absence of an effective vaccination campaign. Conclusions: Syndromic measures of mortality provide a more complete picture of COVID-19 severity upon which to base decision-making. The high potential impact of the vaccine in Java is attributable to reductions in transmission to date and dependent on these being maintained. Increases in control in the relatively short-term will likely yield large, synergistic increases in vaccine impact.

Journal article

FitzJohn RG, Knock ES, Whittles LK, Perez-Guzman PN, Bhatia S, Guntoro F, Watson OJ, Whittaker C, Ferguson NM, Cori A, Baguelin M, Lees JAet al., 2021, Reproducible parallel inference and simulation of stochastic state space models using odin, dust, and mcstate, Wellcome Open Research, Vol: 5, Pages: 288-288

<ns4:p>State space models, including compartmental models, are used to model physical, biological and social phenomena in a broad range of scientific fields. A common way of representing the underlying processes in these models is as a system of stochastic processes which can be simulated forwards in time. Inference of model parameters based on observed time-series data can then be performed using sequential Monte Carlo techniques. However, using these methods for routine inference problems can be made difficult due to various engineering considerations: allowing model design to change in response to new data and ideas, writing model code which is highly performant, and incorporating all of this with up-to-date statistical techniques. Here, we describe a suite of packages in the R programming language designed to streamline the design and deployment of state space models, targeted at infectious disease modellers but suitable for other domains. Users describe their model in a familiar domain-specific language, which is converted into parallelised C++ code. A fast, parallel, reproducible random number generator is then used to run large numbers of model simulations in an efficient manner. We also provide standard inference and prediction routines, though the model simulator can be used directly if these do not meet the user’s needs. These packages provide guarantees on reproducibility and performance, allowing the user to focus on the model itself, rather than the underlying computation. The ability to automatically generate high-performance code that would be tedious and time-consuming to write and verify manually, particularly when adding further structure to compartments, is crucial for infectious disease modellers. Our packages have been critical to the development cycle of our ongoing real-time modelling efforts in the COVID-19 pandemic, and have the potential to do the same for models used in a number of different domains.</ns4:p>

Journal article

Bhatia S, Lassmann B, Cohn E, Desai AN, Carrion M, Kraemer MUG, Herringer M, Brownstein J, Madoff L, Cori A, Nouvellet Pet al., 2021, Using digital surveillance tools for near real-time mapping of the risk of infectious disease spread, npj Digital Medicine, Vol: 4, ISSN: 2398-6352

Data from digital disease surveillance tools such as ProMED and HealthMap can complement the field surveillance during ongoing outbreaks. Our aim was to investigate the use of data collected through ProMED and HealthMap in real-time outbreak analysis. We developed a flexible statistical model to quantify spatial heterogeneity in the risk of spread of an outbreak and to forecast short term incidence trends. The model was applied retrospectively to data collected by ProMED and HealthMap during the 2013–2016 West African Ebola epidemic and for comparison, to WHO data. Using ProMED and HealthMap data, the model was able to robustly quantify the risk of disease spread 1–4 weeks in advance and for countries at risk of case importations, quantify where this risk comes from. Our study highlights that ProMED and HealthMap data could be used in real-time to quantify the spatial heterogeneity in risk of spread of an outbreak.

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, NASCIMENTO F, Fitzjohn R, Gaythorpe K, Geidelberg L, green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2021, Reduction in mobility and COVID-19 transmission, Nature Communications, Vol: 12, ISSN: 2041-1723

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts.Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world.Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation.In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Knock E, Whittles L, Lees J, Perez Guzman P, Verity R, Fitzjohn R, Gaythorpe K, Imai N, Hinsley W, Okell L, Rosello A, Kantas N, Walters C, Bhatia S, Watson O, Whittaker C, Cattarino L, Boonyasiri A, Djaafara A, Fraser K, Fu H, Wang H, Xi X, Donnelly C, Jauneikaite E, Laydon D, White P, Ghani A, Ferguson N, Cori A, Baguelin Met al., 2020, Report 41: The 2020 SARS-CoV-2 epidemic in England: key epidemiological drivers and impact of interventions

England has been severely affected by COVID-19. We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional 2020 surveillance data. Only national lockdown brought the reproduction number below 1 consistently; introduced one week earlier in the first wave it could have reduced mortality by 23,300 deaths on average. The mean infection fatality ratio was initially ~1.3% across all regions except London and halved following clinical care improvements. The infection fatality ratio was two-fold lower throughout in London, even when adjusting for demographics. The infection fatality ratio in care homes was 2.5-times that in the elderly in the community. Population-level infection-induced immunity in England is still far from herd immunity, with regional mean cumulative attack rates ranging between 4.4% and 15.8%.

Report

Knock ES, Whittles LK, Perez-Guzman PN, Bhatia S, Guntoro F, Watson OJ, Whittaker C, Ferguson NM, Cori A, Baguelin M, FitzJohn RG, Lees JAet al., 2020, Reproducible parallel inference and simulation of stochastic state space models using odin, dust, and mcstate, Wellcome Open Research, Vol: 5, Pages: 288-288

<ns4:p>State space models, including compartmental models, are used to model physical, biological and social phenomena in a broad range of scientific fields. A common way of representing the underlying processes in these models is as a system of stochastic processes which can be simulated forwards in time. Inference of model parameters based on observed time-series data can then be performed using sequential Monte Carlo techniques. However, using these methods for routine inference problems can be made difficult due to various engineering considerations: allowing model design to change in response to new data and ideas, writing model code which is highly performant, and incorporating all of this with up-to-date statistical techniques. Here, we describe a suite of packages in the R programming language designed to streamline the design and deployment of state space models, targeted at infectious disease modellers but suitable for other domains. Users describe their model in a familiar domain-specific language, which is converted into parallelised C++ code. A fast, parallel, reproducible random number generator is then used to run large numbers of model simulations in an efficient manner. We also provide standard inference and prediction routines, though the model simulator can be used directly if these do not meet the user’s needs. These packages provide guarantees on reproducibility and performance, allowing the user to focus on the model itself, rather than the underlying computation. The ability to automatically generate high-performance code that would be tedious and time-consuming to write and verify manually, particularly when adding further structure to compartments, is crucial for infectious disease modellers. Our packages have been critical to the development cycle of our ongoing real-time modelling efforts in the COVID-19 pandemic, and have the potential to do the same for models used in a number of different domains.</ns4:p>

Journal article

Thompson H, Imai N, Dighe A, Ainslie K, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Z, Cuomo-Dannenburg G, Djaafara B, Dorigatti I, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Hallett T, Hamlet A, Haw D, Hayes S, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Mousa A, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Donnelly C, Ferguson Net al., 2020, SARS-CoV-2 infection prevalence on repatriation flights from Wuhan City, China, Journal of Travel Medicine, Vol: 27, Pages: 1-3, ISSN: 1195-1982

We estimated SARS-CoV-2 infection prevalence in cohorts of repatriated citizens from Wuhan to be 0.44% (95% CI: 0.19%–1.03%). Although not representative of the wider population we believe these estimates are helpful in providing a conservative estimate of infection prevalence in Wuhan City, China, in the absence of large-scale population testing early in the epidemic.

Journal article

Gaythorpe K, Bhatia S, Mangal T, Unwin H, Imai N, Cuomo-Dannenburg G, Walters C, Jauneikaite E, Bayley H, Kont M, Mousa A, Whittles L, Riley S, Ferguson Net al., 2020, Report 37: Children’s role in the COVID-19 pandemic: a systematic review of early surveillance data on susceptibility, severity, and transmissibility

SARS-CoV-2 infections have been reported in all age groups including infants, children, and adolescents. However, the role of children in the COVID-19 pandemic is still uncertain. This systematic review of early studies synthesises evidence on the susceptibility of children to SARS-CoV-2 infection, the severity and clinical outcomes in children with SARS-CoV-2 infection, and the transmissibility of SARS-CoV-2 by children. A systematic literature review was conducted in PubMed. Reviewers extracted data from relevant, peer-reviewed studies published during the first wave of the SARS-CoV-2 outbreak using a standardised form and assessed quality using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. For studies included in the meta-analysis, we used a random effects model to calculate pooled estimates of the proportion of children considered asymptomatic or in a severe or critical state. We identified 2,775 potential studies of which 128 studies met our inclusion criteria; data were extracted from 99, which were then quality assessed. Finally, 29 studies were considered for the meta-analysis that included information of symptoms and/or severity, these were further assessed based on patient recruitment. Our pooled estimate of the proportion of test positive children who were asymptomatic was 21.1% (95% CI: 14.0 - 28.1%), based on 13 included studies, and the proportion of children with severe or critical symptoms was 3.8% (95% CI: 1.5 - 6.0%), based on 14 included studies. We did not identify any studies designed to assess transmissibility in children and found that susceptibility to infection in children was highly variable across studies.Children’s susceptibility to infection and onward transmissibility relative to adults is still unclear and varied widely between studies. However, it is evident that most children experience clinically mild disease or remain asymptomatically infected. More comprehensive contact-tracing studie

Report

Dighe A, Cattarino L, Cuomo-Dannenburg G, Skarp J, Imai N, Bhatia S, Gaythorpe K, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cooper L, Coupland H, Cucunuba Perez Z, Dorigatti I, Eales O, van Elsland S, Fitzjohn R, Green W, Haw D, Hinsley W, Knock E, Laydon D, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Pons Salort M, Thompson H, Unwin H, Verity R, Vollmer M, Walters C, Watson O, Whittaker C, Whittles L, Ghani A, Donnelly C, Ferguson N, Riley Set al., 2020, Response to COVID-19 in South Korea and implications for lifting stringent interventions, BMC Medicine, Vol: 18, Pages: 1-12, ISSN: 1741-7015

Background After experiencing a sharp growth in COVID-19 cases early in the pandemic, South Korea rapidly controlled transmission while implementing less stringent national social distancing measures than countries in Europe and the US. This has led to substantial interest in their “test, trace, isolate” strategy. However, it is important to understand the epidemiological peculiarities of South Korea’s outbreak and characterise their response before attempting to emulate these measures elsewhere.MethodsWe systematically extracted numbers of suspected cases tested, PCR-confirmed cases, deaths, isolated confirmed cases, and numbers of confirmed cases with an identified epidemiological link from publicly available data. We estimated the time-varying reproduction number, Rt, using an established Bayesian framework, and reviewed the package of interventions implemented by South Korea using our extracted data, plus published literature and government sources. Results We estimated that after the initial rapid growth in cases, Rt dropped below one in early April before increasing to a maximum of 1.94 (95%CrI; 1.64-2.27) in May following outbreaks in Seoul Metropolitan Region. By mid-June Rt was back below one where it remained until the end of our study (July 13th). Despite less stringent “lockdown” measures, strong social distancing measures were implemented in high incidence areas and studies measured a considerable national decrease in movement in late-February. Testing capacity was swiftly increased, and protocols were in place to isolate suspected and confirmed cases quickly however we could not estimate the delay to isolation using our data. Accounting for just 10% of cases, individual case-based contact-tracing picked up a relatively minor proportion of total cases, with cluster investigations accounting for 66%. ConclusionsWhilst early adoption of testing and contact-tracing are likely to be important for South Korea’s successf

Journal article

Djaafara BA, Whittaker C, Watson OJ, Verity R, Brazeau NF, Widyastuti W, Oktavia D, Adrian V, Salama N, Bhatia S, Nouvellet P, Sherrard-Smith E, Churcher TS, Surendra H, Lina RN, Ekawati LL, Lestari KD, Andrianto A, Thwaites G, Baird JK, Ghani AC, Elyazar IRF, Walker PGTet al., 2020, Quantifying the dynamics of COVID-19 burden and impact of interventions in Java, Indonesia

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>As in many countries, quantifying COVID-19 spread in Indonesia remains challenging due to testing limitations. In Java, non-pharmaceutical interventions (NPIs) were implemented throughout 2020. However, as a vaccination campaign launches, cases and deaths are rising across the island.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We used modelling to explore the extent to which data on burials in Jakarta using strict COVID-19 protocols (C19P) provide additional insight into the transmissibility of the disease, epidemic trajectory, and the impact of NPIs. We assess how implementation of NPIs in early 2021 will shape the epidemic during the period of likely vaccine roll-out.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>C19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than reported. Transmission estimates using these data suggest earlier, larger, and more sustained impact of NPIs. Measures to reduce sub-national spread, particularly during Ramadan, substantially mitigated spread to more vulnerable rural areas. Given current trajectory, daily cases and deaths are likely to increase in most regions as the vaccine is rolled-out. Transmission may peak in early 2021 in Jakarta if current levels of control are maintained. However, relaxation of control measures is likely to lead to a subsequent resurgence in the absence of an effective vaccination campaign.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Syndromic measures of mortality provide a more complete picture of COVID-19 severity upon which to base decision-making. The high potential impact of the vaccine in Java is attributable to reductions in transmission to date and dependent on these be

Journal article

Ainslie K, Walters C, Fu H, Bhatia S, Wang H, Xi X, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland S, FitzJohn R, Gaythorpe K, Ghani A, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati-Gilani G, Okell L, Siveroni I, Thompson H, Unwin J, Verity R, Vollmer M, Walker P, Wang Y, Watson O, Whittaker C, Winskill P, Donnelly C, Ferguson N, Riley Set al., 2020, Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment, Wellcome Open Research, ISSN: 2398-502X

Background : The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods : Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results : Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

Journal article

Bhatia S, Egri-Nagy A, Serdoz S, Praeger CE, Gebhardt V, Francis Aet al., 2020, A path-deformation framework for determining weighted genome rearrangement distance, Publisher: arXiv

Measuring the distance between two bacterial genomes under the inversionprocess is usually done by assuming all inversions to occur with equalprobability. Recently, an approach to calculating inversion distance usinggroup theory was introduced, and is effective for the model in which only veryshort inversions occur. In this paper, we show how to use the group-theoreticframework to establish minimal distance for any weighting on the set ofinversions, generalizing previous approaches. To do this we use the theory ofrewriting systems for groups, and exploit the Knuth--Bendix algorithm, thefirst time this theory has been introduced into genome rearrangement problems. The central idea of the approach is to use existing group theoretic methodsto find an initial path between two genomes in genome space (for instance usingonly short inversions), and then to deform this path to optimality using aconfluent system of rewriting rules generated by the Knuth--Bendix algorithm.

Working paper

Fu H, Xi X, Wang H, Boonyasiri A, Wang Y, Hinsley W, Fraser K, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewe T, Dighe A, Winskill P, van Elsland S, Ainslie K, Baguelin M, Bhatt S, Boyd O, Brazeau N, Cattarino L, Charles G, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Green W, Hamlet A, Hauck K, Haw D, Jeffrey B, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Schmit N, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Watson O, Whittaker C, Whittles L, Imai N, Bhatia S, Ferguson Net al., 2020, Report 30: The COVID-19 epidemic trends and control measures in mainland China

Report

Jombart T, Kamvar ZN, Taylor T, Ghozzi S, Bhatia Set al., 2020, reconhub/projections: 0.5.1

Patches to 0.5.0 to pass checks with R 4.0.2.

Software

Bhatia S, Imai N, Cuomo-Dannenburg G, Baguelin M, Boonyasiri A, Cori A, Cucunuba Perez Z, Dorigatti I, Fitzjohn R, Fu H, Gaythorpe K, Ghani A, Hamlet A, Hinsley W, Laydon D, Nedjati Gilani G, Okell L, Riley S, Thompson H, van Elsland S, Volz E, Wang H, Wang Y, Whittaker C, Xi X, Donnelly CA, Ferguson NMet al., 2020, Estimating the number of undetected COVID-19 cases among travellers from mainland China, Publisher: F1000 Research Ltd

Background: Since the start of the COVID-19 epidemic in late 2019, there have been more than 152 affected regions and countries with over 110,000 confirmed cases outside mainland China.Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries.Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that more than two thirds (70%, 95% CI: 54% - 80%, compared to Singapore; 75%, 95% CI: 66% - 82%, compared to multiple countries) of cases exported from mainland China have remained undetected.Conclusions: These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

Working paper

Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, Djafaara BA, Cucunubá Z, Olivera Mesa D, Green W, Thompson H, Nayagam S, Ainslie KEC, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau NF, Cattarino L, Cuomo-Dannenburg G, Dighe A, Donnelly CA, Dorigatti I, van Elsland SL, FitzJohn R, Fu H, Gaythorpe KAM, Geidelberg L, Grassly N, Haw D, Hayes S, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Mishra S, Nedjati-Gilani G, Okell LC, Unwin HJ, Verity R, Vollmer M, Walters CE, Wang H, Wang Y, Xi X, Lalloo DG, Ferguson NM, Ghani ACet al., 2020, The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries, Science, Vol: 369, Pages: 413-422, ISSN: 0036-8075

The ongoing COVID-19 pandemic poses a severe threat to public health worldwide. We combine data on demography, contact patterns, disease severity, and health care capacity and quality to understand its impact and inform strategies for its control. Younger populations in lower income countries may reduce overall risk but limited health system capacity coupled with closer inter-generational contact largely negates this benefit. Mitigation strategies that slow but do not interrupt transmission will still lead to COVID-19 epidemics rapidly overwhelming health systems, with substantial excess deaths in lower income countries due to the poorer health care available. Of countries that have undertaken suppression to date, lower income countries have acted earlier. However, this will need to be maintained or triggered more frequently in these settings to keep below available health capacity, with associated detrimental consequences for the wider health, well-being and economies of these countries.

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, Nscimento F, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2020, Report 26: Reduction in mobility and COVID-19 transmission

In response to the COVID-19 pandemic, countries have sought to control transmission of SARS-CoV-2by restricting population movement through social distancing interventions, reducing the number ofcontacts.Mobility data represent an important proxy measure of social distancing. Here, we develop aframework to infer the relationship between mobility and the key measure of population-level diseasetransmission, the reproduction number (R). The framework is applied to 53 countries with sustainedSARS-CoV-2 transmission based on two distinct country-specific automated measures of humanmobility, Apple and Google mobility data.For both datasets, the relationship between mobility and transmission was consistent within andacross countries and explained more than 85% of the variance in the observed variation intransmissibility. We quantified country-specific mobility thresholds defined as the reduction inmobility necessary to expect a decline in new infections (R<1).While social contacts were sufficiently reduced in France, Spain and the United Kingdom to controlCOVID-19 as of the 10th of May, we find that enhanced control measures are still warranted for themajority of countries. We found encouraging early evidence of some decoupling of transmission andmobility in 10 countries, a key indicator of successful easing of social-distancing restrictions.Easing social-distancing restrictions should be considered very carefully, as small increases in contactrates are likely to risk resurgence even where COVID-19 is apparently under control. Overall, strongpopulation-wide social-distancing measures are effective to control COVID-19; however gradualeasing of restrictions must be accompanied by alternative interventions, such as efficient contacttracing, to ensure control.

Report

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunubá Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC, Ferguson NMet al., 2020, Estimates of the severity of coronavirus disease 2019: a model-based analysis., Lancet Infectious Diseases, Vol: 20, Pages: 669-677, ISSN: 1473-3099

BACKGROUND: In the face of rapidly changing data, a range of case fatality ratio estimates for coronavirus disease 2019 (COVID-19) have been produced that differ substantially in magnitude. We aimed to provide robust estimates, accounting for censoring and ascertainment biases. METHODS: We collected individual-case data for patients who died from COVID-19 in Hubei, mainland China (reported by national and provincial health commissions to Feb 8, 2020), and for cases outside of mainland China (from government or ministry of health websites and media reports for 37 countries, as well as Hong Kong and Macau, until Feb 25, 2020). These individual-case data were used to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the case fatality ratio by relating the aggregate distribution of cases to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for demography and age-based and location-based under-ascertainment. We also estimated the case fatality ratio from individual line-list data on 1334 cases identified outside of mainland China. Using data on the prevalence of PCR-confirmed cases in international residents repatriated from China, we obtained age-stratified estimates of the infection fatality ratio. Furthermore, data on age-stratified severity in a subset of 3665 cases from China were used to estimate the proportion of infected individuals who are likely to require hospitalisation. FINDINGS: Using data on 24 deaths that occurred in mainland China and 165 recoveries outside of China, we estimated the mean duration from onset of symptoms to death to be 17·8 days (95% credible interval [CrI] 16·9-19·2) and to hospital discharge to be 24·7 days (22·9-28·1). In all laboratory confirmed and clinically diagnosed cases from mainland China (n=70 117), we estimated a crude case fatality ratio (adjusted for cen

Journal article

Dighe A, Cattarino L, Cuomo-Dannenburg G, Skarp J, Imai N, Bhatia S, Gaythorpe K, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Charles G, Cooper L, Coupland H, Cucunuba Perez Z, Djaafara A, Dorigatti I, Eales O, Eaton J, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Flaxman S, Fraser K, Geidelberg L, Green W, Hallett T, Hamlet A, Hauck K, Haw D, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Pons Salort M, Ragonnet-Cronin M, Thompson H, Unwin H, Verity R, Whittaker C, Whittles L, Xi X, Ghani A, Donnelly C, Ferguson N, Riley Set al., 2020, Report 25: Response to COVID-19 in South Korea and implications for lifting stringent interventions, 25

While South Korea experienced a sharp growth in COVID-19 cases early in the global pandemic, it has since rapidly reduced rates of infection and now maintains low numbers of daily new cases. Despite using less stringent “lockdown” measures than other affected countries, strong social distancing measures have been advised in high incidence areas and a 38% national decrease in movement occurred voluntarily between February 24th - March 1st. Suspected and confirmed cases were isolated quickly even during the rapid expansion of the epidemic and identification of the Shincheonji cluster. South Korea swiftly scaled up testing capacity and was able to maintain case-based interventions throughout. However, individual case-based contact tracing, not associated with a specific cluster, was a relatively minor aspect of their control program, with cluster investigations accounting for a far higher proportion of cases: the underlying epidemic was driven by a series of linked clusters, with 48% of all cases in the Shincheonji cluster and 20% in other clusters. Case-based contacts currently account for only 11% of total cases. The high volume of testing and low number of deaths suggests that South Korea experienced a small epidemic of infections relative to other countries. Therefore, caution is needed in attempting to duplicate the South Korean response in settings with larger more generalized epidemics. Finding, testing and isolating cases that are linked to clusters may be more difficult in such settings.

Report

Jeffrey B, Walters C, Ainslie K, Eales O, Ciavarella C, Bhatia S, Hayes S, Baguelin M, Boonyasiri A, Brazeau N, Cuomo-Dannenburg G, Fitzjohn R, Gaythorpe K, Green W, Imai N, Mellan T, Mishra S, Nouvellet P, Unwin H, Verity R, Vollmer M, Whittaker C, Ferguson N, Donnelly C, Riley Set al., 2020, Report 24: Mobility data from mobile phones suggests that initial compliance with COVID-19 social distancing interventions was high and geographically consistent across the UK, 24

Since early March 2020, the COVID-19 epidemic across the United Kingdom has led to a range of socialdistancing policies, which have resulted in reduced mobility across different regions. Crowd level dataon mobile phone usage can be used as a proxy for actual population mobility patterns and provide away of quantifying the impact of social distancing measures on changes in mobility. Here, we use twomobile phone-based datasets (anonymised and aggregated crowd level data from O2 and from theFacebook app on mobile phones) to assess changes in average mobility, both overall and broken downinto high and low population density areas, and changes in the distribution of journey lengths. Weshow that there was a substantial overall reduction in mobility with the most rapid decline on the 24thMarch 2020, the day after the Prime Minister’s announcement of an enforced lockdown. Thereduction in mobility was highly synchronized across the UK. Although mobility has remained low since26th March 2020, we detect a gradual increase since that time. We also show that the two differentdatasets produce similar trends, albeit with some location-specific differences. We see slightly largerreductions in average mobility in high-density areas than in low-density areas, with greater variationin mobility in the high-density areas: some high-density areas eliminated almost all mobility. We areonly able to observe populations living in locations where sufficient number of people use Facebookor a device connected to the relevant provider’s network such that no individual is identifiable. Theseanalyses form a baseline with which to monitor changes in behaviour in the UK as social distancing iseased.

Report

Mellan T, Hoeltgebaum H, Mishra S, Whittaker C, Schnekenberg R, Gandy A, Unwin H, Vollmer M, Coupland H, Hawryluk I, Rodrigues Faria N, Vesga J, Zhu H, Hutchinson M, Ratmann O, Monod M, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Fraser K, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Okell L, Dorigatti I, Walker P, Ghani A, Riley S, Ferguson N, Donnelly C, Flaxman S, Bhatt Set al., 2020, Report 21: Estimating COVID-19 cases and reproduction number in Brazil

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemicusing three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and wetherefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. Thedistribution of deaths among states is highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro,Ceará, Pernambuco and Amazonas—accounting for 81% of deaths reported to date. In these states, weestimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95%CI: 2.8%-3.7%) in São Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (ameasure of transmission intensity) at the start of the epidemic meant that an infected individual wouldinfect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that thereproduction number remains above 1. A reproduction number above 1 means that the epidemic isnot yet controlled and will continue to grow. These trends are in stark contrast to other major COVID19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproductionnumber below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our resultssuggest that further action is needed to limit spread and prevent health system overload.

Report

Vollmer M, Mishra S, Unwin H, Gandy A, Melan T, Bradley V, Zhu H, Coupland H, Hawryluk I, Hutchinson M, Ratmann O, Monod M, Walker P, Whittaker C, Cattarino L, Ciavarella C, Cilloni L, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Ghani A, Riley S, Okell L, Donnelly C, Ferguson N, Dorigatti I, Flaxman S, Bhatt Set al., 2020, Report 20: A sub-national analysis of the rate of transmission of Covid-19 in Italy

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28; 238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a

Report

Ainslie KEC, Walters CE, Fu H, Bhatia S, Wang H, Xi X, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland SL, FitzJohn R, Gaythorpe K, Ghani AC, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati-Gilani G, Okell LC, Siveroni I, Thompson HA, Unwin HJT, Verity R, Vollmer M, Walker PGT, Wang Y, Watson OJ, Whittaker C, Winskill P, Donnelly CA, Ferguson NM, Riley Set al., 2020, Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment [version 1; peer review: 2 approved], Wellcome Open Res, Vol: 5, ISSN: 2398-502X

Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

Journal article

Imai N, Gaythorpe KAM, Abbott S, Bhatia S, van Elsland S, Prem K, Liu Y, Ferguson NMet al., 2020, Adoption and impact of non-pharmaceutical interventions for COVID-19, Wellcome Open Research, Vol: 5, ISSN: 2398-502X

Background: Several non-pharmaceutical interventions (NPIs) have been implemented across the world to control the coronavirus disease (COVID-19) pandemic. Social distancing (SD) interventions applied so far have included school closures, remote working and quarantine. These measures have been shown to have large impacts on pandemic influenza transmission. However, there has been comparatively little examination of such measures for COVID-19.Methods: We examined the existing literature, and collated data, on implementation of NPIs to examine their effects on the COVID-19 pandemic so far. Data on NPIs were collected from official government websites as well as from media sources.Results: Measures such as travel restrictions have been implemented in multiple countries and appears to have slowed the geographic spread of COVID-19 and reduced initial case numbers. We find that, due to the relatively sparse information on the differences with and without interventions, it is difficult to quantitatively assess the efficacy of many interventions. Similarly, whilst the comparison to other pandemic diseases such as influenza can be helpful, there are key differences that could affect the efficacy of similar NPIs.Conclusions: The timely implementation of control measures is key to their success and must strike a balance between early enough application to reduce the peak of the epidemic and ensuring that they can be feasibly maintained for an appropriate duration. Such measures can have large societal impacts and they need to be appropriately justified to the population. As the pandemic of COVID-19 progresses, quantifying the impact of interventions will be a vital consideration for the appropriate use of mitigation strategies.

Journal article

Ainslie K, Walters C, Fu H, Bhatia S, Wang H, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Ghani A, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati Gilani G, Okell L, Siveroni I, Thompson H, Unwin H, Verity R, Vollmer M, Walker P, Wang Y, Watson O, Whittaker C, Winskill P, Xi X, Donnelly C, Ferguson N, Riley Set al., 2020, Report 11: Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment

The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. As of 20 March 2020, over 254,000 cases and 10,000 deaths had been reported worldwide. The outbreak began in the Chinese city of Wuhan in December 2019. In response to the fast-growing epidemic, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. At the peak of the outbreak in China (early February), there were between 2,000 and 4,000 new confirmed cases per day. For the first time since the outbreak began there have been no new confirmed cases caused by local transmission in China reported for five consecutive days up to 23 March 2020. This is an indication that the social distancing measures enacted in China have led to control of COVID-19 in China. These interventions have also impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic is not yet clear. Here, we estimate transmissibility from reported cases and compare those estimates with daily data on within-city movement, as a proxy for economic activity. Initially, within-city movement and transmission were very strongly correlated in the 5 provinces most affected by the epidemic and Beijing. However, that correlation is no longer apparent even though within-city movement has started to increase. A similar analysis for Hong Kong shows that intermediate levels of local activity can be maintained while avoiding a large outbreak. These results do not preclude future epidemics in China, nor do they allow us to estimate the maximum proportion of previous within-city activity that will be recovered in the medium term. However, they do suggest that after very intense social distancing which resulted in containment, China has successfully exited their stringent social distancing policy to some degree. Globally, China is at a more advanced stage of the pandemic. Policies implemented to reduce the spread of CO

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00955594&limit=30&person=true