Imperial College London

DrSamirBhatt

Faculty of MedicineSchool of Public Health

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 5029s.bhatt

 
 
//

Location

 

G32ASt Mary's Research BuildingSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

137 results found

Hawryluk I, Mellan T, Helfer Hoeltgebaum H, Mishra S, Parolin Schnekenberg R, Whittaker C, Zhu H, Gandy A, Flaxman S, Bhatt Set al., 2020, Inference of COVID-19 epidemiological distributions from Brazilian hospital data, Journal of the Royal Society Interface, ISSN: 1742-5662

Knowing COVID-19 epidemiological distributions, such as the time frompatient admission to death, is directly relevant to effective primary andsecondary care planning, and moreover, the mathematical modelling ofthe pandemic generally. We determine epidemiological distributions forpatients hospitalized with COVID-19 using a large dataset (N = 21 000 −157 000) from the Brazilian Sistema de Informação de Vigilância Epidemiológicada Gripe database. A joint Bayesian subnational model with partialpooling is used to simultaneously describe the 26 states and one federal districtof Brazil, and shows significant variation in the mean of the symptomonset-to-death time, with ranges between 11.2 and 17.8 days across thedifferent states, and a mean of 15.2 days for Brazil. We find strong evidencein favour of specific probability density function choices: for example, thegamma distribution gives the best fit for onset-to-death and the generalizedlognormal for onset-to-hospital-admission. Our results show that epidemiologicaldistributions have considerable geographical variation, and providethe first estimates of these distributions in a low and middle-income setting.At the subnational level, variation in COVID-19 outcome timings are foundto be correlated with poverty, deprivation and segregation levels, andweaker correlation is observed for mean age, wealth and urbanicity.

Journal article

Okell LC, Verity R, Katzourakis A, Volz EM, Watson OJ, Mishra S, Walker P, Whittaker C, Donnelly CA, Riley S, Ghani AC, Gandy A, Flaxman S, Ferguson NM, Bhatt Set al., 2020, Host or pathogen-related factors in COVID-19 severity? - Authors' reply., Lancet, Vol: 396

Journal article

Unwin H, Mishra S, Bradley V, Gandy A, Mellan T, Coupland H, Ish-Horowicz J, Vollmer M, Whittaker C, Filippi S, Xi X, Monod M, Ratmann O, Hutchinson M, Valka F, Zhu H, Hawryluk I, Milton P, Ainslie K, Baguelin M, Boonyasiri A, Brazeau N, Cattarino L, Cucunuba Z, Cuomo-Dannenburg G, Dorigatti I, Eales O, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Siveroni I, Thompson H, Walker P, Walters C, Watson O, Whittles L, Ghani A, Ferguson N, Riley S, Donnelly C, Bhatt S, Flaxman Set al., 2020, State-level tracking of COVID-19 in the United States, Nature Communications, ISSN: 2041-1723

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available deathdata within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on therate of transmission of SARS-CoV-2. We estimate thatRtwas only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.

Journal article

Dighe A, Cattarino L, Cuomo-Dannenburg G, Skarp J, Imai N, Bhatia S, Gaythorpe K, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cooper L, Coupland H, Cucunuba Perez Z, Dorigatti I, Eales O, van Elsland S, Fitzjohn R, Green W, Haw D, Hinsley W, Knock E, Laydon D, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Pons Salort M, Thompson H, Unwin H, Verity R, Vollmer M, Walters C, Watson O, Whittaker C, Whittles L, Ghani A, Donnelly C, Ferguson N, Riley Set al., 2020, Response to COVID-19 in South Korea and implications for lifting stringent interventions, BMC Medicine, Vol: 18, Pages: 1-12, ISSN: 1741-7015

Background After experiencing a sharp growth in COVID-19 cases early in the pandemic, South Korea rapidly controlled transmission while implementing less stringent national social distancing measures than countries in Europe and the US. This has led to substantial interest in their “test, trace, isolate” strategy. However, it is important to understand the epidemiological peculiarities of South Korea’s outbreak and characterise their response before attempting to emulate these measures elsewhere.MethodsWe systematically extracted numbers of suspected cases tested, PCR-confirmed cases, deaths, isolated confirmed cases, and numbers of confirmed cases with an identified epidemiological link from publicly available data. We estimated the time-varying reproduction number, Rt, using an established Bayesian framework, and reviewed the package of interventions implemented by South Korea using our extracted data, plus published literature and government sources. Results We estimated that after the initial rapid growth in cases, Rt dropped below one in early April before increasing to a maximum of 1.94 (95%CrI; 1.64-2.27) in May following outbreaks in Seoul Metropolitan Region. By mid-June Rt was back below one where it remained until the end of our study (July 13th). Despite less stringent “lockdown” measures, strong social distancing measures were implemented in high incidence areas and studies measured a considerable national decrease in movement in late-February. Testing capacity was swiftly increased, and protocols were in place to isolate suspected and confirmed cases quickly however we could not estimate the delay to isolation using our data. Accounting for just 10% of cases, individual case-based contact-tracing picked up a relatively minor proportion of total cases, with cluster investigations accounting for 66%. ConclusionsWhilst early adoption of testing and contact-tracing are likely to be important for South Korea’s successf

Journal article

Weiss DJ, Nelson A, Vargas-Ruiz CA, Gligoric K, Bavadekar S, Gabrilovich E, Bertozzi-Villa A, Rozier J, Gibson HS, Shekel T, Kamath C, Lieber A, Schulman K, Shao Y, Qarkaxhija V, Nandi AK, Keddie SH, Rumisha S, Amratia P, Arambepola R, Chestnutt EG, Millar JJ, Symons TL, Cameron E, Battle KE, Bhatt S, Gething PWet al., 2020, Global maps of travel time to healthcare facilities, NATURE MEDICINE, ISSN: 1078-8956

Journal article

Hogan A, Winskill P, Watson O, Walker P, Whittaker C, Baguelin M, Haw D, Lochen A, Gaythorpe K, Ainslie K, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Charles G, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Eales O, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Flaxman S, Green W, Hallett T, Hamlet A, Hinsley W, Imai N, Jauneikaite E, Jeffrey B, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Ower A, Parag K, Ragonnet-Cronin M, Siveroni I, Skarp J, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walters C, Wang H, Wang Y, Whittles L, Xi X, Muhib F, Smith P, Hauck K, Ferguson N, Ghani Aet al., 2020, Report 33: Modelling the allocation and impact of a COVID-19 vaccine

Several SARS-CoV-2 vaccine candidates are now in late-stage trials, with efficacy and safety results expected by the end of 2020. Even under optimistic scenarios for manufacture and delivery, the doses available in 2021 are likely to be limited. Here we identify optimal vaccine allocation strategies within and between countries to maximise health (avert deaths) under constraints on dose supply. We extended an existing mathematical model of SARS-CoV-2 transmission across different country settings to model the public health impact of potential vaccines, using a range of target product profiles developed by the World Health Organization. We show that as supply increases, vaccines that reduce or block infection – and thus transmission – in addition to preventing disease have a greater impact than those that prevent disease alone, due to the indirect protection provided to high-risk groups. We further demonstrate that the health impact of vaccination will depend on the cumulative infection incidence in the population when vaccination begins, the duration of any naturally acquired immunity, the likely trajectory of the epidemic in 2021 and the level of healthcare available to effectively treat those with disease. Within a country, we find that for a limited supply (doses for <20% of the population) the optimal strategy is to target the elderly and other high-risk groups. However, if a larger supply is available, the optimal strategy switches to targeting key transmitters (i.e. the working age population and potentially children) to indirectly protect the elderly and vulnerable. Given the likely global dose supply in 2021 (2 billion doses with a two-dose vaccine), we find that a strategy in which doses are allocated to countries in proportion to their population size is close to optimal in averting deaths. Such a strategy also aligns with the ethical principles agreed in pandemic preparedness planning.

Report

Weiss DJ, Bertozzi-Villa A, Rumisha SF, Amratia P, Arambepola R, Battle KE, Cameron E, Chestnutt E, Gibson HS, Harris J, Keddie S, Millar JJ, Rozier J, Symons TL, Vargas-Ruiz C, Hay SI, Smith DL, Alonso PL, Noor AM, Bhatt S, Gething PWet al., 2020, Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: a geospatial modelling analysis., Lancet Infect Dis

BACKGROUND: Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control. METHODS: Using an established set of spatiotemporal Bayesian geostatistical models, we generated geospatial estimates across malaria-endemic African countries of the clinical case incidence and mortality of malaria, incorporating an updated database of parasite rate surveys, insecticide-treated net (ITN) coverage, and effective treatment rates. We established a baseline estimate for the anticipated malaria burden in Africa in the absence of COVID-19-related disruptions, and repeated the analysis for nine hypothetical scenarios in which effective treatment with an antimalarial drug and distribution of ITNs (both through routine channels and mass campaigns) were reduced to varying extents. FINDINGS: We estimated 215·2 (95% uncertainty interval 143·7-311·6) million cases and 386·4 (307·8-497·8) thousand deaths across malaria-endemic African countries in 2020 in our baseline scenario of undisrupted intervention coverage. With greater reductions in access to effective antimalarial drug treatment, our model predicted increasing numbers of cases and deaths: 224·1 (148·7-326·8) million cases and 487·9 (385·3-634·6) thousand deaths with a 25% reduction in antimalarial drug coverage; 233·1 (153·7-342·5) million cases and 597·4 (468·0-784·4) thousand deaths with a 50% reduction; and 242·3 (158·7-358·8) million cases and 715·2 (556·4-947·9) thousand deaths with a 75% reduction. Halting planned 2020 ITN mass distribution campaigns and reducing r

Journal article

Monod M, Blenkinsop A, Xi X, Herbert D, Bershan S, Tietze S, Bradley V, Chen Y, Coupland H, Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, Unwin H, Vollmer M, Weber S, Zhu H, Bezancon A, Ferguson N, Mishra S, Flaxman S, Bhatt S, Ratmann O, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Green W, Hamlet A, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Walters C, Donnelly C, Okell L, Bhatia S, Brazeau N, Eales O, Haw D, Imai N, Jauneikaite E, Lees J, Mousa A, Olivera Mesa D, Skarp J, Whittles Let al., 2020, Report 32: Targeting interventions to age groups that sustain COVID-19 transmission in the United States

Following ini􀀂al declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementa􀀂on of non-pharmaceu􀀂cal inter-ven􀀂ons, it is s􀀂ll not known how they are impacted by changing contact pa􀀁erns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impact the loosening of interven􀀂ons such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanis􀀂cally to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age specific contact pa􀀁erns and use this rich rela􀀂onship to reconstruct accurate trans-mission dynamics. Contrary to anecdotal evidence, we find li􀀁le support for age-shi􀀃s in contact and transmission dynamics over 􀀂me. We es􀀂mate that, un􀀂l August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infec􀀂ons in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0-9. In areas with con􀀂nued, community-wide transmission, our transmission model predicts that re-opening kindergartens and el-ementary schools could facilitate spread and lead to considerable excess COVID-19 a􀀁ributable deaths over a 90-day period. These findings indicate that targe􀀂ng interven􀀂ons to adults aged 20-49 are an important con-sidera􀀂on in hal􀀂ng resurgent epidemics, and preven􀀂ng COVID-19-a􀀁ributable deaths when kindergartens and elementary schools reopen.

Report

van Elsland S, Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Charles G, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Donnelly C, Dorigatti I, Eales O, van Elsland S, Nascimento F, Fitzjohn R, Flaxman S, Forna A, Fu H, Gaythorpe K, Green W, Hamlet A, Hauck K, Haw D, Hayes S, Hinsley W, Imai N, Jeffrey B, Johnson R, Jorgensen D, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Olivera Mesa D, Pons Salort M, Ragonnet-Cronin M, Siveroni I, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walters C, Wang H, Wang Y, Whittles L, Winskill P, Xi X, Ferguson N, Beals E, Walker P, Anonymous Authorset al., 2020, Report 31: Estimating the burden of COVID-19 in Damascus, Syria: an analysis of novel data sources to infer mortality under-ascertainment

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported substantially lower mortality rates than in Europe and the Americas. One hypothesis is that these countries have been ‘spared’, but another is that deaths have been under-ascertained (deaths that have been unreported due to any number of reasons, for instance due to limited testing capacity). However, the scale of under-ascertainment is difficult to assess with currently available data. In this analysis, we estimate the potential under-ascertainment of COVID-19 mortality in Damascus, Syria, where all-cause mortality data has been reported between 25th July and 1st August. We fit a mathematical model of COVID-19 transmission to reported COVID-19 deaths in Damascus since the beginning of the pandemic and compare the model-predicted deaths to reported excess deaths. Exploring a range of different assumptions about under-ascertainment, we estimate that only 1.25% of deaths (sensitivity range 1% - 3%) due to COVID-19 are reported in Damascus. Accounting for under-ascertainment also corroborates local reports of exceeded hospital bed capacity. To validate the epidemic dynamics inferred, we leverage community-uploaded obituary certificates as an alternative data source, which confirms extensive mortality under-ascertainment in Damascus between July and August. This level of under-ascertainment suggests that Damascus is at a much later stage in its epidemic than suggested by surveillance reports, which have repo. We estimate that 4,340 (95% CI: 3,250 - 5,540) deaths due to COVID-19 in Damascus may have been missed as of 2nd September 2020. Given that Damascus is likely to have the most robust surveillance in Syria, these findings suggest that other regions of the country could have experienced similar or worse mortality rates due to COVID-19.

Report

Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR, Dellicour S, Mellan TA, du Plessis L, Pereira RHM, Sales FCS, Manuli ER, Theze J, Almeida L, Menezes MT, Voloch CM, Fumagalli MJ, Coletti TM, Silva CAM, Ramundo MS, Amorim MR, Hoeltgebaum HH, Mishra S, Gill MS, Carvalho LM, Buss LF, Prete Jr CA, Ashworth J, Nakaya H, Peixoto PS, Brady OJ, Nicholls SM, Tanuri A, Rossi AD, Braga CK, Gerber AL, Guimaraes APDC, Gaburo Jr N, Alencar CS, Ferreira ACS, Lima CX, Levi JE, Granato C, Ferreira GM, Francisco Jr RS, Granja F, Garcia MT, Moretti ML, Perroud Jr MW, Castineiras TMPP, Lazari CS, Hill SC, de Souza Santos AA, Simeoni CL, Forato J, Sposito AC, Schreiber AZ, Santos MNN, de Sa CZ, Souza RP, Resende-Moreira LC, Teixeira MM, Hubner J, Leme PAF, Moreira RG, Nogueira ML, Ferguson NM, Costa SF, Proenca-Modena JL, Vasconcelos ATR, Bhatt S, Lemey P, Wu C-H, Rambaut A, Loman NJ, Aguiar RS, Pybus OG, Sabino EC, Faria NRet al., 2020, Evolution and epidemic spread of SARS-CoV-2 in Brazil, Science, Vol: 369, Pages: 1255-1260, ISSN: 0036-8075

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to 1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a geographically representative genomic dataset identified >100 international virus introductions in Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp decreases in air travel, we estimated multiple exportations from large urban centers that coincided with a 25% increase in average traveled distances in national flights. This study sheds new light on the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and provides evidence that current interventions remain insufficient to keep virus transmission under control in this country.

Journal article

Hogan A, Jewell B, Sherrard-Smith E, Watson O, Whittaker C, Hamlet A, Smith J, Winskill P, Verity R, Baguelin M, Lees J, Whittles L, Ainslie K, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Eaton J, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Haw D, Hayes S, Hinsley W, Imai N, Laydon D, Mangal T, Mellan T, Mishra S, Parag K, Thompson H, Unwin H, Vollmer M, Walters C, Wang H, Ferguson N, Okell L, Churcher T, Arinaminpathy N, Ghani A, Walker P, Hallett Tet al., 2020, Potential impact of the COVID-19 pandemic on HIV, TB and malaria in low- and middle-income countries: a modelling study, The Lancet Global Health, Vol: 8, Pages: e1132-e1141, ISSN: 2214-109X

Background: COVID-19 has the potential to cause substantial disruptions to health services, including by cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions in services for human immunodeficiency virus (HIV), tuberculosis (TB) and malaria in low- and middle-income countries with high burdens of those disease could lead to additional loss of life. Methods: We constructed plausible scenarios for the disruptions that could be incurred during the COVID-19 pandemic and used established transmission models for each disease to estimate the additional impact on health that could be caused in selected settings.Findings: In high burden settings, HIV-, TB- and malaria-related deaths over five years may increase by up to 10%, 20% and 36%, respectively, compared to if there were no COVID-19 pandemic. We estimate the greatest impact on HIV to be from interruption to antiretroviral therapy, which may occur during a period of high health system demand. For TB, we estimate the greatest impact is from reductions in timely diagnosis and treatment of new cases, which may result from any prolonged period of COVID-19 suppression interventions. We estimate that the greatest impact on malaria burden could come from interruption of planned net campaigns. These disruptions could lead to loss of life-years over five years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV/TB epidemics.Interpretation: Maintaining the most critical prevention activities and healthcare services for HIV, TB and malaria could significantly reduce the overall impact of the COVID-19 pandemic.Funding: Bill & Melinda Gates Foundation, The Wellcome Trust, DFID, MRC

Journal article

Thompson H, Imai N, Dighe A, Ainslie K, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Z, Cuomo-Dannenburg G, Djaafara B, Dorigatti I, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Hallett T, Hamlet A, Haw D, Hayes S, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Mousa A, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Donnelly C, Ferguson Net al., 2020, SARS-CoV-2 infection prevalence on repatriation flights from Wuhan City, China, Journal of Travel Medicine, ISSN: 1195-1982

We estimated SARS-CoV-2 infection prevalence in cohorts of repatriated citizens from Wuhan to be 0.44% (95% CI: 0.19%–1.03%). Although not representative of the wider population we believe these estimates are helpful in providing a conservative estimate of infection prevalence in Wuhan City, China, in the absence of large-scale population testing early in the epidemic.

Journal article

Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, Rossi L, Manganelli R, Loregian A, Navarin N, Abate D, Sciro M, Merigliano S, De Canale E, Vanuzzo MC, Besutti V, Saluzzo F, Onelia F, Pacenti M, Parisi S, Carretta G, Donato D, Flor L, Cocchio S, Masi G, Sperduti A, Cattarino L, Salvador R, Nicoletti M, Caldart F, Castelli G, Nieddu E, Labella B, Fava L, Drigo M, Gaythorpe KAM, Imperial College COVID-19 Response Team, Brazzale AR, Toppo S, Trevisan M, Baldo V, Donnelly CA, Ferguson NM, Dorigatti I, Crisanti Aet al., 2020, Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo'., Nature, Vol: 584, Pages: 425-429, ISSN: 0028-0836

On the 21st of February 2020 a resident of the municipality of Vo', a small town near Padua, died of pneumonia due to SARS-CoV-2 infection1. This was the first COVID-19 death detected in Italy since the emergence of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. We collected information on the demography, clinical presentation, hospitalization, contact network and presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. On the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI) 2.1-3.3%). On the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% Confidence Interval (CI) 0.8-1.8%). Notably, 42.5% (95% CI 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (i.e. did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (p-values 0.62 and 0.74 for E and RdRp genes, respectively, Exact Wilcoxon-Mann-Whitney test). This study sheds new light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides new insights into its transmission dynamics and the efficacy of the implemented control measures.

Journal article

Grassly NC, Pons-Salort M, Parker EPK, White PJ, Ferguson NM, Imperial College COVID-19 Response Teamet al., 2020, Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study, Lancet Infectious Diseases, ISSN: 1473-3099

BACKGROUND: WHO has called for increased testing in response to the COVID-19 pandemic, but countries have taken different approaches and the effectiveness of alternative strategies is unknown. We aimed to investigate the potential impact of different testing and isolation strategies on transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We developed a mathematical model of SARS-CoV-2 transmission based on infectiousness and PCR test sensitivity over time since infection. We estimated the reduction in the effective reproduction number (R) achieved by testing and isolating symptomatic individuals, regular screening of high-risk groups irrespective of symptoms, and quarantine of contacts of laboratory-confirmed cases identified through test-and-trace protocols. The expected effectiveness of different testing strategies was defined as the percentage reduction in R. We reviewed data on the performance of antibody tests reported by the Foundation for Innovative New Diagnostics and examined their implications for the use of so-called immunity passports. FINDINGS: If all individuals with symptoms compatible with COVID-19 self-isolated and self-isolation was 100% effective in reducing onwards transmission, self-isolation of symptomatic individuals would result in a reduction in R of 47% (95% uncertainty interval [UI] 32-55). PCR testing to identify SARS-CoV-2 infection soon after symptom onset could reduce the number of individuals needing to self-isolate, but would also reduce the effectiveness of self-isolation (around 10% would be false negatives). Weekly screening of health-care workers and other high-risk groups irrespective of symptoms by use of PCR testing is estimated to reduce their contribution to SARS-CoV-2 transmission by 23% (95% UI 16-40), on top of reductions achieved by self-isolation following symptoms, assuming results are available at 24 h. The effectiveness of test and trace depends strongly on coverage and the timelines

Journal article

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, Whittaker C, Zhu H, Berah T, Eaton JW, Monod M, Perez Guzman PN, Schmit N, Cilloni L, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hallett T, Hamlet A, Hinsley W, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Volz E, Walters C, Wang H, Watson O, Winskill P, Xi X, Walker P, Ghani AC, Donnelly CA, Riley SM, Vollmer MAC, Ferguson NM, Okell LC, Bhatt Set al., 2020, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, Vol: 584, Pages: 257-261, ISSN: 0028-0836

Following the emergence of a novel coronavirus1 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions such as closure of schools and national lockdowns. We study the impact of major interventions across 11 European countries for the period from the start of COVID-19 until the 4th of May 2020 when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks prior, allowing for the time lag between infection and death. We use partial pooling of information between countries with both individual and shared effects on the reproduction number. Pooling allows more information to be used, helps overcome data idiosyncrasies, and enables more timely estimates. Our model relies on fixed estimates of some epidemiological parameters such as the infection fatality rate, does not include importation or subnational variation and assumes that changes in the reproduction number are an immediate response to interventions rather than gradual changes in behavior. Amidst the ongoing pandemic, we rely on death data that is incomplete, with systematic biases in reporting, and subject to future consolidation. We estimate that, for all the countries we consider, current interventions have been sufficient to drive the reproduction number Rt below 1 (probability Rt< 1.0 is 99.9%) and achieve epidemic control. We estimate that, across all 11 countries, between 12 and 15 million individuals have been infected with SARS-CoV-2 up to 4th May, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions and lockdown in particular have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.

Journal article

Candido DDS, Claro IM, de Jesus JG, Souza WMD, Moreira FRR, Dellicour S, Mellan T, du Plessis L, Pereira RHM, Sales FCDS, Manuli ER, Theze J, Almeida L, de Menezes MT, Voloch CM, Fumagalli MJ, Coletti TDM, Silva CAM, Ramundo MS, Amorim MR, Hoeltgebaum H, Mishra S, Gill M, Carvalho LM, Buss LF, Prete CA, Ashworth J, Nakaya H, Peixoto PDS, Brady O, Nicholls S, Tanuri A, Rossi AD, Braga CKV, Gerber AL, Guimaraes AP, Gaburo N, Alencar CS, Ferreira ACDS, Lima CX, Levi JE, Granato C, Ferreira GM, Francisco RDS, Granja F, Garcia MT, Moretti ML, Perroud MW, Castineiras TMPP, Lazari CDS, Hill S, Santos AADS, Simeoni CL, Forato J, Sposito AC, Schreiber AZ, Santos MNN, Sa CZ, Souza RP, Resende Moreira LC, Teixeira MM, Hubner J, Leme PAF, Moreira RG, Nogueira ML, Ferguson N, Costa SF, Proenca-Modena JL, Vasconcelos AT, Bhatt S, Lemey P, Wu C-H, Rambaut A, Loman N, Aguiar RS, Pybus O, Sabino EC, Faria NR, CADDE-Genomic-Networket al., 2020, Evolution and epidemic spread of SARS-CoV-2 in Brazil

Brazil currently has one of the fastest growing SARS-CoV-2 epidemics in the world. Due to limited available data, assessments of the impact of non-pharmaceutical interventions (NPIs) on virus transmission and epidemic spread remain challenging. We investigate the impact of NPIs in Brazil using epidemiological, mobility and genomic data. Mobility-driven transmission models for Sao Paulo and Rio de Janeiro cities show that the reproduction number (Rt) reached below 1 following NPIs but slowly increased to values between 1 to 1.3 (1.0 - -1.6). Genome sequencing of 427 new genomes and analysis of a geographically representative genomic dataset from 21 of the 27 Brazilian states identified >100 international introductions of SARS-CoV-2 in Brazil. We estimate that three clades introduced from Europe emerged between 22 and 27 February 2020, and were already well-established before the implementation of NPIs and travel bans. During this first phase of the epidemic establishment of SARS-CoV-2 in Brazil, we find that the virus spread mostly locally and within-state borders. Despite sharp decreases in national air travel during this period, we detected a 25% increase in the average distance travelled by air passengers during this time period. This coincided with the spread of SARS-CoV-2 from large urban centers to the rest of the country. In conclusion, our results shed light on the role of large and highly connected populated centres in the rapid ignition and establishment of SARS-CoV-2, and provide evidence that current interventions remain insufficient to keep virus transmission under control in Brazil.

Working paper

Hawryluk I, Mellan TA, Hoeltgebaum HH, Schnekenberg R, Mishra S, Whittaker C, Zhu H, Gandy A, Donnelly CA, Flaxman S, Bhatt Set al., 2020, Inference of COVID-19 epidemiological distributions from Brazilian hospital data, Publisher: Cold Spring Harbor Laboratory

<jats:p>Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset (N=21,000-157,000) from the Brazilian Sistema de Informação de Vigilância Epidemiológica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-normal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.</jats:p>

Working paper

Fu H, Xi X, Wang H, Boonyasiri A, Wang Y, Hinsley W, Fraser K, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewe T, Dighe A, Winskill P, van Elsland S, Ainslie K, Baguelin M, Bhatt S, Boyd O, Brazeau N, Cattarino L, Charles G, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Green W, Hamlet A, Hauck K, Haw D, Jeffrey B, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Schmit N, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Watson O, Whittaker C, Whittles L, Imai N, Bhatia S, Ferguson Net al., 2020, Report 30: The COVID-19 epidemic trends and control measures in mainland China

Report

Vollmer M, Radhakrishnan S, Kont M, Flaxman S, Bhatt S, Costelloe C, Honeyford C, Aylin P, Cooke G, Redhead J, White P, Ferguson N, Hauck K, Nayagam AS, Perez Guzman PNet al., 2020, Report 29: The impact of the COVID-19 epidemic on all-cause attendances to emergency departments in two large London hospitals: an observational study

The health care system in England has been highly affected by the surge in demand due to patients afflicted by COVID-19. Yet the impact of the pandemic on the care seeking behaviour of patients and thus on Emergency department (ED) services is unknown, especially for non-COVID-19 related emergencies. In this report, we aimed to assess how the reorganisation of hospital care and admission policies to respond to the COVID-19 epidemic affected ED attendances and emergency hospital admissions. We performed time-series analyses of present year vs historic (2015-2019) trends of ED attendances between March 12 and May 31 at two large central London hospitals part of Imperial College Healthcare NHS Trust (ICHNT) and compared these to regional and national trends. Historic attendances data to ICHNT and publicly available NHS situation reports were used to calibrate time series auto-regressive integrated moving average (ARIMA) forecasting models. We thus predicted the (conterfactual) expected number of ED attendances between March 12 (when the first public health measure leading to lock-down started in England) to May 31, 2020 (when the analysis was censored) at ICHNT, at all acute London Trusts and nationally. The forecasted trends were compared to observed data for the same periods of time. Lastly, we analysed the trends at ICHNT disaggregating by mode of arrival, distance from postcode of patient residence to hospital and primary diagnosis amongst those that were subsequently admitted to hospital and compared these data to an average for the same period of time in the years 2015 to 2019.During the study period (January 1 to May 31, 2020) there was an overall decrease in ED attendances of 35% at ICHNT, of 50% across all London NHS Trusts and 53% nationally. For ICHNT, the decrease in attendances was mainly amongst those aged younger than 65 and those arriving by their own means (e.g. personal or public transport). Increasing distance (km) from postcode of residence to hospi

Report

Forlani C, Bhatt S, Cameletti M, Krainski E, Blangiardo Met al., 2020, A joint bayesian space-time model to integrate spatially misaligned air pollution data in R-INLA, Environmetrics, ISSN: 1099-095X

In air pollution studies, dispersion models provide estimates of concentration at grid level covering the entire spatial domain, and are then calibrated against measurements from monitoring stations. However, these different data sources are misaligned in space and time. If misalignment is not considered, it can bias the predictions. We aim at demonstrating how the combination of multiple data sources, such as dispersion model outputs, ground observations and covariates, leads to more accurate predictions of air pollution at grid level. We consider nitrogen dioxide (NO2) concentration in Greater London and surroundings for the years 2007‐2011, and combine two different dispersion models. Different sets of spatial and temporal effects are included in order to obtain the best predictive capability. Our proposed model is framed in between calibration and Bayesian melding techniques for data fusion. Unlike other examples, we jointly model the response (concentration level at monitoring stations) and the dispersion model outputs on different scales, accounting for the different sources of uncertainty. Our spatio‐temporal model allows us to reconstruct the latent fields of each model component, and to predict daily pollution concentrations. We compare the predictive capability of our proposed model with other established methods to account for misalignment (e.g. bilinear interpolation), showing that in our case study the joint model is a better alternative.

Journal article

Okell LC, Verity R, Watson OJ, Mishra S, Walker P, Whittaker C, Katzourakis A, Donnelly CA, Riley S, Ghani AC, Gandy A, Flaxman S, Ferguson NM, Bhatt Set al., 2020, Have deaths from COVID-19 in Europe plateaued due to herd immunity?, LANCET, Vol: 395, Pages: E110-E111, ISSN: 0140-6736

Journal article

Walker PGT, Whittaker C, Watson OJ, Baguelin M, Winskill P, Hamlet A, Djafaara BA, Cucunubá Z, Olivera Mesa D, Green W, Thompson H, Nayagam S, Ainslie KEC, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau NF, Cattarino L, Cuomo-Dannenburg G, Dighe A, Donnelly CA, Dorigatti I, van Elsland SL, FitzJohn R, Fu H, Gaythorpe KAM, Geidelberg L, Grassly N, Haw D, Hayes S, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Mishra S, Nedjati-Gilani G, Okell LC, Unwin HJ, Verity R, Vollmer M, Walters CE, Wang H, Wang Y, Xi X, Lalloo DG, Ferguson NM, Ghani ACet al., 2020, The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries, Science, Vol: 369, Pages: 413-422, ISSN: 0036-8075

The ongoing COVID-19 pandemic poses a severe threat to public health worldwide. We combine data on demography, contact patterns, disease severity, and health care capacity and quality to understand its impact and inform strategies for its control. Younger populations in lower income countries may reduce overall risk but limited health system capacity coupled with closer inter-generational contact largely negates this benefit. Mitigation strategies that slow but do not interrupt transmission will still lead to COVID-19 epidemics rapidly overwhelming health systems, with substantial excess deaths in lower income countries due to the poorer health care available. Of countries that have undertaken suppression to date, lower income countries have acted earlier. However, this will need to be maintained or triggered more frequently in these settings to keep below available health capacity, with associated detrimental consequences for the wider health, well-being and economies of these countries.

Journal article

Nouvellet P, Bhatia S, Cori A, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, Eales O, van Elsland S, Nscimento F, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hamlet A, Hauck K, Hinsley W, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Nedjati Gilani G, Parag K, Pons Salort M, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Watson O, Whittaker C, Whittles L, Xi X, Ferguson N, Donnelly Cet al., 2020, Report 26: Reduction in mobility and COVID-19 transmission

In response to the COVID-19 pandemic, countries have sought to control transmission of SARS-CoV-2by restricting population movement through social distancing interventions, reducing the number ofcontacts.Mobility data represent an important proxy measure of social distancing. Here, we develop aframework to infer the relationship between mobility and the key measure of population-level diseasetransmission, the reproduction number (R). The framework is applied to 53 countries with sustainedSARS-CoV-2 transmission based on two distinct country-specific automated measures of humanmobility, Apple and Google mobility data.For both datasets, the relationship between mobility and transmission was consistent within andacross countries and explained more than 85% of the variance in the observed variation intransmissibility. We quantified country-specific mobility thresholds defined as the reduction inmobility necessary to expect a decline in new infections (R<1).While social contacts were sufficiently reduced in France, Spain and the United Kingdom to controlCOVID-19 as of the 10th of May, we find that enhanced control measures are still warranted for themajority of countries. We found encouraging early evidence of some decoupling of transmission andmobility in 10 countries, a key indicator of successful easing of social-distancing restrictions.Easing social-distancing restrictions should be considered very carefully, as small increases in contactrates are likely to risk resurgence even where COVID-19 is apparently under control. Overall, strongpopulation-wide social-distancing measures are effective to control COVID-19; however gradualeasing of restrictions must be accompanied by alternative interventions, such as efficient contacttracing, to ensure control.

Report

Hancock PA, Hendriks CJM, Tangena J-A, Gibson H, Hemingway J, Coleman M, Gething PW, Cameron E, Bhatt S, Moyes CLet al., 2020, Mapping trends in insecticide resistance phenotypes in African malaria vectors, PLOS BIOLOGY, Vol: 18, ISSN: 1544-9173

Journal article

Dighe A, Cattarino L, Cuomo-Dannenburg G, Skarp J, Imai N, Bhatia S, Gaythorpe K, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Charles G, Cooper L, Coupland H, Cucunuba Perez Z, Djaafara A, Dorigatti I, Eales O, Eaton J, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Flaxman S, Fraser K, Geidelberg L, Green W, Hallett T, Hamlet A, Hauck K, Haw D, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Pons Salort M, Ragonnet-Cronin M, Thompson H, Unwin H, Verity R, Whittaker C, Whittles L, Xi X, Ghani A, Donnelly C, Ferguson N, Riley Set al., 2020, Report 25: Response to COVID-19 in South Korea and implications for lifting stringent interventions, 25

While South Korea experienced a sharp growth in COVID-19 cases early in the global pandemic, it has since rapidly reduced rates of infection and now maintains low numbers of daily new cases. Despite using less stringent “lockdown” measures than other affected countries, strong social distancing measures have been advised in high incidence areas and a 38% national decrease in movement occurred voluntarily between February 24th - March 1st. Suspected and confirmed cases were isolated quickly even during the rapid expansion of the epidemic and identification of the Shincheonji cluster. South Korea swiftly scaled up testing capacity and was able to maintain case-based interventions throughout. However, individual case-based contact tracing, not associated with a specific cluster, was a relatively minor aspect of their control program, with cluster investigations accounting for a far higher proportion of cases: the underlying epidemic was driven by a series of linked clusters, with 48% of all cases in the Shincheonji cluster and 20% in other clusters. Case-based contacts currently account for only 11% of total cases. The high volume of testing and low number of deaths suggests that South Korea experienced a small epidemic of infections relative to other countries. Therefore, caution is needed in attempting to duplicate the South Korean response in settings with larger more generalized epidemics. Finding, testing and isolating cases that are linked to clusters may be more difficult in such settings.

Report

Unwin H, Mishra S, Bradley VC, Gandy A, Vollmer M, Mellan T, Coupland H, Ainslie K, Whittaker C, Ish-Horowicz J, Filippi S, Xi X, Monod M, Ratmann O, Hutchinson M, Valka F, Zhu H, Hawryluk I, Milton P, Baguelin M, Boonyasiri A, Brazeau N, Cattarino L, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Dorigatti I, Eales O, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hallett T, Hinsley W, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Nedjati Gilani G, Nouvellet P, Okell L, Ower A, Parag K, Siveroni I, Thompson H, Verity R, Walker P, Walters C, Wang Y, Watson O, Whittles L, Ghani A, Ferguson N, Riley S, Donnelly C, Bhatt S, Flaxman Set al., 2020, Report 23: State-level tracking of COVID-19 in the United States

our estimates show that the percentage of individuals that have been infected is 4.1% [3.7%-4.5%], with widevariation between states. For all states, even for the worst affected states, we estimate that less than a quarter of thepopulation has been infected; in New York, for example, we estimate that 16.6% [12.8%-21.6%] of individuals have beeninfected to date. Our attack rates for New York are in line with those from recent serological studies [1] broadly supportingour choice of infection fatality rate.There is variation in the initial reproduction number, which is likely due to a range of factors; we find a strong associationbetween the initial reproduction number with both population density (measured at the state level) and the chronologicaldate when 10 cumulative deaths occurred (a crude estimate of the date of locally sustained transmission).Our estimates suggest that the epidemic is not under control in much of the US: as of 17 May 2020 the reproductionnumber is above the critical threshold (1.0) in 24 [95% CI: 20-30] states. Higher reproduction numbers are geographicallyclustered in the South and Midwest, where epidemics are still developing, while we estimate lower reproduction numbersin states that have already suffered high COVID-19 mortality (such as the Northeast). These estimates suggest that cautionmust be taken in loosening current restrictions if effective additional measures are not put in place.We predict that increased mobility following relaxation of social distancing will lead to resurgence of transmission, keepingall else constant. We predict that deaths over the next two-month period could exceed current cumulative deathsby greater than two-fold, if the relationship between mobility and transmission remains unchanged. Our results suggestthat factors modulating transmission such as rapid testing, contact tracing and behavioural precautions are crucial to offsetthe rise of transmission associated with loosening of social distancing. Overall, we

Report

Winskill P, Whittaker C, Walker P, Watson O, Laydon D, Imai N, Cuomo-Dannenburg G, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Cattarino L, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, van Elsland S, Fitzjohn R, Flaxman S, Gaythorpe K, Green W, Hallett T, Hamlet A, Hinsley W, Knock E, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Thompson H, Unwin H, Wang Y, Whittles L, Xi X, Ferguson N, Donnelly C, Ghani Aet al., 2020, Report 22: Equity in response to the COVID-19 pandemic: an assessment of the direct and indirect impacts on disadvantaged and vulnerable populations in low- and lower middle-income countries, 22

The impact of the COVID-19 pandemic in low-income settings is likely to be more severe due to limited healthcare capacity. Within these settings, however, there exists unfair or avoidable differences in health among different groups in society – health inequities – that mean that some groups are particularly at risk from the negative direct and indirect consequences of COVID-19. The structural determinants of these are often reflected in differences by income strata, with the poorest populations having limited access to preventative measures such as handwashing. Their more fragile income status will also mean that they are likely to be employed in occupations that are not amenable to social-distancing measures, thereby further reducing their ability to protect themselves from infection. Furthermore, these populations may also lack access to timely healthcare on becoming ill. We explore these relationships by using large-scale household surveys to quantify the differences in handwashing access, occupation and hospital access with respect to wealth status in low-income settings. We use a COVID-19 transmission model to demonstrate the impact of these differences. Our results demonstrate clear trends that the probability of death from COVID-19 increases with increasing poverty. On average, we estimate a 32.0% (2.5th-97.5th centile 8.0%-72.5%) increase in the probability of death in the poorest quintile compared to the wealthiest quintile from these three factors alone. We further explore how risk mediators and the indirect impacts of COVID-19 may also hit these same disadvantaged and vulnerable the hardest. We find that larger, inter-generational households that may hamper efforts to protect the elderly if social distancing are associated with lower-income countries and, within LMICs, lower wealth status. Poorer populations are also more susceptible to food security issues - with these populations having the highest levels under-nourishment whilst also being

Report

Mellan T, Hoeltgebaum H, Mishra S, Whittaker C, Schnekenberg R, Gandy A, Unwin H, Vollmer M, Coupland H, Hawryluk I, Rodrigues Faria N, Vesga J, Zhu H, Hutchinson M, Ratmann O, Monod M, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Fraser K, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Okell L, Dorigatti I, Walker P, Ghani A, Riley S, Ferguson N, Donnelly C, Flaxman S, Bhatt Set al., 2020, Report 21: Estimating COVID-19 cases and reproduction number in Brazil

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemicusing three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and wetherefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. Thedistribution of deaths among states is highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro,Ceará, Pernambuco and Amazonas—accounting for 81% of deaths reported to date. In these states, weestimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95%CI: 2.8%-3.7%) in São Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (ameasure of transmission intensity) at the start of the epidemic meant that an infected individual wouldinfect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that thereproduction number remains above 1. A reproduction number above 1 means that the epidemic isnot yet controlled and will continue to grow. These trends are in stark contrast to other major COVID19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproductionnumber below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our resultssuggest that further action is needed to limit spread and prevent health system overload.

Report

Vollmer M, Mishra S, Unwin H, Gandy A, Melan T, Bradley V, Zhu H, Coupland H, Hawryluk I, Hutchinson M, Ratmann O, Monod M, Walker P, Whittaker C, Cattarino L, Ciavarella C, Cilloni L, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Ghani A, Riley S, Okell L, Donnelly C, Ferguson N, Dorigatti I, Flaxman S, Bhatt Set al., 2020, Report 20: A sub-national analysis of the rate of transmission of Covid-19 in Italy

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28; 238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a

Report

Hogan A, Jewell B, Sherrard-Smith E, Vesga J, Watson O, Whittaker C, Hamlet A, Smith J, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Charles G, Cooper L, Coupland H, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Dorigatti I, Eaton J, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Haw D, Hayes S, Hinsley W, Imai N, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Ower A, Parag K, Pickles M, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Walters C, Wang H, Wang Y, Whittles L, Winskill P, Xi X, Ferguson N, Churcher T, Arinaminpathy N, Ghani A, Walker P, Hallett Tet al., 2020, Report 19: The potential impact of the COVID-19 epidemic on HIV, TB and malaria in low- and middle-income countries

COVID-19 has the potential to cause disruptions to health services in different ways; through the health system becoming overwhelmed with COVID-19 patients, through the intervention used to slow transmission of COVID-19 inhibiting access to preventative interventions and services, and through supplies of medicine being interrupted. We aim to quantify the extent to which such disruptions in services for HIV, TB and malaria in high burden low- and middle-income countries could lead to additional loss of life. In high burden settings, HIV, TB and malaria related deaths over 5 years may be increased by up to 10%, 20% and 36%, respectively, compared to if there were no COVID-19 epidemic. We estimate the greatest impact on HIV to be from interruption to ART, which may occur during a period of high or extremely high health system demand; for TB, we estimate the greatest impact is from reductions in timely diagnosis and treatment of new cases, which may result from a long period of COVID-19 suppression interventions; for malaria, we estimate that the greatest impact could come from reduced prevention activities including interruption of planned net campaigns, through all phases of the COVID-19 epidemic. In high burden settings, the impact of each type of disruption could be significant and lead to a loss of life-years over five years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV/TB epidemics. Maintaining the most critical prevention activities and healthcare services for HIV, TB and malaria could significantly reduce the overall impact of the COVID-19 epidemic.

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00459740&limit=30&person=true