Imperial College London

Professor Sir Steve Bloom FMedSci, FRS

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Departmental Academic REF2014 Lead
 
 
 
//

Contact

 

+44 (0)20 7594 9048s.bloom Website

 
 
//

Assistant

 

Ms Keda Price-Cousins +44 (0)20 7594 9048

 
//

Location

 

Commonwealth BuildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

2501 results found

Fang Z, Chen S, Pickford P, Broichhagen J, Hodson DJ, Corrêa IR, Kumar S, Görlitz F, Dunsby C, French PMW, Rutter GA, Tan T, Bloom SR, Tomas A, Jones Bet al., 2020, The influence of peptide context on signaling and trafficking of glucagon-like peptide-1 receptor biased agonists, ACS Pharmacology & Translational Science, Vol: 3, Pages: 345-360, ISSN: 2575-9108

Signal bias and membrane trafficking have recently emerged as important considerations in the therapeutic targeting of the glucagon-like peptide-1 receptor (GLP-1R) in type 2 diabetes and obesity. In the present study, we have evaluated a peptide series with varying sequence homology between native GLP-1 and exendin-4, the archetypal ligands on which approved GLP-1R agonists are based. We find notable differences in agonist-mediated cyclic AMP signaling, recruitment of β-arrestins, endocytosis, and recycling, dependent both on the introduction of a His → Phe switch at position 1 and the specific midpeptide helical regions and C-termini of the two agonists. These observations were linked to insulin secretion in a beta cell model and provide insights into how ligand factors influence GLP-1R function at the cellular level.

Journal article

Jones B, Pickford P, Lucey M, Tomas-Catala A, Minnion J, Bitsi S, Ungewiss J, Schoeneberg K, Rutter G, Bloom Set al., 2020, Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists, Molecular Metabolism, ISSN: 2212-8778

ObjectiveThe objective of this study was to determine how pharmacokinetically advantageous acylation impacts on glucagon-like peptide-1 receptor (GLP-1R) signal bias, trafficking, anti-hyperglycaemic efficacy, and appetite suppression.MethodsIn vitro signalling responses were measured using biochemical and biosensor assays. GLP-1R trafficking was determined by confocal microscopy and diffusion-enhanced resonance energy transfer. Pharmacokinetics, glucoregulatory effects, and appetite suppression were measured in acute, sub-chronic, and chronic settings in mice.ResultsA C-terminally acylated ligand, [F1,K⁴⁰.C16 diacid]exendin-4, was identified that showed undetectable β-arrestin recruitment and GLP-1R internalisation. Depending on the cellular system used, this molecule was up to 1000-fold less potent than the comparator [D3,K⁴⁰.C16 diacid]exendin-4 for cyclic AMP signalling, yet was considerably more effective in vivo, particularly for glucose regulation.ConclusionsC-terminal acylation of biased GLP-1R agonists increases their degree of signal bias in favour of cAMP production and improves their therapeutic potential.

Journal article

Kamocka A, Miras AD, Perez-Pevida B, Umpleby AM, Chahal H, Moorthy K, Purkayastha S, Patel A, Bloom S, Tan T, Ahmed AR, Rubino Fet al., 2020, Long versus standard biliopancreatic limb in the Roux-en-Y gastric bypass. The LONG LIMB Trial., 11th Annual Scientific Meeting of the British-Obesity-and-Metabolic-Surgery-Society (BOMSS), Publisher: SPRINGER, Pages: S4-S4, ISSN: 0960-8923

Conference paper

Alexiadou K, Cuenco J, Howard J, Wewer Albrechtsen NJ, Ilesanmi I, Kamocka A, Tharakan G, Behary P, Bech PR, Ahmed AR, Purkayastha S, Wheller R, Fleuret M, Holst JJ, Bloom SR, Khoo B, Tan TM-Met al., 2020, Proglucagon peptide secretion profiles in type 2 diabetes before and after bariatric surgery: 1-year prospective study., BMJ Open Diabetes Res Care, Vol: 8

INTRODUCTION: Hyperglucagonemia is a key pathophysiological driver of type 2 diabetes. Although Roux-en-Y gastric bypass (RYGB) is a highly effective treatment for diabetes, it is presently unclear how surgery alters glucagon physiology. The aim of this study was to characterize the behavior of proglucagon-derived peptide (glucagon, glucagon-like peptide-1 (GLP-1), oxyntomodulin, glicentin) secretion after RYGB surgery. RESEARCH DESIGN AND METHODS: Prospective study of 19 patients with obesity and pre-diabetes/diabetes undergoing RYGB. We assessed the glucose, insulin, GLP-1, glucose-dependent insulinotropic peptide (GIP), oxyntomodulin, glicentin and glucagon responses to a mixed-meal test (MMT) before and 1, 3 and 12 months after surgery. Glucagon was measured using a Mercodia glucagon ELISA using the 'Alternative' improved specificity protocol, which was validated against a reference liquid chromatography combined with mass spectrometry method. RESULTS: After RYGB, there were early improvements in fasting glucose and glucose tolerance and the insulin response to MMT was accelerated and amplified, in parallel to significant increases in postprandial GLP-1, oxyntomodulin and glicentin secretion. There was a significant decrease in fasting glucagon levels at the later time points of 3 and 12 months after surgery. Glucagon was secreted in response to the MMT preoperatively and postoperatively in all patients and there was no significant change in this postprandial secretion. There was no significant change in GIP secretion. CONCLUSIONS: There is a clear difference in the dynamics of secretion of proglucagon peptides after RYGB. The reduction in fasting glucagon secretion may be one of the mechanisms driving later improvements in glycemia after RYGB. TRIAL REGISTRATION NUMBER: NCT01945840.

Journal article

Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MHet al., 2019, Glucagon-like peptide 1 (GLP-1), Molecular Metabolism, Vol: 30, Pages: 72-130, ISSN: 2212-8778

The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity.

Journal article

Bitsi S, Buenaventura T, Laughlin WE, Burgoyne T, Lyu Z, Grimes J, Koszegi Z, Calebiro D, Rutter GA, Bloom SR, Jones B, Tomas Aet al., 2019, GLP-1R translocation to plasma membrane nanodomains and downstream signalling are modulated by agonist-dependent receptor palmitoylation, 55th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), Publisher: SPRINGER, Pages: S215-S215, ISSN: 0012-186X

Conference paper

Buenaventura T, Bitsi S, Laughlin WE, Burgoyne T, Lyu Z, Oqua AI, Norman H, McGlone ER, Klymchenko AS, Corrêa IR, Walker A, Inoue A, Hanyaloglu A, Grimes J, Koszegi Z, Calebiro D, Rutter GA, Bloom SR, Jones B, Tomas Aet al., 2019, Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells., PLoS Biology, Vol: 17, Pages: 1-40, ISSN: 1544-9173

The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes (T2D) and obesity, undergoes rapid endocytosis after stimulation by endogenous and therapeutic agonists. We have previously highlighted the relevance of this process in fine-tuning GLP-1R responses in pancreatic beta cells to control insulin secretion. In the present study, we demonstrate an important role for the translocation of active GLP-1Rs into liquid-ordered plasma membrane nanodomains, which act as hotspots for optimal coordination of intracellular signaling and clathrin-mediated endocytosis. This process is dynamically regulated by agonist binding through palmitoylation of the GLP-1R at its carboxyl-terminal tail. Biased GLP-1R agonists and small molecule allosteric modulation both influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable.

Journal article

Kamocka A, Miras AD, Perez-Pevida B, Umpleby AM, Chahal H, Moorthy K, Purkayastha S, Patel A, Tan T, Bloom S, Ahmed AR, Rubino Fet al., 2019, LONG VS STANDARD BILIOPANCREATIC LIMB ROUX-EN-Y GASTRIC BYPASS FOR TYPE 2 DIABETES. THE LONG LIMB TRIAL Type 2 diabetes and metabolic surgery, 24th World Congress of the International-Federation-for-the-Surgery-of-Obesity-and-Metabolic-Disorders (IFSO) / 21st SECO Congress, Publisher: SPRINGER, Pages: 234-234, ISSN: 0960-8923

Conference paper

Mcglone ER, Siebert M, Minnion J, Owen B, Goldin R, Li J, Carling D, Bado A, Bloom S, Le Gall M, Tan Tet al., 2019, SLEEVE GASTRECTOMY IS ASSOCIATED WITH WEIGHT LOSS-INDEPENDENT IMPROVEMENT IN HEPATIC STEATOSIS Basic science and research in bariatric surgery, 24th World Congress of the International-Federation-for-the-Surgery-of-Obesity-and-Metabolic-Disorders (IFSO) / 21st SECO Congress, Publisher: SPRINGER, Pages: 479-479, ISSN: 0960-8923

Conference paper

Rose F, Bloom S, Tan T, Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years, EXPERT OPINION ON DRUG DISCOVERY, ISSN: 1746-0441

Journal article

McGlone ER, Tan T, Bloom SR, Walters JRFet al., 2019, What Can We Learn From Mouse Models About Bile Acid–Mediated Changes After Bariatric Surgery?, Gastroenterology, Vol: 157, Pages: 4-8, ISSN: 0016-5085

Journal article

Behary P, Tharakan G, Alexiadou K, Johnson N, Wewer Albrechtsen NJ, Kenkre J, Cuenco J, Hope D, Anyiam O, Choudhury S, Alessimii H, Poddar A, Minnion J, Doyle C, Frost G, Le Roux C, Purkayastha S, Moorthy K, Dhillo W, Holst JJ, Ahmed AR, Prevost AT, Bloom SR, Tan TMet al., 2019, Combined GLP-1, oxyntomodulin, and peptide YY improves body weight and glycemia in obesity and prediabetes/type 2 diabetes: a randomized single-blinded placebo controlled study, Diabetes Care, Vol: 42, Pages: 1446-1453, ISSN: 0149-5992

OBJECTIVE: Roux-en-Y gastric bypass (RYGB) augments postprandial secretion of glucagon-like peptide 1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY). Subcutaneous infusion of these hormones ("GOP"), mimicking postprandial levels, reduces energy intake. Our objective was to study the effects of GOP on glycemia and body weight when given for 4 weeks to patients with diabetes and obesity. RESEARCH DESIGN AND METHODS: In this single-blinded mechanistic study, obese patients with prediabetes/diabetes were randomized to GOP (n = 15) or saline (n = 11) infusion for 4 weeks. We also studied 21 patients who had undergone RYGB and 22 patients who followed a very low-calorie diet (VLCD) as unblinded comparators. Outcomes measured were 1) body weight, 2) fructosamine levels, 3) glucose and insulin during a mixed meal test (MMT), 4) energy expenditure (EE), 5) energy intake (EI), and 6) mean glucose and measures of glucose variability during continuous glucose monitoring. RESULTS: GOP infusion was well tolerated over the 4-week period. There was a greater weight loss (P = 0.025) with GOP (mean change -4.4 [95% CI -5.3, -3.5] kg) versus saline (-2.5 [-4.1, -0.9] kg). GOP led to a greater improvement (P = 0.0026) in fructosamine (-44.1 [-62.7, -25.5] µmol/L) versus saline (-11.7 [-18.9, -4.5] µmol/L). Despite a smaller weight loss compared with RYGB and VLCD, GOP led to superior glucose tolerance after a mixed-meal stimulus and reduced glycemic variability compared with RYGB and VLCD. CONCLUSIONS: GOP infusion improves glycemia and reduces body weight. It achieves superior glucose tolerance and reduced glucose variability compared with RYGB and VLCD. GOP is a viable alternative for the treatment of diabetes with favorable effects on body weight.

Journal article

Behary P, Tharakan G, Alexiadou K, Johnson NA, Albrechtsen NJW, Cuenco J, Hope D, Dhillo W, Minnion JS, Frost G, Le Roux C, Purkayastha S, Moorthy K, Holst JJ, Ahmed A, Prevost T, Bloom S, Tan TMMet al., 2019, Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Glycaemia and Body Weight in Obesity and Type 2 Diabetes: A Randomized, Single-Blinded Study, 79th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Tharakan G, Ilesanmi II, Behary P, Alexiadou K, Doyle CS, Chahal H, Purkayastha S, Miras A, Oliver N, Ahmed A, Bloom S, Tan TMet al., 2019, Changes in Glycaemic Variability after RYGB: A One-Year Prospective Study with Comparison to Patients with Post-bariatric Hypoglycaemia, 79th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Miras AD, Pérez-Pevida B, Aldhwayan M, Kamocka A, McGlone ER, Al-Najim W, Chahal H, Batterham RL, McGowan B, Khan O, Greener V, Ahmed AR, Petrie A, Scholtz S, Bloom SR, Tan TMet al., 2019, Adjunctive liraglutide treatment in patients with persistent or recurrent type 2 diabetes after metabolic surgery (GRAVITAS): a randomised, double-blind, placebo-controlled trial, The Lancet Diabetes & Endocrinology, ISSN: 2213-8587

Journal article

McGlone ER, Bloom SR, 2019, Bile acids and the metabolic syndrome, Annals of Clinical Biochemistry, Vol: 56, Pages: 326-337, ISSN: 1758-1001

Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.

Journal article

Kamocka A, Perez-Pevida B, Miras AD, Markakis H, Castagneto-Gissey L, Casella J, Villa F, Panagiotopoulos S, Reyhani A, Petronio B, Patel A, Tan T, Moorthy K, Purkayastha S, Ahmed AR, Bloom S, Rubino Fet al., 2019, Total small bowel length varies considerably among patients with obesity and diabetes: Is there a role for individualisation of limb lengths in Roux-en-Y gastric bypass?, 10th Annual Scientific Meeting of the British-Obesity-and-Metabolic-Surgery-Society (BOMSS), Publisher: SPRINGER, Pages: S11-S11, ISSN: 0960-8923

Conference paper

Buenaventura T, Laughlin WE, Bitsi S, Burgoyne T, Lyu Z, Oqua AI, Norman H, McGlone ER, Klymchenko AS, Corrêa IR, Walker A, Inoue A, Hanyaloglou A, Rutter GA, Bloom SR, Jones B, Tomas Aet al., 2018, Agonist binding affinity determines palmitoylation of the glucagon-like peptide-1 receptor and its functional interaction with plasma membrane nanodomains in pancreatic beta cells, Publisher: Cold Spring Harbor Laboratory

<jats:p>The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes and obesity, is known to undergo palmitoylation by covalent ligation of an acyl chain to cysteine 438 in its carboxyl-terminal tail. Work with other GPCRs indicates that palmitoylation can be dynamically regulated to allow receptors to partition into plasma membrane nanodomains that act as signaling hotspots. Here, we demonstrate that the palmitoylated state of the GLP-1R is increased by agonist binding, leading to its segregation and clustering into plasma membrane signaling nanodomains before undergoing internalization in a clathrin-dependent manner. Both GLP-1R signaling and trafficking are modulated by strategies targeting nanodomain segregation and cluster formation, including depletion of cholesterol or expression of a palmitoylation-defective GLP-1R mutant. Differences in receptor binding affinity exhibited by biased GLP-1R agonists, and modulation of binding kinetics with the positive allosteric modulator BETP, influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable.</jats:p>

Working paper

Amin A, Neophytou C, Thein S, Martin N, Alamshah SA, Spreckley E, Bloom S, Murphy KGet al., 2018, L-Arginine increases post-prandial circulating GLP-1 and PYY levels in humans, Obesity, Vol: 26, Pages: 1721-1726, ISSN: 1930-7381

ObjectiveThe satiating effect of protein compared with other nutrients has been well described and is thought to be mediated, in part, by gut hormone release. Previously, it has been shown that oral L‐arginine acts as a GLP‐1 secretagogue both in vitro and in vivo in rodents. Here, the effect of L‐arginine on gut hormone release in humans was investigated.MethodsThe hypothesis was tested in two separate studies. The first study assessed the tolerability of oral L‐arginine in healthy human subjects. The second study assessed the effect of oral L‐arginine on gut hormone release following an ad libitum meal. Subjects were given L‐arginine, glycine (control amino acid), or vehicle control in a randomized double‐blind fashion.ResultsAt a dose of 17.1 mmol, L‐arginine was well tolerated and stimulated the release of plasma GLP‐1 (P < 0.05) and PYY (P < 0.001) following an ad libitum meal. Food diaries showed a trend toward lower energy intake and particularly fat intake following L‐arginine treatment.ConclusionsL‐arginine can significantly elevate GLP‐1 and PYY in healthy human volunteers in combination with a meal. Further work is required to investigate whether L‐arginine may have utility in the suppression of appetite and food intake.

Journal article

Comninos A, Demetriou L, Wall M, Shah A, Clarke S, Narayanaswamy S, Nesbitt A, Izzi-Engbeaya C, Prague J, Abbara A, Ratnasabapathy R, Yang LY, Salem V, Nijher G, Jayasena C, Tanner M, Bassett P, Mehta A, McGonigle J, Rabiner E, Bloom S, Dhillo Wet al., 2018, Modulations of human resting brain connectivity by Kisspeptin enhance sexual and emotional Functions, JCI insight, Vol: 3, ISSN: 2379-3708

BACKGROUND. Resting brain connectivity is a crucial component of human behavior demonstrated by disruptions in psychosexual and emotional disorders. Kisspeptin, a recently identified critical reproductive hormone, can alter activity in certain brain structures but its effects on resting brain connectivity and networks in humans remain elusive.METHODS. We determined the effects of kisspeptin on resting brain connectivity (using functional neuroimaging) and behavior (using psychometric analyses) in healthy men, in a randomized double-blinded 2-way placebo-controlled study.RESULTS. Kisspeptin’s modulation of the default mode network (DMN) correlated with increased limbic activity in response to sexual stimuli (globus pallidus r = 0.500, P = 0.005; cingulate r = 0.475, P = 0.009). Furthermore, kisspeptin’s DMN modulation was greater in men with less reward drive (r = –0.489, P = 0.008) and predicted reduced sexual aversion (r = –0.499, P = 0.006), providing key functional significance. Kisspeptin also enhanced key mood connections including between the amygdala-cingulate, hippocampus-cingulate, and hippocampus–globus pallidus (all P < 0.05). Consistent with this, kisspeptin’s enhancement of hippocampus–globus pallidus connectivity predicted increased responses to negative stimuli in limbic structures (including the thalamus and cingulate [all P < 0.01]).CONCLUSION. Taken together, our data demonstrate a previously unknown role for kisspeptin in the modulation of functional brain connectivity and networks, integrating these with reproductive hormones and behaviors. Our findings that kisspeptin modulates resting brain connectivity to enhance sexual and emotional processing and decrease sexual aversion, provide foundation for kisspeptin-based therapies for associated disorders of body and mind.

Journal article

Hope DCD, Tan TMM, Bloom SR, 2018, No guts, no loss: Toward the ideal treatment for obesity in the twenty-first century, Frontiers in Endocrinology, Vol: 9, ISSN: 1664-2392

Over the last century, our knowledge of the processes which control appetite and weight regulation has developed significantly. The understanding of where gut hormones fit into the control of energy homeostasis in addition to the rapid advancement of pharmacotherapeutics has paved the way for the development of novel gut hormone analogs to target weight loss. Currently, bariatric surgery remains the most efficacious treatment for obesity. The emergence of gut hormone analogs may provide a useful non-surgical addition to the armamentarium in treating obesity. Simply targeting single gut hormone pathways may be insufficiently efficacious, and combination/multiple-agonist approaches may be necessary to obtain the results required for clear clinical impact.

Journal article

Scott R, Minnion J, Tan T, Bloom SRet al., 2018, Oxyntomodulin analogue increases energy expenditure via the glucagon receptor, Peptides, Vol: 104, Pages: 70-77, ISSN: 0196-9781

The gut hormone oxyntomodulin (OXM) causes weight loss by reducing appetite and increasing energy expenditure. Several analogues are being developed to treat obesity. Exactly how oxyntomodulin works, however, remains controversial. OXM can activate both glucagon and GLP-1 receptors but no specific receptor has been identified. It is thought that the anorectic effect occurs predominantly through GLP-1 receptor activation but, to date, it has not been formally confirmed which receptor is responsible for the increased energy expenditure. We developed OX-SR, a sustained-release OXM analogue. It produces a significant and sustained increase in energy expenditure in rats as measured by indirect calorimetry. We now show that this increase in energy expenditure occurs via activation of the glucagon receptor. Blockade of the GLP-1 receptor with Exendin 9-39 does not block the increase in oxygen consumption caused by OX-SR. However, when activity at the glucagon receptor is lost, there is no increase in energy expenditure. Glucagon receptor activity therefore appears to be essential for OX-SR's effects on energy expenditure. The development of future 'dual agonist' analogues will require careful balancing of GLP-1 and glucagon receptor activities to obtain optimal effects.

Journal article

Anand U, Yiangou Y, Akbar A, Quick T, MacQuillan A, Fox M, Sinisi M, Korchev YE, Jones B, Bloom SR, Anand Pet al., 2018, Glucagon-like peptide 1 receptor (GLP-1R) expression by nerve fibres in inflammatory bowel disease and functional effects in cultured neurons, PLoS ONE, Vol: 13, ISSN: 1932-6203

IntroductionGlucagon like-peptide 1 receptor (GLP-1R) agonists diminish appetite and may contribute to the weight loss in inflammatory bowel disease (IBD).ObjectivesThe aim of this study was to determine, for the first time, the expression of GLP-1R by colon nerve fibres in patients with IBD, and functional effects of its agonists in cultured rat and human sensory neurons.MethodsGLP-1R and other nerve markers were studied by immunohistochemistry in colon biopsies from patients with IBD (n = 16) and controls (n = 8), human dorsal root ganglia (DRG) tissue, and in GLP-1R transfected HEK293 cells. The morphological effects of incretin hormones oxyntomodulin, exendin-4 and glucagon were studied on neurite extension in cultured DRG neurons, and their functional effects on capsaicin and ATP signalling, using calcium imaging.ResultsSignificantly increased numbers of colonic mucosal nerve fibres were observed in IBD biopsies expressing GLP-1R (p = 0.0013), the pan-neuronal marker PGP9.5 (p = 0.0008), and sensory neuropeptide CGRP (p = 0.0014). An increase of GLP-1R positive nerve fibres in IBD colon was confirmed with a different antibody to GLP-1R (p = 0.016). GLP-1R immunostaining was intensely positive in small and medium-sized neurons in human DRG, and in human and rat DRG cultured neurons. Co-localization of GLP-1R expression with neuronal markers in colon and DRG confirmed the neural expression of GLP-1R, and antibody specificity was confirmed in HEK293 cells transfected with the GLP-1R. Treatment with oxyntomodulin, exendin-4 and GLP-1 increased neurite length in cultured neurons compared with controls, but did not stimulate calcium influx directly, or affect capsaicin responses. However, exendin-4 significantly enhanced ATP responses in human DRG neurons.ConclusionOur results show that increased GLP-1R innervation in IBD bowel could mediate enhanced visceral afferent signalling, and provide a peripheral target for therapeutic intervention. The differential effect of

Journal article

Jones B, Buenaventura T, Kanda N, Chabosseau P, Owen B, Scott R, Goldin R, Angkathunyakul N, Correa Jr IR, Bosco D, Johnson PR, Piemonti L, Marchetti P, Shapiro AMJ, Cochran B, Hanyaloglu A, Inoue A, Tan T, Rutter G, Tomas Catala A, Bloom Set al., 2018, Targeting GLP-1 receptor trafficking to improve agonist efficacy, Nature Communications, Vol: 9, ISSN: 2041-1723

Glucagon-like peptide-1 receptor (GLP-1R) activation promotes insulin secretion from pancreatic beta cells, causes weight loss, and is an important pharmacological target in type 2 diabetes (T2D). Like other G protein-coupled receptors, the GLP-1R undergoes agonist-mediated endocytosis, but the functional and therapeutic consequences of modulating GLP-1R endocytic trafficking have not been clearly defined. Here, we investigate a novel series of biased GLP-1R agonists with variable propensities for GLP-1R internalization and recycling. Compared to a panel of FDA-approved GLP-1 mimetics, compounds that retain GLP-1R at the plasma membrane produce greater long-term insulin release, which is dependent on a reduction in β-arrestin recruitment and faster agonist dissociation rates. Such molecules elicit glycemic benefits in mice without concomitant increases in signs of nausea, a common side effect of GLP-1 therapies. Our study identifies a set of agents with specific GLP-1R trafficking profiles and the potential for greater efficacy and tolerability as T2D treatments.

Journal article

Mirza K, Alenda A, Eftekhar A, Grossman N, Nikolic K, Bloom S, Toumazou Cet al., 2018, Influence of cholecystokinin-8 on compound nerve action potentials from ventral gastric vagus in rats, International Journal of Neural Systems, Vol: 28, ISSN: 0129-0657

Objective:Vagus Nerve Stimulation (VNS) has shown great promise as a potential therapy for anumber of conditions, such as epilepsy, depression and forNeurometabolic Therapies, especially fortreating obesity. The objective of this study was to characterise the left ventral subdiaphragmaticgastric trunk of vagus nerve (SubDiaGVN) and to analyse the influence of intravenous injection of guthormone cholecystokinin octapeptide (CCK-8) on compound nerve action potential (CNAP) observedon the same branch, with the aim of understanding the impact of hormones on VNS and incorporatingthe methods and results into closed loop implant design.Methods:The cervical region of the left vagus nerve (CerVN) of male Wistar rats was stimulatedwith electric current and the elicited CNAPs were recorded on the SubDiaGVN under four differentconditions:Control(no injection),Saline,CCK1(100 pmol/kg) andCCK2(1000 pmol/kg) injections.Results:We identified the presence of Aδ, B, C1, C2, C3 and C4 fibres with their respective velocityranges. Intravenous administration of CCKin vivoresults in selective, statistically significant reductionof CNAP components originating from A and B fibres, but with no discernible effect on the C fibresinn=7animals. The affected CNAP components exhibit statistically significant (pSaline−CCK1= 0.02andpSaline−CCK2= 0.007) higher normalized stimulation thresholds.Conclusion:This approach of characterising the vagus nerve can be used in closed loop systems todeterminewhento initiate VNS and also to tune the stimulation dose, which is patient specific andchanges over time.

Journal article

Mirza KB, Wildner K, Kulasekeram N, Cork S, Bloom S, Nikolic K, Toumazou Cet al., 2018, Live demo: Platform for closed loop neuromodulation based on dual mode biosignals

© 2017 IEEE. We demonstrate a novel feedback mechanism to implement closed loop neuromodulation based on a combination of electrical and chemical neural signal recording. The platform consists of our custom designed multi-channel amplifier for recording electrical and chemical signals (such as pH), data processing unit and the stimulator IC unit. A novelty of our approach is that the neural chemical signals are used to initiate stimulation and electrical compound action potentials (CAPs) to determine stimulation dosage. The proposed adaptive stimulation platform has been implemented in the context of Vagus Nerve Stimulation (VNS) for obesity therapy. The demonstration is based on externally generated signals derived from our in vivo experiments on physiological stimulation of the gastric branch of vagus nerve by injection of gut hormone cholecystokinin (CCK).

Conference paper

Khan R, Kanda N, Bloom SR, Rutter GA, Lindsley CW, Nance KD, Niswender KD, Jones B, Tomas Aet al., 2018, An investigation into the role of compound 5d in incretin-dependent pancreatic beta cell function, Publisher: WILEY, Pages: 54-54, ISSN: 0742-3071

Conference paper

Laughlin WE, Buenaventura T, Oqua AI, Kanda N, Walker A, Klymchenko AS, Bloom SR, Rutter GA, Hanyaloglu A, Jones B, Tomas Aet al., 2018, Control of glucagon-like peptide-1 receptor (GLP-1R) palmitoylation, lipid raft partitioning, clustering and signalling by biased agonism, Publisher: WILEY, Pages: 54-55, ISSN: 0742-3071

Conference paper

Law J, Morris DE, Izzi-Engbeaya CN, Salem V, Coello C, Robinson L, Jayasinghe M, Scott R, Gunn R, Rabiner E, Tan T, Dhillo WS, Bloom SR, Budge H, Symonds MEet al., 2018, Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans, Journal of Nuclear Medicine, Vol: 59, Pages: 516-522, ISSN: 1535-5667

Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilizes glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by the current standard method of assessing BAT—PET/CT—as it requires exposure to high doses of ionizing radiation. Infrared thermography (IRT) is a potential noninvasive, safe alternative, although direct corroboration with PET/CT has not been established. Methods: IRT and 18F-FDG PET/CT data from 8 healthy men subjected to water-jacket cooling were directly compared. Thermal images were geometrically transformed to overlay PET/CT-derived maximum intensity projection (MIP) images from each subject, and the areas with the most intense temperature and glucose uptake within the supraclavicular regions were compared. Relationships between supraclavicular temperatures (TSCR) from IRT and the metabolic rate of glucose uptake (MR(gluc)) from PET/CT were determined. Results: Glucose uptake on MR(gluc)MIP was found to correlate positively with a change in TSCR relative to a reference region (r2 = 0.721; P = 0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5% ± 5.1%. Prolonged cooling, for 60 min, was associated with a further TSCR rise, compared with cooling for 10 min. Conclusion: The supraclavicular hotspot identified on IRT closely corresponded to the area of maximal uptake on PET/CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations for whom PET/CT is not feasible, practical, or repeatable.

Journal article

Jones B, Bloom S, Buenaventura T, Tomas Catala ADD, Rutter Get al., 2018, Control of insulin secretion by GLP-1, Peptides, Vol: 100, Pages: 75-84, ISSN: 0196-9781

Stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) and other gut-derived peptides is central to the incretin response to ingesting nutriments. Analogues of GLP-1, and inhibitors of its breakdown, have found widespread clinical use for the treatment of type 2 diabetes (T2D) and obesity. The release of these peptides underlies the improvements in glycaemic control and disease remission after bariatric surgery. Given therapeutically, GLP-1 analogues can lead to side effects including nausea, which limit dosage. Greater understanding of the interactions between the GLP-1 receptor (GLP-1R) and both the endogenous and artificial ligands therefore holds promise to provide more efficacious compounds. Here, we discuss recent findings concerning the signalling and trafficking of the GLP-1R in pancreatic beta cells. Leveraging “bias” at the receptor towards cAMP generation versus the recruitment of β-arrestins and extracellular signal-regulated kinases (ERK1/2) activation may allow the development of new analogues with significantly improved clinical efficacy. We describe how, unexpectedly, relatively low-affinity agonists, which prompt less receptor internalisation than the parent compound, provoke greater insulin secretion and consequent improvements in glycaemia.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00162552&limit=30&person=true