Imperial College London

DrSergeiDudarev

Faculty of Natural SciencesDepartment of Physics

Visiting Professor
 
 
 
//

Contact

 

+44 (0)1235 465 203s.dudarev

 
 
//

Location

 

811Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

21 results found

Boleininger M, Dudarev SL, Mason DR, Martinez Eet al., 2022, Volume of a dislocation network, PHYSICAL REVIEW MATERIALS, Vol: 6, ISSN: 2475-9953

Journal article

Reali L, Boleininger M, Gilbert MR, Dudarev SLet al., 2022, Macroscopic elastic stress and strain produced by irradiation, NUCLEAR FUSION, Vol: 62, ISSN: 0029-5515

Journal article

Warwick AR, Boleininger M, Dudarev SL, 2021, Microstructural complexity and dimensional changes in heavily irradiated zirconium, PHYSICAL REVIEW MATERIALS, Vol: 5, ISSN: 2475-9953

Journal article

Mason DR, Granberg F, Boleininger M, Schwarz-Selinger T, Nordlund K, Dudarev SLet al., 2021, Parameter-free quantitative simulation of high-dose microstructure and hydrogen retention in ion-irradiated tungsten, PHYSICAL REVIEW MATERIALS, Vol: 5, ISSN: 2475-9953

Journal article

Ma P-W, Dudarev SL, 2021, Elastic dipole tensor of a defect at a finite temperature: Definition and properties, PHYSICAL REVIEW MATERIALS, Vol: 5, ISSN: 2475-9953

Journal article

Gilbert MR, Arakawa K, Bergstrom Z, Caturla MJ, Dudarev SL, Gao F, Goryaeva AM, Hu SY, Hu X, Kurtz RJ, Litnovsky A, Marian J, Marinica M-C, Martinez E, Marquis EA, Mason DR, Nguyen BN, Olsson P, Osetskiy Y, Senor D, Setyawan W, Short MP, Suzudo T, Trelewicz JR, Tsuru T, Was GS, Wirth BD, Yang L, Zhang Y, Zinkle SJet al., 2021, Perspectives on multiscale modelling and experiments to accelerate materials development for fusion, JOURNAL OF NUCLEAR MATERIALS, Vol: 554, ISSN: 0022-3115

Journal article

Duc N-M, Wrobel JS, Klimenkov M, Lloyd MJ, Messina L, Dudarev SLet al., 2021, First-principles model for voids decorated by transmutation solutes: Short-range order effects and application to neutron irradiated tungsten, PHYSICAL REVIEW MATERIALS, Vol: 5, ISSN: 2475-9953

Journal article

Ma P-W, Dudarev SL, 2021, Nonuniversal structure of point defects in face-centered cubic metals, PHYSICAL REVIEW MATERIALS, Vol: 5, ISSN: 2475-9953

Journal article

Mason DR, Das S, Derlet PM, Dudarev SL, London AJ, Yu H, Phillips NW, Yang D, Mizohata K, Xu R, Hofmann Fet al., 2020, Observation of Transient and Asymptotic Driven Structural States of Tungsten Exposed to Radiation, PHYSICAL REVIEW LETTERS, Vol: 125, ISSN: 0031-9007

Journal article

Ma P-W, Mason DR, Dudarev SL, 2020, Multiscale analysis of dislocation loops and voids in tungsten, PHYSICAL REVIEW MATERIALS, Vol: 4, ISSN: 2475-9953

Journal article

Ma P-W, Dudarev SL, 2020, CALANIE: Anisotropic elastic correction to the total energy, to mitigate the effect of periodic boundary conditions, COMPUTER PHYSICS COMMUNICATIONS, Vol: 252, ISSN: 0010-4655

Journal article

Arakawa K, Marinica M-C, Fitzgerald S, Proville L, Duc N-M, Dudarev SL, Ma P-W, Swinburne TD, Goryaeva AM, Yamada T, Amino T, Arai S, Yamamoto Y, Higuchi K, Tanaka N, Yasuda H, Yasuda T, Mori Het al., 2020, Quantum de-trapping and transport of heavy defects in tungsten, NATURE MATERIALS, Vol: 19, Pages: 508-+, ISSN: 1476-1122

Journal article

Mason DR, Duc N-M, Marinica M-C, Alexander R, Sand AE, Dudarev SLet al., 2019, Relaxation volumes of microscopic and mesoscopic irradiation-induced defects in tungsten, JOURNAL OF APPLIED PHYSICS, Vol: 126, ISSN: 0021-8979

Journal article

Dudarev SL, Liu P, Andersson DA, Stanek CR, Ozaki T, Franchini Cet al., 2019, Parametrization of LSDA plus U for noncollinear magnetic configurations: Multipolar magnetism in UO2, Physical Review Materials, Vol: 3, Pages: 1-14, ISSN: 2475-9953

To explore the formation of noncollinear magnetic configurations in materials with strongly correlated electrons, we derive a noncollinear LSDA+U model involving only one parameter U, as opposed to the difference between the Hubbard and Stoner parameters U−J. Computing U in the constrained random phase approximation, we investigate noncollinear magnetism of uranium dioxide UO2 and find that the spin-orbit coupling (SOC) stabilizes the 3k ordered magnetic ground state. The estimated SOC strength in UO2 is as large as 0.73 eV per uranium atom, making spin and orbital degrees of freedom virtually inseparable. Using a multipolar pseudospin Hamiltonian, we show how octupolar and dipole-dipole exchange coupling help establish the 3k magnetic ground state with canted ordering of uranium f orbitals. The cooperative Jahn-Teller effect does not appear to play a significant part in stabilizing the noncollinear 3k state, which has the lowest energy even in an undistorted lattice. The choice of parameter U in the LSDA+U model has a notable quantitative effect on the predicted properties of UO2, in particular on the magnetic exchange interaction and, perhaps trivially, on the band gap: The value of U=3.46eV computed fully ab initio delivers the band gap of 2.11 eV in good agreement with experiment, and a balanced account of other pertinent energy scales.

Journal article

Mason DR, Sand AE, Dudarev SL, 2019, Atomistic-object kinetic Monte Carlo simulations of irradiation damage in tungsten, MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, Vol: 27, ISSN: 0965-0393

Journal article

Wells T, Horsfield A, Foulkes WMC, Dudarev Set al., 2019, The microscopic Einstein-de Haas effect, Journal of Chemical Physics, Vol: 150, ISSN: 0021-9606

The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semiclassical explanation of the effect exists, modern electronic structure methods have not yet been applied to model the phenomenon. In this paper, we investigate its microscopic origins by means of a noncollinear tight-binding model of an O2 dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. The avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We also find that the torque exerted on the nuclei by the electrons in a time-varying B field is not only due to the EdH effect. The other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.

Journal article

Dudarev SL, Mason DR, Tarleton E, Ma P-W, Sand AEet al., 2018, A multi-scale model for stresses, strains and swelling of reactor components under irradiation, NUCLEAR FUSION, Vol: 58, ISSN: 0029-5515

Journal article

Coury MEA, Dudarev SL, Foulkes WMC, Horsfield AP, Ma P-W, Spencer JSet al., 2018, Erratum: Hubbard-like Hamiltonians for interacting electrons in s, p, and d orbitals (vol 93, 075101, 2016), Physical Review B, Vol: 98, ISSN: 2469-9950

Journal article

Nordlund K, Zinkle SJ, Sand AE, Granberg F, Averback RS, Stoller R, Suzudo T, Malerba L, Banhart F, Weber WJ, Willaime F, Dudarev SL, Simeone Det al., 2018, Improving atomic displacement and replacement calculations with physically realistic damage models., Nature Communications, Vol: 9, Pages: 1-8, ISSN: 2041-1723

Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

Journal article

Rovelli I, Dudarev SL, Sutton AP, 2017, Non-local model for diffusion-mediated dislocation climb and cavitygrowth, Journal of the Mechanics and Physics of Solids, Vol: 103, Pages: 121-141, ISSN: 1873-4782

To design efficient thermal recovery procedures for structural materials in fusion energy applications it is important to characterise quantitatively the annealing timescales of radiation-induced defect clusters. With this goal in mind, we present an extension of the Green’s function formulation of Gu et al. (2015). for the climb of curved dislocations, to include in the same framework the evaporation and growth of cavities and the effects of free surfaces. This paper focuses on the mathematical foundations of the model, which makes use of boundary integral equations (París and Cañas, 1997) to solve the steady-state vacancy diffusion problem. Numerical results are also presented in the simplified case of a dilute configuration of prismatic dislocation loops and spherical cavities in a finite-size medium, which show good agreement with experimental data on high temperature annealing in ion-irradiated tungsten (Ferroni et al., 2015).

Journal article

Coury MEA, Dudarev SL, Foulkes WMC, Horsfield AP, Ma P-W, Spencer JSet al., 2016, Hubbard-like Hamiltonians for interacting electrons in s, p, and d orbitals, Physical Review B, Vol: 93, ISSN: 1550-235X

Hubbard-like Hamiltonians are widely used to describe on-site Coulomb interactions in magnetic and strongly-correlated solids, but there is much confusion in the literature about the form these Hamiltonians should take for shells of p and d orbitals. This paper derives the most general s,p, and d orbital Hubbard-like Hamiltonians consistent with the relevant symmetries, and presents them in ways convenient for practical calculations. We use the full configuration interaction method to study p and d orbital dimers and compare results obtained using the correct Hamiltonian and the collinear and vector Stoner Hamiltonians. The Stoner Hamiltonians can fail to describe properly the nature of the ground state, the time evolution of excited states, and the electronic heat capacity.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00479002&limit=30&person=true