Imperial College London

DrSimosEvangelou

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Reader in Systems Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6285s.evangelou Website

 
 
//

Location

 

1108BElectrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Cheng:2019:10.1115/1.4042133,
author = {Cheng, C and Evangelou, S},
doi = {10.1115/1.4042133},
journal = {Journal of Dynamic Systems, Measurement, and Control},
title = {Series active variable geometry suspension robust control based on full-vehicle dynamics},
url = {http://dx.doi.org/10.1115/1.4042133},
volume = {141},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - This paper demonstrates the ride comfort and road holding performance enhancement of the new road vehicle series active variable geometry suspension (SAVGS) concept using an H∞ control technique. In contrast with the previously reported work that considered simpler quarter-car models, the present work designs and evaluates control systems using full-car dynamics thereby taking into account the coupled responses from the four independently actuated corners of the vehicle. Thus, the study utilizes a nonlinear full-car model that represents accurately the dynamics and geometry of a high performance car with the new double wishbone active suspension concept. The robust H∞ control design exploits the linearized dynamics of the nonlinear model at a trim state, and it is formulated as a disturbance rejection problem that aims to reduce the body vertical accelerations and tire deflections while guaranteeing operation inside the existing physical constraints. The proposed controller is installed on the nonlinear full-car model, and its performance is examined in the frequency and time domains for various operating maneuvers, with respect to the conventional passive suspension and the previously designed SAVGS H∞ control schemes with simpler vehicle models.
AU - Cheng,C
AU - Evangelou,S
DO - 10.1115/1.4042133
PY - 2019///
SN - 0022-0434
TI - Series active variable geometry suspension robust control based on full-vehicle dynamics
T2 - Journal of Dynamic Systems, Measurement, and Control
UR - http://dx.doi.org/10.1115/1.4042133
VL - 141
ER -