Imperial College London

ProfessorSimoneDi Giovanni

Faculty of MedicineDepartment of Brain Sciences

James W Harnett Chair in Restorative Neuroscience
 
 
 
//

Contact

 

+44 (0)20 7594 3178s.di-giovanni

 
 
//

Location

 

E505Burlington DanesHammersmith Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Biermann:2010:10.1167/iovs.09-3903,
author = {Biermann, J and Grieshaber, P and Goebel, U and Martin, G and Thanos, S and Di, Giovanni S and Lagrèze, WA},
doi = {10.1167/iovs.09-3903},
journal = {Invest Ophthalmol Vis Sci},
pages = {526--534},
title = {Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells.},
url = {http://dx.doi.org/10.1167/iovs.09-3903},
volume = {51},
year = {2010}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - PURPOSE: Valproic acid (VPA) has been demonstrated to have neuroprotective effects in neurodegenerative conditions. VPA inhibits histone-deacetylases (HDAC) and delays apoptosis in degenerating neurons. The authors investigated whether VPA delays retinal ganglion cell (RGC) death and enhances axonal regeneration after optic nerve crush (ONC). Furthermore, potential molecular targets involved in VPA-mediated protection were analyzed. METHODS: ONC was performed on the left eye of rats, which received VPA or Ringer's solution subcutaneously (SC; 300 mg/kg twice daily) or intravitreally (single postlesional injection). Densities of fluorogold-labeled RGC were analyzed in retinal flatmounts after 5 or 8 days. Retinal tissue was also harvested and processed to quantify axon growth in retinal explants; evaluate caspase-3 activity; analyze transcription factor cAMP response element binding protein (CREB); and determine acetylated histone 3 and 4, as well as phosphorylated extracellular signal-regulated kinase (pERK) 1/2. RESULTS: Five and 8 days after ONC, 93% and 58% RGC survived after subcutaneous VPA treatment in comparison to Ringer's solution (62% and 37% viable RGC), respectively (P < 0.001). Likewise, a single intravitreal injection of VPA immediately after injury significantly delayed apoptosis in RGC (P = 0.0016). Injured RGC treated with VPA showed better regeneration of their axons in culture (196 axons/explant) than the crushed controls receiving Ringer (115 axons/explant). RGC axons of the right control eyes regenerated more after VPA treatment. VPA-mediated neuroprotection and neuroregeneration were accompanied by decreased caspase-3 activity, CREB induction, pERK1/2 activation, but not by altered histone-acetylation. CONCLUSIONS: VPA provided neuroprotection and axonal regrowth after ONC. Alterations were observed in several pathways; however, the precise mechanism of VPA-mediated protection is not yet fully understood.
AU - Biermann,J
AU - Grieshaber,P
AU - Goebel,U
AU - Martin,G
AU - Thanos,S
AU - Di,Giovanni S
AU - Lagrèze,WA
DO - 10.1167/iovs.09-3903
EP - 534
PY - 2010///
SP - 526
TI - Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells.
T2 - Invest Ophthalmol Vis Sci
UR - http://dx.doi.org/10.1167/iovs.09-3903
UR - https://www.ncbi.nlm.nih.gov/pubmed/19628741
VL - 51
ER -