Imperial College London

ProfessorSamirBhatt

Faculty of MedicineSchool of Public Health

Professor of Statistics and Public Health
 
 
 
//

Contact

 

+44 (0)20 7594 5029s.bhatt

 
 
//

Location

 

G32ASt Mary's Research BuildingSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

252 results found

Brito AF, Semenova E, Dudas G, Hassler GW, Kalinich CC, Kraemer MUG, Ho J, Tegally H, Githinji G, Agoti CN, Matkin LE, Whittaker C, Danish Covid-19 Genome Consortium, COVID-19 Impact Project, Network for Genomic Surveillance in South Africa NGS-SA, GISAID core curation team, Howden BP, Sintchenko V, Zuckerman NS, Mor O, Blankenship HM, de Oliveira T, Lin RTP, Siqueira MM, Resende PC, Vasconcelos ATR, Spilki FR, Aguiar RS, Alexiev I, Ivanov IN, Philipova I, Carrington CVF, Sahadeo NSD, Gurry C, Maurer-Stroh S, Naidoo D, von Eije KJ, Perkins MD, van Kerkhove M, Hill SC, Sabino EC, Pybus OG, Dye C, Bhatt S, Flaxman S, Suchard MA, Grubaugh ND, Baele G, Faria NRet al., 2021, Global disparities in SARS-CoV-2 genomic surveillance.

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness.

Working paper

Dhar MS, Marwal R, Radhakrishnan VS, Ponnusamy K, Jolly B, Bhoyar RC, Sardana V, Naushin S, Rophina M, Mellan TA, Mishra S, Whittaker C, Fatihi S, Datta M, Singh P, Sharma U, Ujjainiya R, Bhatheja N, Divakar MK, Singh MK, Imran M, Senthivel V, Maurya R, Jha N, Mehta P, Vivekanand A, Sharma P, Arvinden VR, Chaudhary U, Soni N, Thukral L, Flaxman S, Bhatt S, Pandey R, Dash D, Faruq M, Lall H, Gogia H, Madan P, Kulkarni S, Chauhan H, Sengupta S, Kabra S, Gupta RK, Singh SK, Agrawal A, Rakshit Pet al., 2021, Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India, SCIENCE, Vol: 374, Pages: 995-+, ISSN: 0036-8075

Journal article

Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Chauhan H, Chauhan H, Dikid T, Gogia H, Lall H, Verma K, Dhar MS, Singh MK, Soni N, Meena N, Madan P, Singh P, Sharma R, Sharma R, Kabra S, Kumar S, Kumari S, Sharma U, Chaudhary U, Sivasubbu S, Scaria V, Oberoi JK, Raveendran R, Datta S, Das S, Maitra A, Chinnaswamy S, Biswas NK, Parida A, Raghav SK, Prasad P, Sarin A, Mayor S, Ramakrishnan U, Palakodeti D, Seshasayee ASN, Thangaraj K, Bashyam MD, Dalal A, Bhat M, Shouche Y, Pillai A, Abraham P, Potdar VA, Cherian SS, Desai AS, Pattabiraman C, Manjunatha MV, Mani RS, Udupi GA, Nandicoori V, Tallapaka KB, Sowpati DT, Kawabata R, Kawabata R, Morizako N, Sadamasu K, Asakura H, Nagashima M, Yoshimura K, Ito J, Kimura I, Uriu K, Kosugi Y, Suganami M, Oide A, Yokoyama M, Chiba M, Saito A, Butlertanaka EP, Tanaka YL, Ikeda T, Motozono C, Nasser H, Shimizu R, Yuan Y, Kitazato K, Hasebe H, Nakagawa S, Wu J, Takahashi M, Fukuhara T, Shimizu K, Tsushima K, Kubo H, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Takaori-Kondo A, Tokunaga K, Ozono S, Baker S, Baker S, Dougan G, Hess C, Kingston N, Lehner PJ, Lyons PA, Matheson NJ, Owehand WH, Saunders C, Summers C, Thaventhiran JED, Toshner M, Weekes MP, Maxwell P, Shaw A, Bucke A, Calder J, Canna L, Domingo J, Elmer A, Fuller S, Harris J, Hewitt S, Kennet J, Jose S, Kourampa J, Meadows A, O'Brien C, Price J, Publico C, Rastall R, Ribeiro C, Rowlands J, Ruffolo V, Tordesillas H, Bullman B, Dunmore BJ, Fawke S, Graf S, Hodgson J, Huang C, Hunter K, Jones E, Legchenko E, Matara C, Martin J, Mescia F, O'Donnell C, Pointon L, Pond N, Shih J, Sutcliffe R, Tilly T, Treacy C, Tong Z, Wood J, Wylot M, Bergamaschi L, Betancourt A, Boweet al., 2021, SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion, NATURE, Vol: 599, Pages: 114-+, ISSN: 0028-0836

Journal article

Gurdasani D, Bhatt S, Costello A, Denaxas S, Flaxman S, Greenhalgh T, Griffin S, Hyde Z, Katzourakis A, McKee M, Michie S, Ratmann O, Reicher S, Scally G, Tomlinson C, Yates C, Ziauddeen H, Pagel Cet al., 2021, Vaccinating adolescents against SARS-CoV-2 in England: a risk-benefit analysis., Journal of the Royal Society of Medicine, Vol: 114, Pages: 513-524, ISSN: 0141-0768

OBJECTIVE: To offer a quantitative risk-benefit analysis of two doses of SARS-CoV-2 vaccination among adolescents in England. SETTING: England. DESIGN: Following the risk-benefit analysis methodology carried out by the US Centers for Disease Control, we calculated historical rates of hospital admission, Intensive Care Unit admission and death for ascertained SARS-CoV-2 cases in children aged 12-17 in England. We then used these rates alongside a range of estimates for incidence of long COVID, vaccine efficacy and vaccine-induced myocarditis, to estimate hospital and Intensive Care Unit admissions, deaths and cases of long COVID over a period of 16 weeks under assumptions of high and low case incidence. PARTICIPANTS: All 12-17 year olds with a record of confirmed SARS-CoV-2 infection in England between 1 July 2020 and 31 March 2021 using national linked electronic health records, accessed through the British Heart Foundation Data Science Centre. MAIN OUTCOME MEASURES: Hospitalisations, Intensive Care Unit admissions, deaths and cases of long COVID averted by vaccinating all 12-17 year olds in England over a 16-week period under different estimates of future case incidence. RESULTS: At high future case incidence of 1000/100,000 population/week over 16 weeks, vaccination could avert 4430 hospital admissions and 36 deaths over 16 weeks. At the low incidence of 50/100,000/week, vaccination could avert 70 hospital admissions and two deaths over 16 weeks. The benefit of vaccination in terms of hospitalisations in adolescents outweighs risks unless case rates are sustainably very low (below 30/100,000 teenagers/week). Benefit of vaccination exists at any case rate for the outcomes of death and long COVID, since neither have been associated with vaccination to date. CONCLUSIONS: Given the current (as at 15 September 2021) high case rates (680/100,000 population/week in 10-19 year olds) in England, our findings support vaccination of adolescents against SARS-CoV2.

Journal article

Brizzi A, Whittaker C, Servo LMS, Hawryluk I, Prete Jr CA, de Souza WM, Aguiar RS, Araujo LJT, Bastos LS, Blenkinsop A, Buss LF, Candido D, Castro MC, Costa SF, Croda J, de Souza Santos A, Dye C, Flaxman S, Fonseca PLC, Geddes VEV, Gutierrez B, Lemey P, Levin AS, Mellan T, Bonfim DM, Miscouridou X, Mishra S, Monod M, Moreira FRR, Nelson B, Pereira RHM, Ranzani O, Schnekenberg RP, Semenova E, Sonnabend R, Souza RP, Xi X, Sabino EC, Faria NR, Bhatt S, Ratmann Oet al., 2021, Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals

The SARS‐CoV‐2 Gamma variant spread rapidly across Brazil, causing substantial infection and death wa ves. We use individual‐level patient records following hospitalisation with suspected or confirmed COVID‐19 to document the extensive shocks in hospital fatality rates that followed Gamma’s spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time pe riods. We show that extensive fluctuations in COVID‐19 in‐hospital fatality rates also existed prior to Gamma’s detection, and were largely transient after Gamma’s detection, subsiding with hospital d emand. Using a Bayesian fatality rate model, we find that the geo‐graphic and temporal fluctuations in Brazil’s COVID‐19 in‐hospital fatality rates are primarily associated with geo‐graphic inequities and shortages in healthcare c apacity. We project that approximately half of Brazil’s COVID‐19 deaths in hospitals could have been avoided without pre‐pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly trans‐missible and deadly pathogens such as SARS‐CoV‐2, especially in low‐ and middle‐income countries.

Report

Bhatt S, 2021, Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe, Nature Communications, Vol: 12, Pages: 1-12, ISSN: 2041-1723

As European governments face resurging waves of COVID-19, non-pharmaceutical interventions (NPIs) continue to be the primary tool for infection control. However, updated estimates of their relative effectiveness have been absent for Europe’s second wave, largely due to a lack of collated data that considers the increased subnational variation and diversity of NPIs. We collect the largest dataset of NPI implementation dates in Europe, spanning 114 subnational areas in 7 countries, with a systematic categorisation of interventions tailored to the second wave. Using a hierarchical Bayesian transmission model, we estimate the effectiveness of 17 NPIs from local case and death data. We manually validate the data, address limitations in modelling from previous studies, and extensively test the robustness of our estimates. The combined effect of all NPIs was smaller relative to estimates from the first half of 2020, indicating the strong influence of safety measures and individual protective behaviours--such as distancing--that persisted after the first wave. Closing specific businesses was highly effective. Gathering restrictions were highly effective but only for the strictest limits. We find smaller effects for closing educational institutions compared to the first wave, suggesting that safer operation of schools was possible with a set of stringent safety measures including testing and tracing, preventing mixing, and smaller classes. These results underscore that effectiveness estimates from the early stage of an epidemic are measured relative to pre-pandemic behaviour. Updated estimates are required to inform policy in an ongoing pandemic.

Journal article

Vollmer MAC, Radhakrishnan S, Kont MD, Flaxman S, Bhatt SJ, Costelloe C, Honeyford K, Aylin P, Cooke G, Redhead J, Sanders A, Mangan H, White PJ, Ferguson N, Hauck K, Perez Guzman PN, Nayagam Set al., 2021, The impact of the COVID-19 pandemic on patterns of attendance at emergency departments in two large London hospitals: an observational study, BMC Health Services Research, Vol: 21, Pages: 1-9, ISSN: 1472-6963

Background Hospitals in England have undergone considerable change to address the surgein demand imposed by the COVID-19 pandemic. The impact of this on emergencydepartment (ED) attendances is unknown, especially for non-COVID-19 related emergencies.Methods This analysis is an observational study of ED attendances at the Imperial CollegeHealthcare NHS Trust (ICHNT). We calibrated auto-regressive integrated moving averagetime-series models of ED attendances using historic (2015-2019) data. Forecasted trendswere compared to present year ICHNT data for the period between March 12, 2020 (whenEngland implemented the first COVID-19 public health measure) and May 31, 2020. Wecompared ICHTN trends with publicly available regional and national data. Lastly, wecompared hospital admissions made via the ED and in-hospital mortality at ICHNT duringthe present year to the historic 5-year average.Results ED attendances at ICHNT decreased by 35% during the period after the firstlockdown was imposed on March 12, 2020 and before May 31, 2020, reflecting broadertrends seen for ED attendances across all England regions, which fell by approximately 50%for the same time frame. For ICHNT, the decrease in attendances was mainly amongst thoseaged <65 years and those arriving by their own means (e.g. personal or public transport) andnot correlated with any of the spatial dependencies analysed such as increasing distance frompostcode of residence to the hospital. Emergency admissions of patients without COVID-19after March 12, 2020 fell by 48%; we did not observe a significant change to the crudemortality risk in patients without COVID-19 (RR 1.13, 95%CI 0.94-1.37, p=0.19).Conclusions Our study findings reflect broader trends seen across England and give anindication how emergency healthcare seeking has drastically changed. At ICHNT, we findthat a larger proportion arrived by ambulance and that hospitalisation outcomes of patientswithout COVID-19 did not differ from previous years. The ext

Journal article

Wilde H, Mellan T, Hawryluk I, Dennis JM, Denaxas S, Pagel C, Duncan A, Bhatt S, Flaxman S, Mateen BA, Vollmer SJet al., 2021, The association between mechanical ventilator compatible bed occupancy and mortality risk in intensive care patients with COVID-19: a national retrospective cohort study., BMC Medicine, Vol: 19, Pages: 1-12, ISSN: 1741-7015

BACKGROUND: The literature paints a complex picture of the association between mortality risk and ICU strain. In this study, we sought to determine if there is an association between mortality risk in intensive care units (ICU) and occupancy of beds compatible with mechanical ventilation, as a proxy for strain. METHODS: A national retrospective observational cohort study of 89 English hospital trusts (i.e. groups of hospitals functioning as single operational units). Seven thousand one hundred thirty-three adults admitted to an ICU in England between 2 April and 1 December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. A Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible), bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, deprivation index, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). RESULTS: One hundred thirty-five thousand six hundred patient days were observed, with a mortality rate of 19.4 per 1000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (> 85% occupancy versus the baseline of 45 to 85%) [OR 1.23 (95% posterior credible interval (PCI): 1.08 to 1.39)]. In contrast, mortality was decreased for admissions during periods of low occupancy (< 45% relative to the baseline) [OR 0.83 (95% PCI 0.75 to 0.94)]. CONCLUSION: Increasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU

Journal article

Ratmann O, Bhatt S, Flaxman S, 2021, Implications of a highly transmissible variant of SARS-CoV-2 for children, Archives of Disease in Childhood, Vol: 106, Pages: 1-1, ISSN: 0003-9888

Journal article

Mishra S, Scott JA, Laydon DJ, Flaxman S, Gandy A, Mellan TA, Unwin HJT, Vollmer M, Coupland H, Ratmann O, Monod M, Zhu HH, Cori A, Gaythorpe KAM, Whittles LK, Whittaker C, Donnelly CA, Ferguson NM, Bhatt Set al., 2021, Comparing the responses of the UK, Sweden and Denmark to COVID-19 using counterfactual modelling, SCIENTIFIC REPORTS, Vol: 11, Pages: 1-9, ISSN: 2045-2322

The UK and Sweden have among the worst per-capita COVID-19 mortality in Europe. Sweden stands out for its greater reliance on voluntary, rather than mandatory, control measures. We explore how the timing and effectiveness of control measures in the UK, Sweden and Denmark shaped COVID-19 mortality in each country, using a counterfactual assessment: what would the impact have been, had each country adopted the others’ policies? Using a Bayesian semi-mechanistic model without prior assumptions on the mechanism or effectiveness of interventions, we estimate the time-varying reproduction number for the UK, Sweden and Denmark from daily mortality data. We use two approaches to evaluate counterfactuals which transpose the transmission profile from one country onto another, in each country’s first wave from 13th March (when stringent interventions began) until 1st July 2020. UK mortality would have approximately doubled had Swedish policy been adopted, while Swedish mortality would have more than halved had Sweden adopted UK or Danish strategies. Danish policies were most effective, although differences between the UK and Denmark were significant for one counterfactual approach only. Our analysis shows that small changes in the timing or effectiveness of interventions have disproportionately large effects on total mortality within a rapidly growing epidemic.

Journal article

Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan TA, Wilton T, Klapsa D, Mate R, Fritzsche M, Zambon M, Ahuja J, Howes A, Miscouridou X, Nason GP, Ratmann O, Semenova E, Leech G, Sandkuehler JF, Rogers-Smith C, Vollmer M, Unwin HJT, Gal Y, Chand M, Gandy A, Martin J, Volz E, Ferguson NM, Bhatt S, Brauner JM, Flaxman Set al., 2021, Changing composition of SARS-CoV-2 lineages and rise of Delta variant in England, EClinicalMedicine, Vol: 39, Pages: 1-8, ISSN: 2589-5370

BackgroundSince its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 (WHO label Alpha) rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital.MethodsWe examine trends in the prevalence of non-B.1.1.7 lineages in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. The study period spans from 31st January 2021 to 15th May 2021.FindingsAcross data sources, the percentage of non-B.1.1.7 variants has been increasing since late March 2021. This increase was initially driven by a variety of lineages with immune escape. From mid-April, B.1.617.2 (WHO label Delta) spread rapidly, becoming the dominant variant in England by late May.InterpretationThe outcome of competition between variants depends on a wide range of factors such as intrinsic transmissibility, evasion of prior immunity, demographic specificities and interactions with non-pharmaceutical interventions. The presence and rise of non-B.1.1.7 variants in March likely was driven by importations and some community transmission. There was competition between non-B.1.17 variants which resulted in B.1.617.2 becoming dominant in April and May with considerable community transmission. Our results underscore that early detection of new variants requires a diverse array of data sources in community surveillance. Continued real-time information on the highly dynamic composition and trajectory of different SARS-CoV-2 lineages is essential to future control effortsFundingNational Institute for Health Research, Medicines and Healthcare products Regulatory Agency, DeepMind, EPSRC, EA Funds programme, Open Philanthropy

Journal article

Hillis S, Unwin H, Chen Y, Cluver L, Sherr L, Goldman P, Ratmann O, Donnelly C, Bhatt S, Villaveces A, Butchart A, Bachman G, Rawlings L, Green P, Nelson C, Flaxman Set al., 2021, Global minimum estimates of children affected by COVID-19-associated orphanhood and deaths of caregivers: a modelling study, The Lancet, Vol: 398, Pages: 391-402, ISSN: 0140-6736

Background: The COVID-19 pandemic response has focused on prevention, detection, and response. Beyond morbidity and mortality, pandemics carry secondary impacts, such as children orphaned or bereft of their caregivers. Such children often face adverse consequences, including poverty, abuse, and institutionalization. We provide estimates for the magnitude of this problem resulting from COVID-19 and describe the need for resource allocation.Methods: We use mortality and fertility data to model minimum estimates and rates of COVID-19-associated orphanhood (death of 1 or both parents) and deaths of custodial and co-residing grandparents for 21 countries. We use these estimates to model global extrapolations for the number of children experiencing COVID-19-associated deaths of parents and grandparents ages 60-84.Results: Globally, from March 1, 2020-March 31, 2021, we estimate 974,000 children experienced death of primary caregivers, including parents or custodial grandparents; >1.3 million experienced death of primary caregivers and co-residing grandparents (or kin). Countries with rates of primary caregiver deaths >1/1000 children included Peru, South Africa, Mexico, Colombia, Brazil, I.R. Iran, U.S.A., and Russia (range, 1.0-8.5/1000). Numbers of children orphaned exceeded numbers of deaths among those aged 15 – 44; 2 – 5 times more children had deceased fathers than deceased mothers. Conclusions: Orphanhood and caregiver deaths are a hidden pandemic resulting from COVID-19-associated deaths. Accelerating equitable vaccine delivery is key to prevention. Psychosocial and economic support can help families nurture children bereft of caregivers and help ensure institutionalization is avoided. These data demonstrate the need for an additional pillar of our response: prevent, detect, respond, and care for children.

Journal article

Ghafari M, du Plessis L, Raghwani J, Bhatt S, Xu B, Pybus OG, Katzourakis Aet al., 2021, Purifying selection determines the short-term time dependency of evolutionary rates in SARS-CoV-2 and pH1N1 influenza

<jats:title>Abstract</jats:title><jats:p>High throughput sequencing enables rapid genome sequencing during infectious disease outbreaks and provides an opportunity to quantify the evolutionary dynamics of pathogens in near real-time. One difficulty of undertaking evolutionary analyses over short timescales is the dependency of the inferred evolutionary parameters on the timespan of observation. Here, we characterise the molecular evolutionary dynamics of SARS-CoV-2 and 2009 pandemic H1N1 (pH1N1) influenza during the first 12 months of their respective pandemics. We use Bayesian phylogenetic methods to estimate the dates of emergence, evolutionary rates, and growth rates of SARS-CoV-2 and pH1N1 over time and investigate how varying sampling window and dataset sizes affects the accuracy of parameter estimation. We further use a generalised McDonald-Kreitman test to estimate the number of segregating non-neutral sites over time. We find that the inferred evolutionary parameters for both pandemics are time-dependent, and that the inferred rates of SARS-CoV-2 and pH1N1 decline by ∼50% and ∼100%, respectively, over the course of one year. After at least 4 months since the start of sequence sampling, inferred growth rates and emergence dates remain relatively stable and can be inferred reliably using a logistic growth coalescent model. We show that the time-dependency of the mean substitution rate is due to elevated substitution rates at terminal branches which are 2-4 times higher than those of internal branches for both viruses. The elevated rate at terminal branches is strongly correlated with an increasing number of segregating non-neutral sites, demonstrating the role of purifying selection in generating the time-dependency of evolutionary parameters during pandemics.</jats:p>

Journal article

Hawryluk I, Hoeltgebaum H, Mishra S, Miscouridou X, Schnekenberg RP, Whittaker C, Vollmer M, Flaxman S, Bhatt S, Mellan TAet al., 2021, Gaussian process nowcasting: application to COVID-19 mortality reporting, 37th Conference on Uncertainty in Artificial Intelligence, UAI 2021, Publisher: PMLR, Pages: 1258-1268

Updating observations of a signal due to the delays in the measurementprocess is a common problem in signal processing, with prominent examples in awide range of fields. An important example of this problem is the nowcasting ofCOVID-19 mortality: given a stream of reported counts of daily deaths, can wecorrect for the delays in reporting to paint an accurate picture of thepresent, with uncertainty? Without this correction, raw data will often misleadby suggesting an improving situation. We present a flexible approach using alatent Gaussian process that is capable of describing the changingauto-correlation structure present in the reporting time-delay surface. Thisapproach also yields robust estimates of uncertainty for the estimatednowcasted numbers of deaths. We test assumptions in model specification such asthe choice of kernel or hyper priors, and evaluate model performance on achallenging real dataset from Brazil. Our experiments show that Gaussianprocess nowcasting performs favourably against both comparable methods, andagainst a small sample of expert human predictions. Our approach hassubstantial practical utility in disease modelling -- by applying our approachto COVID-19 mortality data from Brazil, where reporting delays are large, wecan make informative predictions on important epidemiological quantities suchas the current effective reproduction number.

Conference paper

Meyerowitz-Katz G, Bhatt S, Ratmann O, Brauner JM, Flaxman S, Mishra S, Sharma M, Mindermann S, Bradley V, Vollmer M, Merone L, Yamey Get al., 2021, Is the cure really worse than the disease? The health impacts of lockdowns during COVID-19, BMJ Global Health, Vol: 6, Pages: 1-6, ISSN: 2059-7908

Journal article

Routledge I, Unwin HJT, Bhatt S, 2021, Inference of malaria reproduction numbers in three elimination settings by combining temporal data and distance metrics, Scientific Reports, Vol: 11, ISSN: 2045-2322

Individual-level geographic information about malaria cases, such as the GPS coordinates of residence or health facility, is often collected as part of surveillance in near-elimination settings, but could be more effectively utilised to infer transmission dynamics, in conjunction with additional information such as symptom onset time and genetic distance. However, in the absence of data about the flow of parasites between populations, the spatial scale of malaria transmission is often not clear. As a result, it is important to understand the impact of varying assumptions about the spatial scale of transmission on key metrics of malaria transmission, such as reproduction numbers. We developed a method which allows the flexible integration of distance metrics (such as Euclidian distance, genetic distance or accessibility matrices) with temporal information into a single inference framework to infer malaria reproduction numbers. Twelve scenarios were defined, representing different assumptions about the likelihood of transmission occurring over different geographic distances and likelihood of missing infections (as well as high and low amounts of uncertainty in this estimate). These scenarios were applied to four individual level datasets from malaria eliminating contexts to estimate individual reproduction numbers and how they varied over space and time. Model comparison suggested that including spatial information improved models as measured by second order AIC (ΔAICc), compared to time only results. Across scenarios and across datasets, including spatial information tended to increase the seasonality of temporal patterns in reproduction numbers and reduced noise in the temporal distribution of reproduction numbers. The best performing parameterisations assumed long-range transmission (> 200 km) was possible. Our approach is flexible and provides the potential to incorporate other sources of information which can be converted into distance or adjacenc

Journal article

Krawczyk K, Chelkowski T, Laydon DJ, Mishra S, Xifara D, Gibert B, Flaxman S, Mellan T, Schwämmle V, Röttger R, Hadsund JT, Bhatt Set al., 2021, Correction: Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource., J Med Internet Res, Vol: 23

[This corrects the article DOI: 10.2196/28253.].

Journal article

Salvatore M, Bhattacharyya R, Purkayastha S, Zimmermann L, Ray D, Hazra A, Kleinsasser M, Mellan T, Whittaker C, Flaxman S, Bhatt S, Mishra S, Mukherjee Bet al., 2021, Resurgence of SARS-CoV-2 in India: Potential role of the B.1.617.2 (Delta) variant and delayed interventions

<jats:title>Abstract</jats:title><jats:p>India has seen a surge of SARS-CoV-2 infections and deaths in early part of 2021, despite having controlled the epidemic during 2020. Building on a two-strain, semi-mechanistic model that synthesizes mortality and genomic data, we find evidence that altered epidemiological properties of B.1.617.2 (Delta) variant play an important role in this resurgence in India. Under all scenarios of immune evasion, we find an increased transmissibility advantage for B.1617.2 against all previously circulating strains. Using an extended SIR model accounting for reinfections and wanning immunity, we produce evidence in support of how early public interventions in March 2021 would have helped to control transmission in the country. We argue that enhanced genomic surveillance along with constant assessment of risk associated with increased transmission is critical for pandemic responsiveness.</jats:p><jats:sec><jats:title>One Sentence Summary</jats:title><jats:p>Altered epidemiological characteristics of B.1.617.2 and delayed public health interventions contributed to the resurgence of SARS-CoV-2 in India from February to May 2021.</jats:p></jats:sec>

Journal article

Krawczyk K, Chelkowski T, Laydon DJ, Mishra S, Xifara D, Gibert B, Flaxman S, Mellan T, Schwämmle V, Röttger R, Hadsund JT, Bhatt Set al., 2021, Correction: Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource (Preprint)

<sec> <title>UNSTRUCTURED</title> <p>REMOVE</p> </sec>

Journal article

Leech G, Rogers-Smith C, Sandbrink JB, Snodin B, Zinkov R, Rader B, Brownstein JS, Gal Y, Bhatt S, Sharma M, Mindermann S, Brauner JM, Aitchison Let al., 2021, Mass mask-wearing notably reduces COVID-19 transmission

<jats:title>ABSTRACT</jats:title><jats:p>Mask-wearing has been a controversial measure to control the COVID-19 pandemic. While masks are known to substantially reduce disease transmission in healthcare settings [1–3], studies in community settings report inconsistent results [4–6].</jats:p><jats:p>Investigating the inconsistency within epidemiological studies, we find that a commonly used proxy, government mask mandates, does not correlate with large increases in mask-wearing in our window of analysis. We thus analyse the effect of mask-wearing on transmission instead, drawing on several datasets covering 92 regions on 6 continents, including the largest survey of individual-level wearing behaviour (n=20 million) [7]. Using a hierarchical Bayesian model, we estimate the effect of both mask-wearing and mask-mandates on transmission by linking wearing levels (or mandates) to reported cases in each region, adjusting for mobility and non-pharmaceutical interventions.</jats:p><jats:p>We assess the robustness of our results in 123 experiments spanning 22 sensitivity analyses. Across these analyses, we find that an entire population wearing masks in public leads to a median reduction in the reproduction number <jats:italic>R</jats:italic> of 25.8%, with 95% of the medians between 22.2% and 30.9%. In our window of analysis, the median reduction in <jats:italic>R</jats:italic> associated with the wearing level observed in each region was 20.4% [2.0%, 23.3%]<jats:sup>1</jats:sup>. We do not find evidence that mandating mask-wearing reduces transmission. Our results suggest that mask-wearing is strongly affected by factors other than mandates.</jats:p><jats:p>We establish the effectiveness of mass mask-wearing, and highlight that wearing data, not mandate data, are necessary to infer this effect.</jats:p>

Journal article

Gavenčiak T, Monrad JT, Leech G, Sharma M, Mindermann S, Brauner JM, Bhatt S, Kulveit Jet al., 2021, Seasonal variation in SARS-CoV-2 transmission in temperate climates

<jats:title>Abstract</jats:title><jats:p>While seasonal variation has a known influence on the transmission of several respiratory viral infections, its role in SARS-CoV-2 transmission remains unclear. As previous analyses have not accounted for the implementation of non-pharmaceutical interventions (NPIs) in the first year of the pandemic, they may yield biased estimates of seasonal effects. Building on two state-of-the-art observational models and datasets, we adapt a fully Bayesian method for estimating the association between seasonality and transmission in 143 temperate European regions. We find strong seasonal patterns, consistent with a reduction in the time-variable<jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub>of 42.1% (95% CI: 24.7% – 53.4%) from the peak of winter to the peak of summer. These results imply that the seasonality of SARS-CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but less than the combined effect of multiple interventions.</jats:p>

Journal article

Bertozzi-Villa A, Bever CA, Koenker H, Weiss DJ, Vargas-Ruiz C, Nandi AK, Gibson HS, Harris J, Battle KE, Rumisha SF, Keddie S, Amratia P, Arambepola R, Cameron E, Chestnutt EG, Collins EL, Millar J, Mishra S, Rozier J, Symons T, Twohig KA, Hollingsworth TD, Gething PW, Bhatt Set al., 2021, Maps and metrics of insecticide-treated net access, use, and nets-per-capita in Africa from 2000-2020, NATURE COMMUNICATIONS, Vol: 12

Journal article

Krawczyk K, Chelkowski T, Laydon DJ, Mishra S, Xifara D, Flaxman S, Mellan T, Schwammle V, Rottger R, Hadsund JT, Bhatt Set al., 2021, Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource, JOURNAL OF MEDICAL INTERNET RESEARCH, Vol: 23, ISSN: 1438-8871

Journal article

Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, Crispim MAE, Sales FC, Hawryluk I, McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, Silva CAM, Manuli ER, Pereira RHM, Peixoto PS, Kraemer MU, Gaburo N, Camilo CDC, Hoeltgebaum H, Souza WM, Rocha EC, de Souza LM, de Pinho MC, Araujo LJT, Malta FS, de Lima AB, Silva JDP, Zauli DAG, Ferreira ACDS, Schnekenberg RP, Laydon DJ, Walker PGT, Schlueter HM, dos Santos ALP, Vidal MS, Del Caro VS, Filho RMF, dos Santos HM, Aguiar RS, Proenca-Modena JLP, Nelson B, Hay JA, Monod M, Miscouridou X, Coupland H, Sonabend R, Vollmer M, Gandy A, Prete CA, Nascimento VH, Suchard MA, Bowden TA, Pond SLK, Wu C-H, Ratmann O, Ferguson NM, Dye C, Loman NJ, Lemey P, Rambaut A, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino ECet al., 2021, Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil, Science, Vol: 372, Pages: 815-821, ISSN: 0036-8075

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.

Journal article

Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan T, Wilton T, Klapsa D, Mate R, Fritzsche M, Zambon M, Ahuja J, Howes A, Miscouridou X, Nason G, Ratmann O, Leech G, Fabienne Sandkühler J, Rogers-Smith C, Vollmer M, Unwin H, Gal Y, Chand M, Gandy A, Martin J, Volz E, Ferguson N, Bhatt S, Brauner J, Flaxman Set al., 2021, Report 44: Recent trends in SARS-CoV-2 variants of concern in England, Report 44: Recent trends in SARS-CoV-2 variants of concern in England, Publisher: Imperial College London, 44

Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when, whether, and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital. This is particularly true for England, which has high coverage from vaccines that are likely more protective against B.1.1.7 than some other VOCs. We examine trends in B.1.1.7’s prevalence in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. Our results suggest shifts in the composition of SARS-CoV-2 lineages driving transmission in England between March and April 2021. Local transmission of non-B.1.1.7 VOCs may be increasing; this warrants urgent further investigation.

Report

Mishra S, Mindermann S, Sharma M, Whittaker C, Mellan T, Wilton T, Klapsa D, Mate R, Fritzsche M, Zambon M, Ahuja J, Howes A, Miscouridou X, Nason G, Ratmann O, Leech G, Fabienne Sandkühler J, Rogers-Smith C, Vollmer M, Unwin H, Gal Y, Chand M, Gandy A, Martin J, Volz E, Ferguson N, Bhatt S, Brauner J, Flaxman Set al., 2021, Report 44: Recent trends in SARS-CoV-2 variants of concern in England, Report 44: Recent trends in SARS-CoV-2 variants of concern in England, Publisher: Imperial College London, 44

Since its emergence in Autumn 2020, the SARS-CoV-2 Variant of Concern (VOC) B.1.1.7 rapidly became the dominant lineage across much of Europe. Simultaneously, several other VOCs were identified globally. Unlike B.1.1.7, some of these VOCs possess mutations thought to confer partial immune escape. Understanding when, whether, and how these additional VOCs pose a threat in settings where B.1.1.7 is currently dominant is vital. This is particularly true for England, which has high coverage from vaccines that are likely more protective against B.1.1.7 than some other VOCs. We examine trends in B.1.1.7’s prevalence in London and other English regions using passive-case detection PCR data, cross-sectional community infection surveys, genomic surveillance, and wastewater monitoring. Our results suggest shifts in the composition of SARS-CoV-2 lineages driving transmission in England between March and April 2021. Local transmission of non-B.1.1.7 VOCs may be increasing; this warrants urgent further investigation.

Report

Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O'Toole Á, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman NJ, McCrone JT, Gonçalves S, Jorgensen D, Myers R, Hill V, Jackson DK, Gaythorpe K, Groves N, Sillitoe J, Kwiatkowski DP, COVID-19 Genomics UK COG-UK consortium, Flaxman S, Ratmann O, Bhatt S, Hopkins S, Gandy A, Rambaut A, Ferguson NMet al., 2021, Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England, Nature, Vol: 593, Pages: 266-269, ISSN: 0028-0836

The SARS-CoV-2 lineage B.1.1.7, designated a Variant of Concern 202012/01 (VOC) by Public Health England1, originated in the UK in late Summer to early Autumn 20202. Whole genome SARS-CoV-2 sequence data collected from community-based diagnostic testing shows an unprecedentedly rapid expansion of the B.1.1.7 lineage during Autumn 2020, suggesting a selective advantage. We find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Time-varying reproduction numbers for the VOC and cocirculating lineages were estimated using SGTF and genomic data. The best supported models did not indicate a substantial difference in VOC transmissibility among different age groups. There is a consensus among all analyses that the VOC has a substantial transmission advantage with a 50% to 100% higher reproduction number.

Journal article

Suel E, Bhatt S, Brauer M, Flaxman S, Ezzati Met al., 2021, Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas, Remote Sensing of Environment: an interdisciplinary journal, Vol: 257, ISSN: 0034-4257

Data collected at large scale and low cost (e.g. satellite and street level imagery) have the potential to substantially improve resolution, spatial coverage, and temporal frequency of measurement of urban inequalities. Multiple types of data from different sources are often available for a given geographic area. Yet, most studies utilize a single type of input data when making measurements due to methodological difficulties in their joint use. We propose two deep learning-based methods for jointly utilizing satellite and street level imagery for measuring urban inequalities. We use London as a case study for three selected outputs, each measured in decile classes: income, overcrowding, and environmental deprivation. We compare the performances of our proposed multimodal models to corresponding unimodal ones using mean absolute error (MAE). First, satellite tiles are appended to street level imagery to enhance predictions at locations where street images are available leading to improvements in accuracy by 20, 10, and 9% in units of decile classes for income, overcrowding, and living environment. The second approach, novel to the best of our knowledge, uses a U-Net architecture to make predictions for all grid cells in a city at high spatial resolution (e.g. for 3 m × 3 m pixels in London in our experiments). It can utilize city wide availability of satellite images as well as more sparse information from street-level images where they are available leading to improvements in accuracy by 6, 10, and 11%. We also show examples of prediction maps from both approaches to visually highlight performance differences.

Journal article

Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Brazeau N, Cuomo-Dannenburg G, Hamlet A, Thompson H, Baguelin M, Fitzjohn R, Knock E, Lees J, Whittles L, Mellan T, Winskill P, COVID-19 Response Team IC, Howard N, Clapham H, Checchi F, Ferguson N, Ghani A, Walker P, Beals Eet al., 2021, Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria, Nature Communications, Vol: 12, Pages: 1-10, ISSN: 2041-1723

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% – 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 – 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% – 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus.

Journal article

Laydon D, Mishra S, Hinsley W, Samartsidis P, Flaxman S, Gandy A, Ferguson N, Bhatt Set al., 2021, Modelling the impact of the Tier system on SARS-CoV-2 transmission in the UK between the first and second national lockdowns, BMJ Open, Vol: 11, ISSN: 2044-6055

Objective To measure the effects of the tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern.Design This is a modelling study combining estimates of real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities to account for broader national trends in addition to subnational effects from tiers.Setting The UK at lower tier local authority (LTLA) level. 310 LTLAs were included in the analysis.Primary and secondary outcome measures Reduction in real-time reproduction number Rt.Results Nationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9–1.6) across LTLAs, but declined to an average of 1.1 (0.86–1.42) 2 weeks later. Decline in transmission was not solely attributable to tiers. Tier 1 had negligible effects. Tiers 2 and 3, respectively, reduced transmission by 6% (5%–7%) and 23% (21%–25%). 288 LTLAs (93%) would have begun to suppress their epidemics if every LTLA had gone into tier 3 by the second national lockdown, whereas only 90 (29%) did so in reality.Conclusions The relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00459740&limit=30&person=true&page=3&respub-action=search.html