Imperial College London

DrSalvadorEslava

Faculty of EngineeringDepartment of Chemical Engineering

Reader in Applied Energy Materials
 
 
 
//

Contact

 

+44 (0)20 7594 8977s.eslava Website CV

 
 
//

Location

 

412ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

104 results found

Fernández-Catalá J, Jussila L, Daboczi M, Temerov F, Eslava S, Greco R, Cao Wet al., 2023, Shape-Controlled Synthesis of Cu3TeO6 Nanoparticles with Photocatalytic Features., Cryst Growth Des, Vol: 23, Pages: 8828-8837, ISSN: 1528-7483

Cu3TeO6 (CTO) has been synthesized by hydrothermal synthesis applying different pH values without any template or a calcination step to control the crystalline phase and the morphology of nanoparticles. The physicochemical properties characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy techniques revealed that the pH values significantly influence the crystal growth. In acidic media (pH = 2), crystal growth has not been achieved. At pH = 4, the yield is low (10%), and the CTO presents irregular morphology. At pH = 6, the yield increases (up to 71%) obtaining an agglomeration of nanoparticles into spherical morphology. At basic conditions (pH = 8), the yield increases up to 90% and the morphology is the same as the sample obtained at pH = 6. At high basic conditions (pH = 10), the yield is similar (92%), although the morphology changes totally to dispersed nanoparticles. Importantly, the as-prepared CTO semiconductor presents photocatalytic activity for H2 production using triethanolamine as a sacrificial agent under visible light illumination. The results also revealed that the nanoparticles agglomerated in a spherical morphology with larger surface area presented almost double activities in H2 production compared to heterogeneously sized particles. These results highlight the suitable optoelectronic properties, including optical band gap, energy levels, and photoconductivity of CTO semiconductors for their use in photocatalytic H2 production.

Journal article

Liu SC, Lin HY, Hsu SE, Wu DT, Sathasivam S, Daboczi M, Hsieh HJ, Zeng CS, Hsu TG, Eslava S, Macdonald TJ, Lin CTet al., 2023, Highly reproducible self-assembled monolayer based perovskite solar cells via amphiphilic polyelectrolyte, Journal of Materials Chemistry A, Vol: 12, Pages: 2856-2866, ISSN: 2050-7488

Self-assembled monolayers (SAM) have attracted a lot of attention in perovskite solar cells (PSCs) due to their high efficiency in both single junction and tandem devices. However, inferior reproducibility originating from poor surface coverage and voids in the perovskite layer at the buried interface still limits their widespread use. Herein, we report a facile method to significantly improve the reproducibility of PSCs by employing an amphiphilic conjugated polyelectrolyte between SAMs and perovskite layers. Application of the polyelectrolyte leads to a 200 meV shallower perovskite Fermi level, allowing a desirable, significantly increased band bending at the SAM/perovskite interface. Moreover, imaging the buried perovskite interface by a novel technique reveals that interfacial voids are minimised by the polyelectrolyte leading to complete coverage of the ITO/SAM surface. As a result, remarkable fill factors over 0.84 and power conversion efficiencies exceeding 22.5% are achieved. The PSCs demonstrate exceptional reproducibility and high performance, as evidenced by an average fill factor of 0.81 with a remarkably low standard deviation of less than 0.01 across 50 individual devices. These results demonstrate a universal method to improve the reproducibility of PSCs containing commonly used SAMs and open the door for wider use of amphiphilic conjugated polyelectrolytes in optoelectronic devices.

Journal article

Daboczi M, Cui J, Temerov F, Eslava Set al., 2023, Scalable All-Inorganic Halide Perovskite Photoanodes with >100 h Operational Stability Containing Earth-Abundant Materials., Adv Mater, Vol: 35

The application of halide perovskites in the photoelectrochemical generation of solar fuels and feedstocks is hindered by the instability of perovskites in aqueous electrolytes and the use of expensive electrode and catalyst materials, particularly in photoanodes driving kinetically slow water oxidation. Here, solely earth-abundant materials are incorporated to fabricate a CsPbBr3 -based photoanode that reaches a low onset potential of +0.4 VRHE and 8 mA cm-2 photocurrent density at +1.23 VRHE for water oxidation, close to the radiative efficiency limit of CsPbBr3 . This photoanode retains 100% of its stabilized photocurrent density for more than 100 h of operation by replacing once the inexpensive graphite sheet upon signs of deterioration. The improved performance is due to an efficiently electrodeposited NiFeOOH catalyst on a protective self-adhesive graphite sheet, and enhanced charge transfer achieved by phase engineering of CsPbBr3 . Devices with >1 cm2 area, and low-temperature processing demonstrate the potential for low capital cost, stable, and scalable perovskite photoanodes.

Journal article

Baghdadi Y, Temerov F, Cui J, Daboczi M, Rattner E, Sena MS, Itskou I, Eslava Set al., 2023, Cs3Bi2Br9/g-C3N4 Direct Z-Scheme Heterojunction for Enhanced Photocatalytic Reduction of CO2 to CO., Chem Mater, Vol: 35, Pages: 8607-8620, ISSN: 0897-4756

Lead-free halide perovskite derivative Cs3Bi2Br9 has recently been found to possess optoelectronic properties suitable for photocatalytic CO2 reduction reactions to CO. However, further work needs to be performed to boost charge separation for improving the overall efficiency of the photocatalyst. This report demonstrates the synthesis of a hybrid inorganic/organic heterojunction between Cs3Bi2Br9 and g-C3N4 at different ratios, achieved by growing Cs3Bi2Br9 crystals on the surface of g-C3N4 using a straightforward antisolvent crystallization method. The synthesized powders showed enhanced gas-phase photocatalytic CO2 reduction in the absence of hole scavengers of 14.22 (±1.24) μmol CO g-1 h-1 with 40 wt % Cs3Bi2Br9 compared with 1.89 (±0.72) and 5.58 (±0.14) μmol CO g-1 h-1 for pure g-C3N4 and Cs3Bi2Br9, respectively. Photoelectrochemical measurements also showed enhanced photocurrent in the 40 wt % Cs3Bi2Br9 composite, demonstrating enhanced charge separation. In addition, stability tests demonstrated structural stability upon the formation of a heterojunction, even after 15 h of illumination. Band structure alignment and selective metal deposition studies indicated the formation of a direct Z-scheme heterojunction between the two semiconductors, which boosted charge separation. These findings support the potential of hybrid organic/inorganic g-C3N4/Cs3Bi2Br9 Z-scheme photocatalyst for enhanced CO2 photocatalytic activity and improved stability.

Journal article

Cui J, Daboczi M, Cui Z, Gong M, Flitcroft J, Skelton J, Parker SC, Eslava Set al., 2023, BiVO<sub>4</sub> Photoanodes Enhanced with Metal Phosphide Co-Catalysts: Relevant Properties to Boost Photoanode Performance, SMALL, ISSN: 1613-6810

Journal article

Yang M, Cui J, Daboczi M, Law RV, Luke J, Kim J-S, Hankin A, Eslava Set al., 2023, Interplay between Collective and Localized Effects of Point Defects on Photoelectrochemical Performance of TiO<sub>2</sub> Photoanodes for Oxygen Evolution, ADVANCED MATERIALS INTERFACES, ISSN: 2196-7350

Journal article

Stewart K, Pagano K, Tan E, Daboczi M, Rimmele M, Luke J, Eslava S, Kim J-Set al., 2023, Understanding Effects of Alkyl Side-Chain Density on Polaron Formation Via Electrochemical Doping in Thiophene Polymers, ADVANCED MATERIALS, ISSN: 0935-9648

Journal article

Greco R, Baxauli-Marin L, Temerov F, Daboczi M, Eslava S, Niu Y, Zakharov A, Zhang M, Li T, Cao Wet al., 2023, Activation of 2D cobalt hydroxide with 0D cobalt oxide decoration for microplastics degradation and hydrogen evolution, CHEMICAL ENGINEERING JOURNAL, Vol: 471, ISSN: 1385-8947

Journal article

Moruzzi F, Zhang W, Purushothaman B, Gonzalez-Carrero S, Aitchison CM, Willner B, Ceugniet F, Lin Y, Kosco J, Chen H, Tian J, Alsufyani M, Gibson JS, Rattner E, Baghdadi Y, Eslava S, Neophytou M, Durrant JR, Steier L, McCulloch Iet al., 2023, Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction, NATURE COMMUNICATIONS, Vol: 14

Journal article

Sena MS, Cui J, Baghdadi Y, Rattner E, Daboczi M, Lopes-Moriyama AL, dos Santos AG, Eslava Set al., 2023, Lead-Free Halide Perovskite Cs2AgBiBr6/Bismuthene Composites for Improved CH4 Production in Photocatalytic CO2 Reduction, ACS APPLIED ENERGY MATERIALS, ISSN: 2574-0962

Journal article

Temerov F, Baghdadi Y, Rattner E, Eslava Set al., 2022, A Review on Halide Perovskite-Based Photocatalysts: Key Factors and Challenges, ACS APPLIED ENERGY MATERIALS, Vol: 5, Pages: 14605-14637, ISSN: 2574-0962

Journal article

Cui J, Daboczi M, Regue M, Chin Y, Pagano K, Zhang J, Isaacs MA, Kerherve G, Mornto A, West J, Gimenez S, Kim J, Eslava Set al., 2022, 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen-evolution photoanodes, Advanced Functional Materials, Vol: 32, Pages: 1-12, ISSN: 1616-301X

BiVO4 has attracted wide attention for oxygen-evolution photoanodes in water-splitting photoelectrochemical devices. However, its performance is hampered by electron-hole recombination at surface states. Herein, partially oxidized two-dimensional (2D) bismuthene is developed as an effective, stable, functional interlayer between BiVO4 and the archetypal NiFeOOH co-catalyst. Comprehensive (photo)electrochemical and surface photovoltage characterizations show that NiFeOOH can effectively increase the lifetime of photogenerated holes by passivating hole trap states of BiVO4; however, it is limited in influencing electron trap states related to oxygen vacancies (VO). Loading bismuthene on BiVO4 photoanodes increases the density of VO that are beneficial for the oxygen evolution reaction via the formation of oxy/hydroxyl-based water oxidation intermediates at the surface. Moreover, bismuthene increases interfacial band bending and fills the VO-related electron traps, leading to more efficient charge extraction. With the synergistic interaction of bismuthene and NiFeOOH on BiVO4, this composite photoanode achieves a 5.8-fold increase in photocurrent compared to bare BiVO4 reaching a stable 3.4 (±0.2) mA cm–2 at a low bias of +0.8 VRHE or 4.7(±0.2) mA cm–2 at +1.23 VRHE. The use of 2D bismuthene as functional interlayer provides a new strategy to enhance the performance of photoanodes.

Journal article

Eslava S, Hintermair U, 2021, Editorial: Recent advances in water splitting, CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, Vol: 32, ISSN: 2452-2236

Journal article

Kumar S, Eslava S, 2021, Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr6-Cu-RGO nanocomposite for photocatalytic CO2 reduction, Journal of Materials Chemistry A, Vol: 5/5/21, Pages: 12179-12187, ISSN: 2050-7488

Pb-based halide perovskites have recently showed great potential in various applications such as solar cells, optoelectronics and photocatalysis. Despite their high performance, the Pb2+ toxicity along with poor stability hinders long term applications in photocatalysis. Herein, we report mechanochemically prepared Pb-free Cs2AgBiBr6 double perovskite nanoplates and their heterostructure with Cu-loaded reduced graphene oxide (Cu–RGO) for gas-phase photocatalytic CO2 reduction using water vapor as the proton source in the absence of a hole scavenger. The resulting Cs2AgBiBr6–Cu–RGO nanocomposite shows significant photocatalytic activity of 10.7 (±0.6) μmol CH4 g−1 h−1, 1.9 (±0.3) μmol CO g−1 h−1 and 1.0 (±0.2) μmol H2 g−1 h−1, with a CH4 selectivity of 93.0 (±0.5)% on an electron basis with 1 sun and a remarkable apparent quantum efficiency of 0.89 (±0.21)% at 590 nm. A further 32% enhancement in photocatalytic activity on an electron basis is achieved when the light intensity is doubled (2 suns). The high performance was attributed to their improved charge separation and suppressed electron–hole recombination, along with extended visible light absorption, better stability in a humid environment and improved CO2 adsorption. These findings support Cs2AgBiBr6 as a potential Pb-free alternative to conventional halide perovskites for photocatalytic solar-to-fuel conversion and CO2 utilization.

Journal article

Schukraft GEM, Woodward RT, Kumar S, Sachs M, Eslava S, Petit Cet al., 2021, Hypercrosslinked polymers as a photocatalytic platform for visible-light-driven CO2 photoreduction using H2O, ChemSusChem: chemistry and sustainability, energy and materials, Vol: 14, Pages: 1720-1727, ISSN: 1864-5631

The design of robust, high‐performance photocatalysts is key for the success of solar fuel production by CO2 conversion. In this study, hypercrosslinked polymer (HCP) photocatalysts have been developed for the selective reduction of CO2 to CO, combining excellent CO2 sorption capacities, good general stabilities, and low production costs. HCPs are active photocatalysts in the visible light range, significantly outperforming the benchmark material, TiO2 P25, using only sacrificial H2O. It is hypothesized that superior H2O adsorption capacities facilitate access to photoactive sites, improving photocatalytic conversion rates when compared to sacrificial H2. These polymers are an intriguing set of organic photocatalysts, displaying no long‐range order or extended π‐conjugation. The as‐synthesized networks are the sole photocatalytic component, requiring no added cocatalyst doping or photosensitizer, representing a highly versatile and exciting platform for solar‐energy conversion.

Journal article

Zhang J, Cui J, Eslava S, 2021, Oxygen evolution catalysts at transition metal oxide photoanodes: their differing roles for solar water splitting, Advanced Energy Materials, Vol: 11, Pages: 1-27, ISSN: 1614-6832

In the field of photoelectrochemical water splitting for hydrogen production, dedicated efforts have recently been made to improve water oxidation at photoanodes, and in particular, to accelerate the poor kinetics of the oxygen evolution reaction which is a key step in achieving a viable photocurrent density for industrialization. To this end, coating the photoanode semiconductors with oxygen evolution catalysts (OECs) has been one of the most popular options. The roles of OECs have been found to be multifold, as opposed to exclusively catalytic. This review aims to unravel the complexity of the interfacial processes arising from the material properties of both semiconductors and OECs, and to rationalize the variation in findings in the literature regarding the roles of OECs. Light is also shed on some of the most useful characterization techniques that probe the dynamics of photogenerated holes, to answer some of the field's most challenging mechanistic questions. Finally, some ideas and suggestions on the design principles of OECs are proposed.

Journal article

Rood SC, Pastor-Algaba O, Tosca-Princep A, Pinho B, Isaacs M, Torrente-Murciano L, Eslava Set al., 2021, Synergistic effect of simultaneous doping of ceria nanorods with Cu and Cr on CO oxidation and NO reduction, Chemistry: A European Journal, Vol: 27, Pages: 2165-2174, ISSN: 0947-6539

Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO2 and N2, respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies. XPS also confirms the presence of Cr and Cu surface species. H2-TPR and XPS analysis show that the simultaneous Cu and Cr co-doping results in a catalyst with a higher surface Cu concentration and a much-enhanced surface reducibility, in comparison with either undoped or singly doped (Cu or Cr) ceria nanorods. While single Cu doping enhances catalytic CO oxidation and Cr doping improves catalytic NO reduction, co-doping with both Cu and Cr enhances the benefits of both dopants in a synergistic manner employing roughly a quarter of dopant weight.

Journal article

Hammond OS, Atri RS, Bowron DT, de Campo L, Diaz-Moreno S, Keenan LL, Doutch J, Eslava S, Edler KJet al., 2021, Structural evolution of iron forming iron oxide in a deep eutectic-solvothermal reaction, NANOSCALE, Vol: 13, Pages: 1723-1737, ISSN: 2040-3364

Journal article

Regue M, Ahmet IY, Bassi PS, Johnson AL, Fiechter S, van de Krol R, Abdi FF, Eslava Set al., 2020, Zn-Doped Fe<sub>2</sub>TiO<sub>5</sub> Pseudobrookite-Based Photoanodes Grown by Aerosol-Assisted Chemical Vapor Deposition, ACS APPLIED ENERGY MATERIALS, Vol: 3, Pages: 12066-12077, ISSN: 2574-0962

Journal article

Kumar N, Kumar S, Gusain R, Manyala N, Eslava S, Ray SSet al., 2020, Polypyrrole-Promoted rGO-MoS<sub>2</sub> Nanocomposites for Enhanced Photocatalytic Conversion of CO<sub>2</sub> and H<sub>2</sub>O to CO, CH<sub>4</sub>, and H<sub>2</sub> Products, ACS APPLIED ENERGY MATERIALS, Vol: 3, Pages: 9897-9909, ISSN: 2574-0962

Journal article

Temerov F, Pham K, Juuti P, Makela JM, Grachova E, Kumar S, Eslava S, Saarinen JJet al., 2020, Silver-Decorated TiO<sub>2</sub> Inverse Opal Structure for Visible Light-Induced Photocatalytic Degradation of Organic Pollutants and Hydrogen Evolution, ACS APPLIED MATERIALS & INTERFACES, Vol: 12, Pages: 41200-41210, ISSN: 1944-8244

Journal article

Regue Grino M, Kumar S, Eslava S, 2020, Recent Advances in Photocatalytic Materials for Solar Fuel Production from Water and Carbon Dioxide, Heterogeneous Catalysis for Energy Applications, ISBN: 978-1-78801-718-3

In recent years, photocatalysis has received significant attention because of its clean way of converting water or carbon dioxide into sustainable chemical fuels, providing promising and viable routes to overcome both renewable energy demand and global climate change. This chapter focuses on recent progress in the design and synthesis of sustainable photocatalytic materials, namely novel metal oxides, perovskites, metal–organic frameworks, metal sulfides, layered double hydroxides and plasmonic and metal-free materials. Advances in the preparation of these photocatalysts are reviewed, revealing efficient strategies to enhance their photocatalytic activity to produce hydrogen and carbon-based fuels such as carbon monoxide and methane from inexhaustible water and carbon dioxide. Emphasis is given to the strategies that maximize the visible light absorption of the solar spectrum and charge separation and transfer; for example, through forming heterojunctions of nanostructured materials. This chapter also highlights various strategies adopted for improving not only the photoconversion efficiency, but also the selectivity of certain carbon-based fuels. Adopting these advances within the scientific community will ensure more rapid progress towards high solar to fuel conversions and future commercialization of photocatalytic devices.

Book chapter

Schukraft GM, Woodward R, Kumar S, Sachs M, Eslava S, Petit Cet al., 2020, Hypercrosslinked Polymers as a Photocatalytic Platform for Visible-Light-Driven CO2 Photoreduction Using H2O

<jats:p>The design of robust, high-performance photocatalysts is key for the success of solar fuel production <jats:italic>via</jats:italic> CO<jats:sub>2</jats:sub>conversion. Herein, we present hypercrosslinked polymer (HCP) photocatalysts for the selective reduction of CO<jats:sub>2</jats:sub> to CO, combining excellent CO<jats:sub>2</jats:sub> sorption capacities, good general stabilities, and low production costs. HCPs are active photocatalysts in the visible light range, significantly out-performing the benchmark material, TiO<jats:sub>2</jats:sub> P25, using only sacrificial H<jats:sub>2</jats:sub>O. We hypothesise that superior H<jats:sub>2</jats:sub>O adsorption capacities led to concentration at photoactive sites, improving photocatalytic conversion rates when compared to sacrificial H<jats:sub>2</jats:sub>. These polymers are an intriguing set of organic photocatalysts, displaying no long-range order or extended pi-conjugation. The as-synthesised networks are the sole photocatalytic component, requiring no co-catalyst doping or photosensitiser, representing a highly versatile and exciting platform for solar-energy conversion.</jats:p>

Journal article

Kumar S, Regue M, Isaacs M, Freeman E, Eslava Set al., 2020, All-Inorganic CsPbBr3 nanocrystals: gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane, ACS Applied Energy Materials, Vol: 3, Pages: 4509-4522, ISSN: 2574-0962

Halide perovskite CsPbBr3 has recently gained wide interest for its application in solar cells, optoelectronics and artificial photosynthesis, but further progress is needed to develop greener and more scalable synthesis procedures and for their application in humid environments. Herein, we report a fast and convenient mechanochemical synthesis of CsPbBr3 perovskite nanocrystals with scale-up capability and control over crystal size and morphology. These perovskite nanocrystals show excellent crystallinity and tunable morphologies, from nanorods to nanospheres and nanosheets, simply changing the mechanochemical reaction conditions such as ball milling time, ball size and Cs precursor. Furthermore, we explore their use for gas-phase photocatalytic CO2 reduction using water vapor as proton source. A photocatalytic conversion of CO2 and H2O(g) to 0.43 (0.03) μmol CH4 g-1 h-1, 2.25 (0.09) μmol CO g-1 h-1 and 0.08 (0.02) μmol H2 g-1 h-1 was for example achieved with CsPbBr3 nanosheets and simulated sunlight, keeping 30% of this activity over three consecutive cycles. When these CsPbBr3 nanosheets were mechanochemically prepared together with Cu-loaded reduced graphene oxide (Cu-RGO), the photocatalytic activity significantly improved to 12.7 (0.95) μmol CH4 g-1 h-1, 0.46 (0.11) μmol CO g-1 h-1 and 0.27 (0.02) μmol H2 g-1 h-1, and a 90% of this activity was retained over three consecutive cycles. The selectivity for CH4 increased to 98.5(0.93)% on an electron basis and a remarkable apparent quantum efficiency of 1.10(0.15)% at 523 nm was achieved. This enhanced activity, selectivity and stability were assigned to the better charge separation, visible light absorption, CO2 adsorption & activation, and hydrophobic character of the obtained composites. These results will contribute to the rational design and application of halide perovskites for CO2 photocatalytic reduction.

Journal article

Freeman E, Kumar S, Thomas SR, Pickering H, Fermin DJ, Eslava Set al., 2020, PrFeO<sub>3</sub> Photocathodes Prepared Through Spray Pyrolysis, CHEMELECTROCHEM, Vol: 7, Pages: 1365-1372, ISSN: 2196-0216

Journal article

Rood S, Eslava S, Manigrasso A, Bannister Cet al., 2020, Recent advances in gasoline three-way catalyst formulation: A review, PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, Vol: 234, Pages: 936-949, ISSN: 0954-4070

Journal article

Regue M, Kumar S, Eslava S, 2020, CHAPTER 4: Recent Advances in Photocatalytic Materials for Solar Fuel Production from Water and Carbon Dioxide, RSC Energy and Environment Series, Pages: 80-115

In recent years, photocatalysis has received significant attention because of its clean way of converting water or carbon dioxide into sustainable chemical fuels, providing promising and viable routes to overcome both renewable energy demand and global climate change. This chapter focuses on recent progress in the design and synthesis of sustainable photocatalytic materials, namely novel metal oxides, perovskites, metal-organic frameworks, metal sulfides, layered double hydroxides and plasmonic and metal-free materials. Advances in the preparation of these photocatalysts are reviewed, revealing efficient strategies to enhance their photocatalytic activity to produce hydrogen and carbon-based fuels such as carbon monoxide and methane from inexhaustible water and carbon dioxide. Emphasis is given to the strategies that maximize the visible light absorption of the solar spectrum and charge separation and transfer; for example, through forming heterojunctions of nanostructured materials. This chapter also highlights various strategies adopted for improving not only the photoconversion efficiency, but also the selectivity of certain carbon-based fuels. Adopting these advances within the scientific community will ensure more rapid progress towards high solar to fuel conversions and future commercialization of photocatalytic devices.

Book chapter

Freeman E, Kumar S, Celorrio V, Park MS, Kim JH, Fermin DJ, Eslava Set al., 2019, Strategies for deposition of LaFeO3 photocathodes: improving photocurrent with a polymer template, Sustainable Energy and Fuels, Vol: 4, Pages: 884-894, ISSN: 2398-4902

Renewable and sustainable alternatives to fossil fuels are needed to limit the impact of global warming. Using metal oxide semiconductors as photoelectrodes within photoelectrochemical cell devices, in which solar energy can be stored and ultimately used for electricity generation, is one such alternative. LaFeO3 (LFO) has been shown to be an active photocathode on illumination of visible light but is restricted by low surface area and relatively low photocurrents achieved. The work herein utilizes a spin coating deposition method with a solution of nitrate precursors combined with non-ionic polymeric surfactant (Triton X-100). This allowed for the formation of a uniform porous LFO film of high coverage on a fluorine-doped tin oxide coated substrate, through directing growth and preventing particle aggregation during film fabrication. These porous LFO films achieved an enhanced photocurrent of -161±6 µA cm-2 at +0.43 VRHE, in addition to a remarkable high onset potential of +1.4 VRHE for cathodic photocurrent. It was additionally shown that this attained film quality and activity was superior to other film fabrication methods such as doctor blading and spray pyrolysis. With this polymer templating method for LFO films, not only are higher photocurrents achieved but there are also added benefits such as better charge separation, higher efficiencies, higher specific electrochemically-active surface area and improved stability.

Journal article

Regue M, Sibby S, Ahmet IY, Friedrich D, Abdi FF, Johnson AL, Eslava Set al., 2019, TiO<sub>2</sub> photoanodes with exposed {010} facets grown by aerosol-assisted chemical vapor deposition of a titanium oxo/alkoxy cluster, JOURNAL OF MATERIALS CHEMISTRY A, Vol: 7, Pages: 19161-19172, ISSN: 2050-7488

Journal article

Zhang J, Eslava S, 2019, Understanding charge transfer, defects and surface states at hematite photoanodes, SUSTAINABLE ENERGY & FUELS, Vol: 3, Pages: 1351-1364, ISSN: 2398-4902

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00703286&limit=30&person=true