Imperial College London

ProfessorStuartHaslam

Faculty of Natural SciencesDepartment of Life Sciences

Professor in Structural Glycobiology
 
 
 
//

Contact

 

+44 (0)20 7594 5222s.haslam

 
 
//

Location

 

101ASir Ernst Chain BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

302 results found

Wu G, Murugesan G, Nagala M, McCraw A, Haslam SM, Dell A, Crocker PRet al., 2021, Activation of regulatory T cells triggers specific changes in glycosylation associated with Siglec-1-dependent inflammatory responses [version 1; peer review: 2 approved], Wellcome Open Research, Vol: 6, ISSN: 2398-502X

Background: Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro-induced cells as a model system. Methods: Glycosylation changes that affect Siglec‑1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results: Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple 'glycogenes' that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions: We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.

Journal article

Wang S-S, Solar VD, Yu X, Antonopoulos A, Friedman AE, Agarwal K, Garg M, Ahmed SM, Addhya A, Nasirikenari M, Lau JT, Dell A, Haslam SM, Sampathkumar S-G, Neelamegham Set al., 2021, Efficient inhibition of O-glycan biosynthesis using the hexosamine analog Ac<sub>5</sub>GalNTGc, CELL CHEMICAL BIOLOGY, Vol: 28, Pages: 699-+, ISSN: 2451-9448

Journal article

Wang Y, Khan A, Antonopoulos A, Bouche L, Buckley CD, Filer A, Raza K, Li K-P, Tolusso B, Gremese E, Kurowska-Stolarska M, Alivernini S, Dell A, Haslam SM, Pineda MAet al., 2021, Loss of α2-6 sialylation promotes the transformation of synovial fibroblasts into a pro-inflammatory phenotype in arthritis, Nature Communications, Vol: 12, ISSN: 2041-1723

In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis, but these cells adopt a pathological function in rheumatoid arthritis (RA). Carbohydrates (glycans) on cell surfaces are fundamental regulators of the interactions between stromal and immune cells, but little is known about the role of the SF glycome in joint inflammation. Here we study stromal guided pathophysiology by mapping SFs glycosylation pathways. Combining transcriptomic and glycomic analysis, we show that transformation of fibroblasts into pro-inflammatory cells is associated with glycan remodeling, a process that involves TNF-dependent inhibition of the glycosyltransferase ST6Gal1 and α2-6 sialylation. SF sialylation correlates with distinct functional subsets in murine experimental arthritis and remission stages in human RA. We propose that pro-inflammatory cytokines remodel the SF-glycome, converting the synovium into an under-sialylated and highly pro-inflammatory microenvironment. These results highlight the importance of glycosylation in stromal immunology and joint inflammation.

Journal article

Donini R, Haslam S, Kontoravdi K, 2021, Glycoengineering Chinese hamster ovary cells: a short history, Biochemical Society Transactions, Vol: 49, Pages: 915-931, ISSN: 0300-5127

Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.

Journal article

Cao H, Antonopoulos A, Henderson S, Wassall H, Brewin J, Masson A, Shepherd J, Konieczny G, Patel B, Williams M-L, Davie A, Forrester MA, Hall L, Minter B, Tampakis D, Moss M, Lennon C, Pickford W, Erwig L, Robertson B, Dell A, Brown GD, Wilson HM, Rees DC, Haslam SM, Rowe JA, Barker RN, Vickers MAet al., 2021, Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance, Nature Communications, Vol: 12, Pages: 1-13, ISSN: 2041-1723

In both sickle cell disease and malaria, red blood cells (RBCs) are phagocytosed in the spleen, but receptor-ligand pairs mediating uptake have not been identified. Here, we report that patches of high mannose N-glycans (Man5-9GlcNAc2), expressed on diseased or oxidized RBC surfaces, bind the mannose receptor (CD206) on phagocytes to mediate clearance. We find that extravascular hemolysis in sickle cell disease correlates with high mannose glycan levels on RBCs. Furthermore, Plasmodium falciparum-infected RBCs expose surface mannose N-glycans, which occur at significantly higher levels on infected RBCs from sickle cell trait subjects compared to those lacking hemoglobin S. The glycans are associated with high molecular weight complexes and protease-resistant, lower molecular weight fragments containing spectrin. Recognition of surface N-linked high mannose glycans as a response to cellular stress is a molecular mechanism common to both the pathogenesis of sickle cell disease and resistance to severe malaria in sickle cell trait.

Journal article

Antonopoulos A, Broome S, Sharov V, Ziegenfuss C, Easton RL, Panico M, Morris HR, Haslam Set al., 2021, Site-specific characterisation of SARS-CoV-2 spike glycoprotein receptor binding domain, Glycobiology, Vol: 31, Pages: 181-187, ISSN: 0959-6658

The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, is having a global impact both in terms of human disease as well as socially and economically. Its heavily glycosylated spike glycoprotein is fundamental for the infection process, via its receptor binding domains interaction with the glycoprotein angiotensin converting enzyme 2 on human cell surfaces. We therefore utilized an integrated glycomic and glycoproteomic analytical strategy to characterise both N- and O- glycan site specific glycosylation within the receptor binding domain. We demonstrate the presence of complex type N-glycans with unusual fucosylated LacdiNAc at both sites N331 and N343 and a single site of O-glycosylation on T323.

Journal article

Cao H, Bagchi A, Tampakis D, Laidvee I, Williams M, Minter B, Wright S, Antonopoulos A, Haslam SM, Barker RN, Vickers MAet al., 2021, Human erythrocyte surface fucose expression increases with age and hyperglycemia, Wellcome Open Research, Vol: 6, Pages: 1-14, ISSN: 2398-502X

Background: Reactive oxygen species and other free radicals, together with glucose and its metabolites are believed to play important roles in the aging process. The carbohydrate components of glycosylated proteins are important in mediating cell-cell interactions and a role has been suggested for them in the aging process. Erythrocytes are critical cells in the human body, heavily glycosylated and relatively easily available and so are good candidates to yield insights into how patterns of glycosylation change with age and disease. It has been claimed, based on a periodic acid Schiff assay, that human aging is associated with a decline of erythrocyte surface sialic acids. Plant lectins allow for more specific assays for glycans, including determining the linkage of sialic acids and analysis of single cells by flow cytometry.Methods: Plant lectins, including Maackia amurensis lectin II (MAL), binding to α-2,3 linked sialic acids and Sambucus nigra (SNA), α-2,6 sialic acids, were used in flow cytometry and western blot of erythrocyte surface membrane. N-glycomics mass spectrometry determines glycan structures. Donors varying in age and hyperglycemia, as indicated by HbA1c were analysed.Results: Erythrocyte surface sialic acids have no significant associations with donor age. A combination of storage and cellular aging produces a specific loss of α-2,6 sialic acids. By contrast, erythrocyte surface terminal fucoses increase significantly with donor age. In order to determine which aspects of aging are important in determining this change, we investigated whether this novel human aging biomarker is associated with higher plasma glucose values, assessed by glycated hemoglobin (HbA1c) and reactive oxygen species (ROS) generation. Fucose levels were associated with HbA1c levels, but not ROS generation.Conclusion: Our study identifies novel glycan-based biomarkers for human aging and disease. The simplicity of lectin-based assays provide an attractive cel

Journal article

Mendoza M, Lu D, Ballesteros A, Blois SM, Abernathy K, Feng C, Dimitroff CJ, Zmuda J, Panico M, Dell A, Vasta GR, Haslam SM, Dveksler Get al., 2020, Glycan characterization of pregnancy-specific glycoprotein 1 and its identification as a novel Galectin-1 ligand, Glycobiology, Vol: 30, Pages: 895-909, ISSN: 0959-6658

Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 μM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.

Journal article

Murphy N, Rooney B, Bhattacharyya T, Triana-Chavez O, Krueger A, Haslam SM, O'Rourke V, Panczuk M, Tsang J, Bickford-Smith J, Gilman RH, Tetteh K, Drakeley C, Smales CM, Miles MAet al., 2020, Glycosylation of trypanosoma cruzi TcI antigen reveals recognition by chagasic sera, Scientific Reports, Vol: 10, ISSN: 2045-2322

Chagas disease is considered the most important parasitic disease in Latin America. The protozoan agent, Trypanosoma cruzi, comprises six genetic lineages, TcI-TcVI. Genotyping to link lineage(s) to severity of cardiomyopathy and gastrointestinal pathology is impeded by the sequestration and replication of T. cruzi in host tissues. We describe serology specific for TcI, the predominant lineage north of the Amazon, based on expression of recombinant trypomastigote small surface antigen (gTSSA-I) in the eukaryote Leishmania tarentolae, to allow realistic glycosylation and structure of the antigen. Sera from TcI-endemic regions recognised gTSSA-I (74/146; 50.7%), with no cross reaction with common components of gTSSA-II/V/VI recombinant antigen. Antigenicity was abolished by chemical (periodate) oxidation of gTSSA-I glycosylation but retained after heat-denaturation of conformation. Conversely, non-specific recognition of gTSSA-I by non-endemic malaria sera was abolished by heat-denaturation. TcI-specific serology facilitates investigation between lineage and diverse clinical presentations. Glycosylation cannot be ignored in the search for immunogenic antigens.

Journal article

Loxley GM, Hooks DO, Antonopoulos A, Dell A, Haslam SM, Linklater WL, Hurst JL, Beynon RJet al., 2020, Vulpeculin: a novel and abundant lipocalin in the urine of the common brushtail possum, Trichosurus vulpecula, Open Biology, Vol: 10, ISSN: 2046-2441

Lipocalins are a family of secreted proteins. They are capable of binding small lipophilic compounds and have been extensively studied for their role in chemosignalling in rodent urine. Urine of the common brushtail possum (Trichosurus vulpecula) contains a prominent glycoprotein of 20 kDa, expressed in both sexes. We have isolated this protein and determined its primary sequence by mass spectrometry, including the use of metabolic labelling to resolve the leucine/isoleucine isobaric ambiguity. The protein sequence was identified as a lipocalin, and phylogenetic analysis grouped the protein with other marsupial lipocalin sequences in a phylogenetic clade distinct from established cross-species lipocalin sub-families. The pattern of expression in possum urine and the similarity in sequence and structure to other lipocalins suggests this protein may have a role in brushtail possum chemosignalling.

Journal article

Debets MF, Tastan OY, Wisnovsky SP, Malaker SA, Angelis N, Moeckl LKR, Choi J, Flynn H, Wagner LJS, Bineva-Todd G, Antonopoulos A, Cioce A, Browne WM, Li Z, Briggs DC, Douglas HL, Hess GT, Agbay AJ, Roustan C, Kjaer S, Haslam S, Snijders AP, Bassik MC, Moerner WE, Li VSW, Bertozzi CR, Schumann Bet al., 2020, Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation, Proceedings of the National Academy of Sciences of USA, Vol: 117, Pages: 25293-25301, ISSN: 0027-8424

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe GalNAzMe that is specific for cancer-relevant Ser/Thr-N-acetylgalactosamine (O-GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase GALE like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor UDP-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR knock-out (KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, BH-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.

Journal article

Li H, Marceau M, Yang T, Liao T, Tang X, Hu R, Xie Y, Tang H, Tay A, Shi Y, Shen Y, Yang T, Pi X, Lamichhane B, Luo Y, Debowski AW, Nilsson H, Haslam SM, Mulloy B, Dell A, Stubbs KA, Marshall BJ, Benghezal Met al., 2020, East-Asian <i>Helicobacter pylori</i> strains synthesize heptan-deficient lipopolysaccharide, Publisher: WILEY, Pages: 75-75, ISSN: 1083-4389

Conference paper

Osimanjiang W, Santos Roballo KC, Houck BD, Ito M, Antonopoulos A, Dell A, Haslam SM, Bushman JSet al., 2020, Analysis of N- and O-linked glycosylation: differential glycosylation after rat spinal cord injury, Journal of Neurotrauma, Vol: 37, Pages: 1954-1962, ISSN: 0897-7151

Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated.We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI. The N- and O-linked glycosylation was assessed at 3 and 14 days post-injury (DPI), and compared with uninjured control and time-matched sham spinal tissue. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS/MS) were performed to analyze carbohydrate structures. Results revealed diverse and abundant glycosylation in all groups, with some carbohydrate structures differentially produced in SCI animals compared with uninjured controls and shams. One such change occurred in the abundance of the Sda structure, Neu5Ac-α-(2,3)-[GalNAc-β-(1,4)-]Gal-β-(1,4)-GlcNAc, which was increased in SCI samples compared with shams and non-injured controls. Immunohistochemistry (IHC) and western blot were performed on SCI and sham samples using the CT1 antibody, which recognizes the terminal trisaccharide of Sda with high specificity. Both of these metrics confirmed elevated Sda structure in SCI tissue, where IHC further showed that Sda is expressed mainly by microglia. The results of these studies suggest that SCI causes a significant alteration in N- and O-linked glycosylation.

Journal article

Sela I, Goss V, Becker-Cohen M, Dell A, Haslam SM, Mitrani-Rosenbaum Set al., 2020, The glycomic sialylation profile of GNE Myopathy muscle cells does not point to consistent hyposialylation of individual glycoconjugates, NEUROMUSCULAR DISORDERS, Vol: 30, Pages: 621-630, ISSN: 0960-8966

Journal article

Schedin-Weiss S, Gaunitz S, Sui P, Chen Q, Haslam SM, Blennow K, Winblad B, Dell A, Tjernberg LOet al., 2020, Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment, The Federation of European Biochemical Societies (FEBS) Journal, Vol: 287, Pages: 3221-3234, ISSN: 1742-464X

Alzheimer disease (AD) is a devastating disease and a global health problem, and current treatments are only symptomatic. A wealth of clinical studies support that the disease starts to develop decades before the first symptoms appear, emphasizing the importance of studying early changes for improving early diagnosis and guiding toward novel treatment strategies. Protein glycosylation is altered in AD but it remains to be clarified why these alterations occur and how they affect the disease development. Here, we used a glycomics approach to search for alterations in protein glycosylation in cerebrospinal fluid (CSF) in AD compared with nondemented controls. Using both matrix-assisted laser desorption ionization-time of flight and liquid chromatography–electrospray mass spectrometry, we observed an increase in N-glycans carrying bisecting N-acetylglucosamine in AD. Based on those findings, we designed an enzyme-linked multiwell plate assay to quantify N-glycans binding to the lectin Phaseolus vulgaris Erythroagglutinin (PHA-E), which is specific for N-glycans containing bisecting N-acetylglucosamine. Using this assay, we found a similar increase in CSF in AD compared with controls. Further analysis of CSF from 242 patients with subjective cognitive impairment (SCI), mild cognitive impairment (MCI), or AD dementia revealed significantly increased binding to PHA-E in MCI and AD compared to SCI. Interestingly, PHA-E binding correlated with CSF levels of phosphorylated tau and total tau and this correlation was most prominent in the SCI group (R = 0.53–0.54). This study supports a link between N-glycosylation, neurodegeneration, and tau pathology in AD and suggests that glycan biomarkers have potential to identify SCI cases at risk of developing AD.

Journal article

Hautala LC, Pang P-C, Antonopoulos A, Pasanen A, Lee C-L, Chiu PCN, Yeung WSB, Loukovaara M, Butzow R, Haslam SM, Dell A, Koistinen Het al., 2020, Altered glycosylation of glycodelin in endometrial carcinoma, Laboratory Investigation, Vol: 100, Pages: 1014-1025, ISSN: 0023-6837

Glycodelin is a major glycoprotein expressed in reproductive tissues, like secretory and decidualized endometrium. It has several reproduction related functions that are dependent on specific glycosylation, but it has also been found to drive differentiation of endometrial carcinoma cells toward a less malignant phenotype. Here we aimed to elucidate whether the glycosylation and function of glycodelin is altered in endometrial carcinoma as compared with a normal endometrium. We carried out glycan structure analysis of glycodelin expressed in HEC-1B human endometrial carcinoma cells (HEC-1B Gd) by mass spectrometry glycomics strategies. Glycans of HEC-1B Gd were found to comprise a typical mixture of high-mannose, hybrid, and complex-type N-glycans, often containing undecorated LacNAc (Galβ1–4GlcNAc) antennae. However, several differences, as compared with previously reported glycan structures of normal human decidualized endometrium-derived glycodelin isoform, glycodelin-A (GdA), were also found. These included a lower level of sialylation and more abundant poly-LacNAc antennae, some of which are fucosylated. This allowed us to select lectins that showed different binding to these classes of glycodelin. Despite the differences in glycosylation between HEC-1B Gd and GdA, both showed similar inhibitory activity on trophoblast cell invasion and peripheral blood mononuclear cell proliferation. For the detection of cancer associated glycodelin, we established a novel in situ proximity-ligation based histochemical staining method using a specific glycodelin antibody and UEAI lectin. We found that the UEAI reactive glycodelin was abundant in endometrial carcinoma, but virtually absent in normal endometrial tissue even when glycodelin was strongly expressed. In conclusion, we established a histochemical staining method for the detection of endometrial carcinoma-associated glycodelin and showed that this specific glycodelin is exclusively expressed in cancer, not

Journal article

Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos Get al., 2020, Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB), Seminars in Immunopathology, Vol: 42, Pages: 469-486, ISSN: 1863-2297

Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.

Journal article

Blundell PA, Lu D, Dell A, Haslam S, Pleass RJet al., 2020, Choice of Host Cell Line Is Essential for the Functional Glycosylation of the Fc Region of Human IgG1 Inhibitors of Influenza B Viruses, JOURNAL OF IMMUNOLOGY, Vol: 204, Pages: 1022-1034, ISSN: 0022-1767

Journal article

Ibeto L, Antonopoulos A, Grassi P, Pang P-C, Panico M, Bobdiwala S, Al-Memar M, Davis P, Davis M, Norman Taylor J, Almeida P, Johnson MR, Harvey R, Bourne T, Seckl M, Clark G, Haslam SM, Dell Aet al., 2020, Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis, PLoS One, Vol: 15, ISSN: 1932-6203

Human chorionic gonadotropin (hCG) is a glycoprotein hormone that is essential for the maintenance of pregnancy. Glycosylation of hCG is known to be essential for its biological activity. "Hyperglycosylated" variants secreted during early pregnancy have been proposed to be involved in initial implantation of the embryo and as a potential diagnostic marker for gestational diseases. However, what constitutes "hyperglycosylation" is not yet fully understood. In this study, we perform comparative N-glycomic analysis of hCG expressed in the same individuals during early and late pregnancy to help provide new insights into hCG function, reveal new targets for diagnostics and clarify the identity of hyperglycosylated hCG. hCG was isolated in urine collected from women at 7 weeks and 20 weeks' gestation. hCG was also isolated in urine from women diagnosed with gestational trophoblastic disease (GTD). We used glycomics methodologies including matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry (MS) and MS/MS methods to characterise the N-glycans associated with hCG purified from the individual samples. The structures identified on the early pregnancy (EP-hCG) and late pregnancy (LP-hCG) samples corresponded to mono-, bi-, tri-, and tetra-antennary N-glycans. A novel finding was the presence of substantial amounts of bisected type N-glycans in pregnancy hCG samples, which were present at much lower levels in GTD samples. A second novel observation was the presence of abundant LewisX antigens on the bisected N-glycans. GTD-hCG had fewer glycoforms which constituted a subset of those found in normal pregnancy. When compared to EP-hCG, GTD-hCG samples had decreased signals for tri- and tetra-antennary N-glycans. In terms of terminal epitopes, GTD-hCG had increased signals for sialylated structures, while LewisX antigens were of very minor abundance. hCG carries the same N-glycans throughout pregnancy but in different propo

Journal article

Silver ZA, Antonopoulos A, Haslam SM, Dell A, Dickinson GM, Seaman MS, Desrosiers RCet al., 2020, Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies, Cell Reports, Vol: 30, Pages: 1862-1869.e4, ISSN: 2211-1247

Approximately 50% of the mass of the Envelope (Env) glycoprotein surface subunit (gp120) of human immunodeficiency virus type 1 (HIV-1) is composed of N-linked carbohydrate. Until now, the dogma has been that HIV-1 lacks O-linked carbohydrate on Env. Here we show that a subset of patient-derived HIV-1 isolates contain O-linked carbohydrate on the variable 1 (V1) domain of Env gp120. We demonstrate the presence of this O-glycosylation both on virions and on gp120 expressed as a secreted protein. Further, we establish that these O-linked glycans can confer a more than 1,000-fold decrease in neutralization sensitivity (IC50) to V3-glycan broadly neutralizing antibodies. These findings uncover a structural modification to the HIV-1 Env and suggest a functional role in promoting viral escape from one category of broadly neutralizing antibodies.

Journal article

Li H, Marceau M, Yang T, Liao T, Tang X, Hu R, Xie Y, Tang H, Tay A, Shi Y, Shen Y, Yang T, Pi X, Lamichhane B, Luo Y, Debowski AW, Nilsson H-O, Haslam SM, Mulloy B, Dell A, Stubbs KA, Marshall BJ, Benghezal Met al., 2019, East-Asian <i>Helicobacter pylori</i> Strains Synthesize Heptan-deficient Lipopolysaccharide, PLOS GENETICS, Vol: 15, ISSN: 1553-7404

Journal article

Monzon Manzano E, Justo Sanz R, Fernandez Bello I, Alvarez Roman MT, Martin Salces M, Rivas Pollmar I, Haslam S, Acuna Butta P, Cebanu T, Garcia Barcenilla S, Jimenez Yuste V, Butta Coll Net al., 2019, CHANGES IN THE GLYCOSYLATION PATTERN OF THE PLATELET MEMBRANE MAY BE THE CHANGES IN THE GLYCOSYLATION PATTERN OF THE PLATELET MEMBRANE MAY BE INVOLVED IN THE PATOGENESIS OF THE PRIMARY IMMUNE THROMBOCYTOPENIA, 61st National Congress of the Spanish-Society-of-Hematology-and-Hemotherapy, Publisher: FERRATA STORTI FOUNDATION, Pages: 349-349, ISSN: 0390-6078

Conference paper

North SJ, Botchway K, Doonan J, Lumb FE, Dell A, Harnett W, Haslam SMet al., 2019, Site-specific glycoproteomic characterization of ES-62: The major secreted product of the parasitic worm Acanthocheilonema viteae, Glycobiology, Vol: 29, Pages: 562-571, ISSN: 0959-6658

ES-62 is the major secreted product of the parasitic filarial nematode Acanthocheilonema viteae and has potent anti-inflammatory activities as a consequence of post-translational decoration by phosphorylcholine. Previously we showed that ES-62's phosphorylcholine was attached to N-linked glycans and using fast atom bombardment mass spectrometry, we characterised the structure of the glycans. However, it was unknown at this time which of ES-62's four potential N-glycosylation sites carries the phosphorylcholine-modified glycans. In the present study, we now employ more advanced analytical tools - nano-flow liquid chromatography with high definition electrospray mass spectrometry - to show that phosphorylcholine-modified glycans are found at all four potential N-glycosylation sites. Also, our earlier studies showed up to two phosphorylcholine groups were detected per glycan and we are now able to characterise N-glycans with up to five phosphorylcholine groups. The number per glycan varies in three of the four glycosylation sites and in addition, for the first time, we have detected phosphorylcholine on the N-glycan chitobiose core in addition to terminal GlcNAc. Nevertheless, the majority of phosphorylcholine is detected on terminal GlcNAc, enabling it to interact with the cells and molecules of the immune system. Such expression may explain the potent immunomodulatory effects of a molecule that is considered to have significant therapeutic potential in the treatment of certain human allergic and autoimmune conditions.

Journal article

Blundell PA, Lu D, Dell A, Haslam SM, Pleass RJet al., 2019, Choice of host cell line is essential for the functional glycosylation of the fragment crystallizable (Fc) region of human IgG1 inhibitors of influenza B viruses

<jats:title>Abstract</jats:title><jats:p>Antibodies are glycoproteins that carry a conserved N-linked carbohydrate attached to the Fc, whose presence and fine structure profoundly impacts on their<jats:italic>in vivo</jats:italic>immunogenicity, pharmacokinetics and functional attributes. The host cell line used to produce IgG has a major impact on this glycosylation, as different systems express different glycosylation enzymes and transporters that contribute to the specificity and heterogeneity of the final IgG-Fc glycosylation profile. Here we compare two panels of glycan-adapted IgG1-Fc mutants expressed in either the HEK 293-F or CHO-K1 systems. We show that the types of N-linked glycans between matched pairs of Fc mutants vary significantly, and in particular with respect to sialylation. These cell line effects on glycosylation profoundly influence the ability of the engineered Fcs to interact with either human or pathogen receptors. For example, we describe Fc mutants that potently disrupted influenza B-mediated agglutination of human erythrocytes when expressed in CHO-K1 but not in HEK 293-F cells.</jats:p>

Journal article

Lomax-Browne HJ, Robertson C, Antonopoulos A, Leathem AJC, Haslam SM, Dell A, Dwek MVet al., 2019, Serum IgA1 shows increased levels of α2,6-linked sialic acid in breast cancer., Interface Focus, Vol: 9, Pages: 20180079-20180079, ISSN: 2042-8898

The lectin Helix pomatia agglutinin (HPA) recognizes altered glycosylation in solid cancers and the identification of HPA binding partners in tumour tissue and serum is an important aim. Among the many HPA binding proteins, IgA1 has been reported to be the most abundant in liver metastases. In this study, the glycosylation of IgA1 was evaluated using serum samples from patients with breast cancer (BCa) and the utility of IgA1 glycosylation as a biomarker was assessed. Detailed mass spectrometric structural analysis showed an increase in disialo-biantennary N-linked glycans on IgA1 from BCa patients (p < 0.0001: non-core fucosylated; p = 0.0345: core fucosylated) and increased asialo-Thomsen-Friedenreich antigen (TF) and disialo-TF antigens in the O-linked glycan preparations from IgA1 of cancer patients compared with healthy control individuals. An increase in Sambucus nigra binding was observed, suggestive of increased α2,6-linked sialic acid on IgA1 in BCa. Logistic regression analysis showed HPA binding to IgA1 and tumour size to be significant independent predictors of distant metastases (χ2 13.359; n = 114; p = 0.020) with positive and negative predictive values of 65.7% and 64.6%, respectively. Immunohistochemical analysis of tumour tissue samples showed IgA1 to be detectable in BCa tissue. This report provides a detailed analysis of serum IgA1 glycosylation in BCa and illustrates the potential utility of IgA1 glycosylation as a biomarker for BCa prognostication.

Journal article

Blundell PA, Lu D, Wilkinson M, Dell A, Haslam S, Pleass RJet al., 2019, Insertion of N-Terminal Hinge Glycosylation Enhances Interactions of the Fc Region of Human IgG1 Monomers with Glycan-Dependent Receptors and Blocks Hemagglutination by the Influenza Virus, JOURNAL OF IMMUNOLOGY, Vol: 202, Pages: 1595-1611, ISSN: 0022-1767

Journal article

Long JS, Mistry B, Haslam SM, Barclay WSet al., 2019, Host and viral determinants of influenza A virus species specificity (vol 17, pg 67, 2018), NATURE REVIEWS MICROBIOLOGY, Vol: 17, Pages: 124-124, ISSN: 1740-1526

Journal article

Wang S-S, Gao X, Solar VD, Yu X, Antonopoulos A, Friedman AE, Matich EK, Atilla-Gokcumen GE, Nasirikenari M, Lau JT, Dell A, Haslam SM, Laine RA, Matta KL, Neelamegham Set al., 2018, Thioglycosides Are efficient metabolic decoys of glycosylation that reduce selectin dependent leukocyte adhesion, Cell Chemical Biology, Vol: 25, Pages: 1-14, ISSN: 2451-9448

Metabolic decoys are synthetic analogs of naturally occurring biosynthetic acceptors. These compounds divert cellular biosynthetic pathways by acting as artificial substrates that usurp the activity of natural enzymes. While O-linked glycosides are common, they are only partially effective even at millimolar concentrations. In contrast, we report that N-acetylglucosamine (GlcNAc) incorporated into various thioglycosides robustly truncate cell surface N- and O-linked glycan biosynthesis at 10-100 μM concentrations. The >10-fold greater inhibition is in part due to the resistance of thioglycosides to hydrolysis by intracellular hexosaminidases. The thioglycosides reduce β-galactose incorporation into lactosamine chains, cell surface sialyl Lewis-X expression, and leukocyte rolling on selectin substrates including inflamed endothelial cells under fluid shear. Treatment of granulocytes with thioglycosides prior to infusion into mouse inhibited neutrophil homing to sites of acute inflammation and bone marrow by ∼80%-90%. Overall, thioglycosides represent an easy to synthesize class of efficient metabolic inhibitors or decoys. They reduce N-/O-linked glycan biosynthesis and inflammatory leukocyte accumulation.

Journal article

Giovannone N, Antonopoulos A, Liang J, Sweeney JG, Kudelka MR, King SL, Lee GS, Cummings RD, Dell A, Barthel SR, Widlund HR, Haslam SM, Dimitroff CJet al., 2018, Human B Cell Differentiation Is Characterized by Progressive Remodeling of O-Linked Glycans, FRONTIERS IN IMMUNOLOGY, Vol: 9, ISSN: 1664-3224

Journal article

El Jellas K, Johansson BB, Fjeld K, Antonopoulos A, Immervoll H, Choi MH, Hoem D, Lowe ME, Lombardo D, Njolstad PR, Dell A, Mas E, Haslam SM, Molven Aet al., 2018, The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants, JOURNAL OF BIOLOGICAL CHEMISTRY, Vol: 293, Pages: 19476-19491, ISSN: 0021-9258

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00152616&limit=30&person=true&page=2&respub-action=search.html