Imperial College London

ProfessorSebastianJohnston

Faculty of MedicineNational Heart & Lung Institute

Asthma UK Clinical Chair
 
 
 
//

Contact

 

+44 (0)7931 376 544s.johnston

 
 
//

Assistant

 

Mr Christophe Tytgat +44 (0)20 7594 3849

 
//

Location

 

343Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

753 results found

Dhariwal J, Cameron A, Wong E, Trujillo-Torralbo B, Del Rosario A, Bakhsoliani E, Paulsen M, Jackson D, Hansel TT, Edwards M, Cousins D, Walton RP, Johnston SLet al., 2021, Pulmonary innate lymphoid cell responses during rhinovirus-induced asthma exacerbations, Journal of Allergy and Clinical Immunology, Vol: 204, Pages: 1259-1273, ISSN: 0091-6749

Rationale Type 2 innate lymphoid cells (ILC2s) are significant sources of type 2 cytokines, which are implicated in the pathogenesis of asthma and asthma exacerbations. The role of ILC2s in virus-induced asthma exacerbations is not well-characterized. Objectives To characterize pulmonary ILC responses following experimental rhinovirus challenge in patients with moderate asthma and healthy subjects. Methods Patients with moderate asthma and healthy subjects were inoculated with rhinovirus-16, and underwent bronchoscopy at baseline, day 3 and day 8 post-inoculation. Pulmonary ILC1s and ILC2s were quantified in bronchoalveolar lavage (BAL) using flow cytometry. The ratio of BAL ILC2:ILC1 was assessed to determine their relative contributions to the clinical and immune response to rhinovirus challenge. Measurements and Main Results At baseline, ILC2s were significantly higher in patients with asthma than healthy subjects. At day 8, ILC2s significantly increased from baseline in both groups, which was significantly higher in asthma than in healthy subjects (all comparisons P<0.05). In healthy subjects, ILC1s increased from baseline at day 3 (P=0.001), while in patients with asthma, ILC1s increased from baseline at day 8 (P=0.042). Patients with asthma had significantly higher ILC2:ILC1 ratios at baseline (P=0.024) and day 8 (P=0.005). Increased ILC2:ILC1 ratio in asthma correlated with clinical exacerbation severity and type 2 cytokines in nasal mucosal lining fluid. Conclusions An ILC2-predominant inflammatory profile in asthma was associated with increased severity and duration of rhinovirus infection compared with healthy subjects, supporting the potential role of ILC2s in the pathogenesis of virus-induced asthma exacerbations. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT01773590

Journal article

Delgado-Eckert E, James A, Meier-Girard D, Kupczyk M, Andersson LI, Bossios A, Mikus M, Ono J, Izuhara K, Middelveld R, Dahlen B, Gaga M, Siafakas NM, Papi A, Beghe B, Joos G, Rabe KF, Sterk PJ, Bel EH, Johnston SL, Chanez P, Gjomarkaj M, Howarth PH, Nizankowska-Mogilnicka E, Dahlen S-E, Frey Uet al., 2021, Lung function fluctuation patterns unveil asthma and COPD phenotypes unrelated to type 2 inflammation, JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Vol: 148, Pages: 407-419, ISSN: 0091-6749

Journal article

Kamal F, Kumar S, Edwards MR, Veselkov K, Belluomo I, Kebadze T, Romano A, Trujillo-Torralbo M-B, Shahridan Faiez T, Walton R, Ritchie AI, Wiseman DJ, Laponogov I, Donaldson G, Wedzicha JA, Johnston SL, Singanayagam A, Hanna GBet al., 2021, Virus-induced volatile organic compounds are detectable in exhaled breath during pulmonary infection., American Journal of Respiratory and Critical Care Medicine, Vol: 204, Pages: 1075-1085, ISSN: 1073-449X

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a condition punctuated by acute exacerbations commonly triggered by viral and/or bacterial infection. Early identification of exacerbation trigger is important to guide appropriate therapy but currently available tests are slow and imprecise. Volatile organic compounds (VOCs) can be detected in exhaled breath and have the potential to be rapid tissue-specific biomarkers of infection aetiology. METHODS: We used serial sampling within in vitro and in vivo studies to elucidate the dynamic changes that occur in VOC production during acute respiratory viral infection. Highly sensitive gas-chromatography mass spectrometry (GC-MS) techniques were used to measure VOC production from infected airway epithelial cell cultures and in exhaled breath samples of healthy subjects experimentally challenged with rhinovirus A16 and COPD subjects with naturally-occurring exacerbations. RESULTS: We identified a novel VOC signature comprising of decane and other related long chain alkane compounds that is induced during rhinovirus infection of cultured airway epithelial cells and is also increased in the exhaled breath of healthy subjects experimentally challenged with rhinovirus and of COPD patients during naturally-occurring viral exacerbations. These compounds correlated with magnitude of anti-viral immune responses, virus burden and exacerbation severity but were not induced by bacterial infection, suggesting they represent a specific virus-inducible signature. CONCLUSION: Our study highlights the potential for measurement of exhaled breath VOCs as rapid, non-invasive biomarkers of viral infection. Further studies are needed to determine whether measurement of these signatures could be used to guide more targeted therapy with antibiotic/antiviral agents for COPD exacerbations.

Journal article

Bloom CI, Drake TM, Docherty AB, Lipworth BJ, Johnston SL, Nguyen-Van-Tam JS, Carson G, Dunning J, Harrison EM, Baillie JK, Semple MG, Cullinan P, Openshaw PJM, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Filipe AD, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AY, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, Silva TD, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Fairfield CJ, Knight SR, Mclean KA, Murphy D, Shaw CA, Dalton J, Girvan M, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randal R, Pilgrim J, Prince T, Reynolds W, Ridley PM, Sales D, Shaw VE, Shears RK, Small B, Subramaniam KS, Szemiel A, Taggart A, Tanianis-Hughes J, Thomas J, Trochu E, Tonder LV, Wilcock E, Zhang JE, Flaherty L, Maziere N, Cass E, Carracedo AD, Carlucci N, Holmes A, Massey H, Adeniji K, Agranoff D, Agwuh K, Ail D, Alegria A, Angus B, Ashish A, Atkinson D, Bari S, Barlow G, Barnass S, Barrett N, Bassford C, Baxter D, Beadsworth Met al., 2021, Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK, The Lancet Respiratory Medicine, Vol: 9, Pages: 699-711, ISSN: 2213-2600

BackgroundStudies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use.MethodsWe analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma.Findings75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI

Journal article

Padayachee Y, Flicke S, Linton S, Cafferkey J, Min Kon O, Johnston SL, Ellis AK, Desrosiers M, Turner P, Valenta R, Scadding GKet al., 2021, Review: The nose as a route for therapy. Part 2 Immunotherapy, Frontiers in Allergy, Vol: 2, ISSN: 2673-6101

The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant “reservoir” for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.

Journal article

Laanesoo A, Urgard E, Periyasamy K, Laan M, Bochkov YA, Aab A, Magilnick N, Pooga M, Gern JE, Johnston SL, Coquet JM, Boldin MP, Wengel J, Altraja A, Bochenek G, Jakiela B, Rebane Aet al., 2021, Dual role of the miR-146 family in rhinovirus-induced airway inflammation and allergic asthma exacerbation, CLINICAL AND TRANSLATIONAL MEDICINE, Vol: 11, ISSN: 2001-1326

Journal article

Padayachee Y, Faiez TS, Singanayagam A, Mallia P, Johnston SLet al., 2021, Asthma and viruses: A focus on rhinoviruses and SARS-CoV-2, JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Vol: 147, Pages: 1648-1651, ISSN: 0091-6749

Journal article

Ogal M, Johnston SL, Klein P, Schoop Ret al., 2021, Echinacea reduces antibiotic usage in children through respiratory tract infection prevention: a randomized, blinded, controlled clinical trial, EUROPEAN JOURNAL OF MEDICAL RESEARCH, Vol: 26, ISSN: 0949-2321

Journal article

Collison AM, Sokulsky LA, Kepreotes E, Pereira de Siqueira A, Morten M, Edwards MR, Walton RP, Bartlett NW, Yang M, Nguyen TH, Johnston SL, Foster PS, Mattes Jet al., 2021, miR-122 promotes virus-induced lung disease by targeting SOCS1, JCI Insight, Vol: 6, ISSN: 2379-3708

Virus-induced respiratory tract infections are a major health burden in childhood, and available treatments are supportive rather than disease modifying. Rhinoviruses (RVs), the cause of approximately 80% of common colds, are detected in nearly half of all infants with bronchiolitis and the majority of children with an asthma exacerbation. Bronchiolitis in early life is a strong risk factor for the development of asthma. Here, we found that RV infection induced the expression of miRNA 122 (miR-122) in mouse lungs and in human airway epithelial cells. In vivo inhibition specifically in the lung reduced neutrophilic inflammation and CXCL2 expression, boosted innate IFN responses, and ameliorated airway hyperreactivity in the absence and in the presence of allergic lung inflammation. Inhibition of miR-122 in the lung increased the levels of suppressor of cytokine signaling 1 (SOCS1), which is an in vitro-validated target of miR-122. Importantly, gene silencing of SOCS1 in vivo completely reversed the protective effects of miR-122 inhibition on RV-induced lung disease. Higher miR-122 expression in nasopharyngeal aspirates was associated with a longer time on oxygen therapy and a higher rate of treatment failure in 87 infants hospitalized with moderately severe bronchiolitis. These results suggest that miR-122 promotes RV-induced lung disease via suppression of its target SOCS1 in vivo. Higher miR-122 expression was associated with worse clinical outcomes, highlighting the potential use of anti-miR-122 oligonucleotides, successfully trialed for treatment of hepatitis C, as potential therapeutics for RV-induced bronchiolitis and asthma exacerbations.

Journal article

Johnston SL, 2021, A, B, and C Rhinoviruses: New Knowledge from an Impressive Consortium A Step Forward for Rhinovirus Vaccine Efforts or a Step Back?, AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, Vol: 203, Pages: 786-788, ISSN: 1073-449X

Journal article

Jackson DJ, Kumar K, Johnston SL, 2021, Asthma Exacerbations, Global Atlas of Asthma, Editors: Agache, Akdis, Publisher: European Academy of Allergy and Clinical Immunology, Pages: 205-207

Book chapter

Contoli M, Papi A, Tomassetti L, Rizzo P, Dalla Sega FV, Fortini F, Torsani F, Morandi L, Ronzoni L, Zucchetti O, Pavasini R, Fogagnolo A, Volta CA, Bartlett NW, Johnston SL, Spadaro S, Campo Get al., 2021, Blood Interferon-α Levels and Severity, Outcomes, and Inflammatory Profiles in Hospitalized COVID-19 Patients, FRONTIERS IN IMMUNOLOGY, Vol: 12, ISSN: 1664-3224

Journal article

Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, ARIA groupet al., 2021, Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19, Allergy, Vol: 76, Pages: 735-750, ISSN: 0105-4538

Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1 R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1 R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.

Journal article

Marcellini A, Swieboda D, Guedan A, Farrow SN, Casolari P, Contoli M, Johnston SL, Papi A, Solari Ret al., 2021, Glucocorticoids impair type I IFN signalling and enhance rhinovirus replication, EUROPEAN JOURNAL OF PHARMACOLOGY, Vol: 893, ISSN: 0014-2999

Journal article

Finney L, Glanville N, Farne H, Aniscenko J, Fenwick P, Kemp S, Trujillo Torralbo M, Loo SL, Calderazzo M, Wedzicha J, Mallia P, Bartlett N, Johnston S, Singanayagam Aet al., 2021, Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon, Journal of Allergy and Clinical Immunology, Vol: 147, Pages: 510-519.e5, ISSN: 0091-6749

Background: The mechanisms underlying altered susceptibility and propensity to severe Coronavirus disease 2019 (COVID-19) disease in at-risk groups such as patients with chronic obstructive pulmonary disease (COPD) are poorly understood. Inhaled corticosteroids (ICS) are widely used in COPD but the extent to which these therapies protect or expose patients to risk of severe COVID-19 is unknown. Objective: The aim of this study was to evaluate the effect of ICS upon pulmonary expression of the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme (ACE)-2.Methods: We evaluated the effect of ICS administration upon pulmonary ACE2 expression in vitro in human airway epithelial cell cultures and in vivo in mouse models of ICS administration. Mice deficient in the type I interferon-α/β receptor (Ifnar1−/−) and exogenous interferon-β administration experiments were used to study the functional role of type-I IFN signalling in ACE2 expression. We compared sputum ACE2 expression in patients with COPD stratified according to use or non-use of ICS.ResultsICS administration attenuated ACE2 expression in mice, an effect that was reversed by exogenous interferon-β administration and Ifnar1−/− mice had reduced ACE2 expression, indicating that type I interferon contributes mechanistically to this effect. ICS administration attenuated expression of ACE2 in COPD airway epithelial cell cultures and in mice with elastase-induced COPD-like changes. COPD patients taking ICS also had reduced sputum expression of ACE2 compared to non-ICS users.Conclusion: ICS therapies in COPD reduce expression of the SARS-CoV-2 entry receptor ACE2. This effect may thus contribute to altered susceptibility to COVID-19 in patients with COPD.

Journal article

Heaney LG, Busby J, Hanratty CE, Djukanovic R, Woodcock A, Walker SM, Hardman TC, Arron JR, Choy DF, Bradding P, Brightling CE, Chaudhuri R, Cowan DC, Mansur AH, Fowler SJ, Niven RM, Howarth PH, Lordan JL, Menzies-Gow A, Harrison TW, Robinson DS, Holweg CTJ, Matthews JG, Pavord ID, investigators for the MRC Refractory Asthma Stratification Programmeet al., 2021, Composite type-2 biomarker strategy versus a symptom-risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial, The Lancet Respiratory Medicine, Vol: 9, Pages: 57-68, ISSN: 2213-2600

BACKGROUND: Asthma treatment guidelines recommend increasing corticosteroid dose to control symptoms and reduce exacerbations. This approach is potentially flawed because symptomatic asthma can occur without corticosteroid responsive type-2 (T2)-driven eosinophilic inflammation, and inappropriately high-dose corticosteroid treatment might have little therapeutic benefit with increased risk of side-effects. We compared a biomarker strategy to adjust corticosteroid dose using a composite score of T2 biomarkers (fractional exhaled nitric oxide [FENO], blood eosinophils, and serum periostin) with a standardised symptom-risk-based algorithm (control). METHODS: We did a single-blind, parallel group, randomised controlled trial in adults (18-80 years of age) with severe asthma (at treatment steps 4 and 5 of the Global Initiative for Asthma) and FENO of less than 45 parts per billion at 12 specialist severe asthma centres across England, Scotland, and Northern Ireland. Patients were randomly assigned (4:1) to either the biomarker strategy group or the control group by an online electronic case-report form, in blocks of ten, stratified by asthma control and use of rescue systemic steroids in the previous year. Patients were masked to study group allocation throughout the entirety of the study. Patients attended clinic every 8 weeks, with treatment adjustment following automated treatment-group-specific algorithms: those in the biomarker strategy group received a default advisory to maintain treatment and those in the control group had their treatment adjusted according to the steps indicated by the trial algorithm. The primary outcome was the proportion of patients with corticosteroid dose reduction at week 48, in the intention-to-treat (ITT) population. Secondary outcomes were inhaled corticosteroid (ICS) dose at the end of the study; cumulative dose of ICS during the study; proportion of patients on maintenance oral corticosteroids (OCS) at study end; rate of protocol-defi

Journal article

Coultas JA, Cafferkey J, Mallia P, Johnston SLet al., 2021, Experimental Antiviral Therapeutic Studies for Human Rhinovirus Infections., J Exp Pharmacol, Vol: 13, Pages: 645-659, ISSN: 1179-1454

Rhinovirus infection is common and usually causes mild, self-limiting upper respiratory tract symptoms. Rhinoviruses can cause exacerbation of chronic respiratory diseases, such as asthma or chronic obstructive pulmonary disease, leading to a significant burden of morbidity and mortality. There has been a great deal of progress in efforts to understand the immunological basis of rhinovirus infection. However, despite a number of in vitro and in vivo attempts, there have been no effective treatments developed. This review article summarises the up to date virological and immunological understanding of these infections. We discuss the challenges researchers face, and key solutions, in their work to investigate potential therapies including in vivo rhinovirus challenge studies. Finally, we explore past and present experimental therapeutic strategies employed in the treatment of rhinovirus infections and highlight promising areas of future work.

Journal article

McErlean P, Kelly A, Dhariwal J, Kirtland M, Watson J, Ranz I, Smith J, Saxena A, Cousins DJ, Van Oosterhout A, Solari R, Edwards MR, Johnston SL, Lavender Pet al., 2020, Profiling of H3K27Ac reveals the influence of asthma on the epigenome of the airway epithelium, Frontiers in Genetics, Vol: 11, Pages: 1-12, ISSN: 1664-8021

Background: Asthma is a chronic airway disease driven by complex genetic–environmental interactions. The role of epigenetic modifications in bronchial epithelial cells (BECs) in asthma is poorly understood.Methods: We piloted genome-wide profiling of the enhancer-associated histone modification H3K27ac in BECs from people with asthma (n = 4) and healthy controls (n = 3).Results: We identified n = 4,321 (FDR < 0.05) regions exhibiting differential H3K27ac enrichment between asthma and health, clustering at genes associated predominately with epithelial processes (EMT). We identified initial evidence of asthma-associated Super-Enhancers encompassing genes encoding transcription factors (TP63) and enzymes regulating lipid metabolism (PTGS1). We integrated published datasets to identify epithelium-specific transcription factors associated with H3K27ac in asthma (TP73) and identify initial relationships between asthma-associated changes in H3K27ac and transcriptional profiles. Finally, we investigated the potential of CRISPR-based approaches to functionally evaluate H3K27ac-asthma landscape in vitro by identifying guide-RNAs capable of targeting acetylation to asthma DERs and inducing gene expression (TLR3).Conclusion: Our small pilot study validates genome-wide approaches for deciphering epigenetic mechanisms underlying asthma pathogenesis in the airways.

Journal article

Bousquet J, Cristol J-P, Czarlewski W, Anto JM, Martineau A, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Fiocchi A, Canonica GW, Fonseca JA, Vidal A, Choi H-J, Kim HJ, Le Moing V, Reynes J, Sheikh A, Akdis CA, Zuberbier T, Abdul Latiff AH, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis CA, Akdis M, Al-Ahmad M, Al-Zahab Bassam A, Alburdan H, Aldrey-Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi-Maesano I, Ansotegui IJ, Anto JM, Ara Bardajo P, Arasi S, Arrais M, Arshad H, Artesani M-C, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrovic N, Bakakos P, Bakeyala Mongono S, Balotro-Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Basagana X, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghe B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea E-C, Bergmann K-C, Bernardini R, Bernstein D, Bewick M, Bialek S, Bialoszewski A, Bieber T, Billo NE, Bilo M-B, Bindslev-Jensen C, Bjermer L, Blain H, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic-Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L-P, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabanas M-T, Bush A, Busse WW, Buters J, Caballero-Fonseca F, Calderon MA, Calvo M, Camargos P, Camuzat T, Canevari FR, Cano A, Canonica GW, Capriles-Hulett A, Caraballo L, Cardona V, Carlsen K-H, Carmona Pirez J, Caro J, Carr W, Carreiro-Martins P, Carreon-Asuncion F, Carriazo A-M, Carrion y Ribas C, Casale T, Castor M-A, Castro E, Caviglia AG, Cecchi L, Cepeda Sarabia A, Chalubinski M, Chandrasekharan R, Chang Y-S, Chato-Andeza V, Chatzi L, Chatzidaki C, Chavannes NH, Chaves Loureiro C, Chavez Garcia A-A, Chelninska M, Chen Y, Cheng L, Chinthrajah S, Chivato T, Chkhartishvili E, Christoff G, Chrystyn H, Chu DK, Chua A, Chuchalin A, Chung KF, Ciceran A, Cingi C, Ciprandi G, Cirule I, Coelhoet al., 2020, Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies, Clinical and Translational Allergy, Vol: 10, Pages: 1-18, ISSN: 2045-7022

There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.

Journal article

Williams TC, Jackson DJ, Maltby S, Walton RP, Ching Y-M, Glanville N, Singanayagam A, Brewins JJ, Clarke D, Hirsman AG, Loo S-L, Wei L, Beale JE, Casolari P, Caramori G, Papi A, Belvisi M, Wark PAB, Johnston SL, Edwards MR, Bartlett NWet al., 2020, Rhinovirus-induced CCL17 and CCL22 in asthma exacerbations and differential regulation by STAT6., American Journal of Respiratory Cell and Molecular Biology, Vol: 64, Pages: 344-356, ISSN: 1044-1549

The interplay of type-2 inflammation and anti-viral immunity underpins asthma exacerbation pathogenesis. Virus infection induces type-2 inflammation-promoting chemokines CCL17 and CCL22 in asthma, however mechanisms regulating induction are poorly understood. By using a human rhinovirus (RV) challenge model in human airway epithelial cells in vitro and mice in vivo, we assessed mechanisms regulating CCL17 and CCL22 expression. Subjects with mild-to-moderate asthma and healthy volunteers were experimentally infected with RV and airway CCL17 and CCL22 protein quantified. In vitro airway epithelial cell- and mouse-RV infection models were then employed to define STAT6- and NF-κB-mediated regulation of CCL17 and CCL22 expression. Following RV infection, CCL17 and CCL22 expression was higher in asthma, which differentially correlated with clinical and immunological parameters. Air-liquid interface (ALI) differentiated primary epithelial cells from donors with asthma also expressed higher levels of RV-induced CCL22. RV infection boosted type-2 cytokine-induced STAT6 activation. In epithelial cells, type-2 cytokines and STAT6 activation had differential effects on chemokine expression: increasing CCL17 and suppressing CCL22, whereas NF-κB promoted expression of both chemokines. In mice, RV infection activated pulmonary STAT6 which was required for CCL17, but not CCL22 expression. STAT6-knockout mice infected with RV expressed increased levels of NF-kB-regulated chemokines, which was associated with rapid viral clearance. Therefore, RV-induced upregulation of CCL17 and CCL22 was mediated by NF-κB activation, whereas expression was differentially regulated by STAT6. Together, findings suggest therapeutic targeting of type-2-STAT6 activation alone will not block all inflammatory pathways during RV infection in asthma.

Journal article

Singanayagam A, Johnston SL, 2020, Long-term impact of inhaled corticosteroid use in asthma and chronic obstructive pulmonary disease (COPD): Review of mechanisms that underlie risks, JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, Vol: 146, Pages: 1292-1294, ISSN: 0091-6749

Journal article

Bardin PG, Johnston SL, 2020, Attenuating COVID-19 infection and inflammation: Lessons from asthma, RESPIROLOGY, Vol: 25, Pages: 1233-1234, ISSN: 1323-7799

Journal article

Johnston SL, McKay PF, Kebadze T, Hu K, Samnuan K, Aniscenko J, Cameron A, Patel N, Randell P, Shattock RJ, Edwards MRet al., 2020, Evaluation of the Abbott Architect, Roche Elecsys and Virtus S1 SARS-CoV-2 antibody tests in community-managed COVID-19 cases

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Antibody testing can help define how protective immunity to SARS-CoV-2 is and how long this immunity lasts. Many antibody tests have been evaluated in hospitalised rather than community based COVID-19 cases. Virtus Respiratory Research Ltd (Virtus) has developed its own quantitative IgM and IgG SARS CoV-2 antibody assay. We report its validation and performance characteristics and compare its performance with the Abbott Architect and Roche Elecsys assays in community COVID cases.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We developed a quantitative antibody test to detect IgM and IgG to the SARS-CoV-2 S1 spike protein (the Virtus test) and validated this test in 107 “true positive” sera from 106 community-managed and 1 hospitalised COVID-19 cases and 208 “true negative” serum samples. We validated the Virtus test against a neutralising antibody test. We determined sensitivities of the Abbott test in the 107 true positive samples and the Roche test in a subset of 75 true positive samples.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The Virtus quantitative test was positive in 93 of 107 (87%) community cases of COVID-19 and both IgM and IgG levels correlated strongly with neutralising antibody titres (r=0.75 for IgM, r=0.71 for IgG, <jats:italic>P</jats:italic>&lt;0.0001 for both antibodies). The specificity of the Virtus test was 98.6% for low level antibody positives, 99.5% for moderate positives and 100% for high or very high positives. The Abbott test had a sensitivity of 68%. In the 75 sample subset, the Virtus test was positive in 91%, the Roche test in 69%.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The Abbott and R

Journal article

Zhu J, Mallia P, Footitt J, Yusheng Q, Message SD, Kebadze T, Aniscenko J, Barnes PJ, Adcock I, Kon OM, Johnson M, Contoli M, Stanciu L, Papi A, Jeffery PK, Johnston Set al., 2020, Bronchial mucosal inflammation and illness severity in response to experimental rhinovirus infection in COPD, Journal of Allergy and Clinical Immunology, Vol: 146, Pages: 840-850.e7, ISSN: 0091-6749

BackgroundRespiratory viral infection causes chronic obstructive pulmonary disease (COPD) exacerbations. We previously reported increased bronchial mucosa eosinophil and neutrophil inflammation in patients with COPD experiencing naturally occurring exacerbations. But it is unclear whether virus per se induces bronchial mucosal inflammation, nor whether this relates to exacerbation severity.ObjectivesWe sought to determine the extent and nature of bronchial mucosal inflammation following experimental rhinovirus (RV)-16–induced COPD exacerbations and its relationship to disease severity.MethodsBronchial mucosal inflammatory cell phenotypes were determined at preinfection baseline and following experimental RV infection in 17 Global Initiative for Chronic Obstructive Lung Disease stage II subjects with COPD and as controls 20 smokers and 11 nonsmokers with normal lung function. No subject had a history of asthma/allergic rhinitis: all had negative results for aeroallergen skin prick tests.ResultsRV infection increased the numbers of bronchial mucosal eosinophils and neutrophils only in COPD and CD8+ T lymphocytes in patients with COPD and nonsmokers. Monocytes/macrophages, CD4+ T lymphocytes, and CD20+ B lymphocytes were increased in all subjects. At baseline, compared with nonsmokers, subjects with COPD and smokers had increased numbers of bronchial mucosal monocytes/macrophages and CD8+ T lymphocytes but fewer numbers of CD4+ T lymphocytes and CD20+ B lymphocytes. The virus-induced inflammatory cells in patients with COPD were positively associated with virus load, illness severity, and reductions in lung function.ConclusionsExperimental RV infection induces bronchial mucosal eosinophilia and neutrophilia only in patients with COPD and monocytes/macrophages and lymphocytes in both patients with COPD and control subjects. The virus-induced inflammatory cell phenotypes observed in COPD positively related to virus load and illness severity. Antiviral/anti-inflamma

Journal article

Farne H, Kumar K, Ritchie AI, Finney LJ, Johnston SL, Singanayagam Aet al., 2020, Repurposing existing drugs for the treatment of COVID-19, Annals of the American Thoracic Society, Vol: 17, Pages: 1186-1194, ISSN: 1546-3222

The rapid global spread and significant mortality associated with the coronavirus disease (COVID-19) caused by SARS-CoV-2 viral infection has spurred an urgent race to find effective treatments. Repurposing existing drugs is a particularly attractive approach as pharmacokinetic and safety data already exist, thus development can leapfrog straight to clinical trials of efficacy, generating results far more quickly than de novo drug development. This review summarizes the state of play for the principle drugs identified as candidates to be repurposed for treating COVID-19 grouped by broad mechanism of action: antiviral, immune enhancing, and anti-inflammatory or immunomodulatory. Patient selection, particularly with regard to disease stage, is likely to be key. To date only dexamethasone and remedesivir have been shown to be effective, but several other promising candidates are in trials.

Journal article

Riggioni C, Comberiati P, Giovannini M, Agache I, Akdis M, Alves-Correia M, Antó JM, Arcolaci A, Kursat Azkur A, Azkur D, Beken B, Boccabella C, Bousquet J, Breiteneder H, Carvalho D, De Las Vecillas L, Diamant Z, Eguiluz-Gracia I, Eiwegger T, Eyerich S, Fokkens W, Gao Y-D, Hannachi F, Johnston SL, Jutel M, Karavelia A, Klimek L, Moya B, Nadeau K, O'Hehir R, O'Mahony L, Pfaar O, Sanak M, Schwarze J, Sokolowska M, Torres MJ, van de Veen W, van Zelm MC, Wang DY, Zhang L, Jiménez-Saiz R, Akdis CAet al., 2020, A compendium answering 150 questions on COVID-19 and SARS-CoV-2., Allergy, Vol: 75, Pages: 2503-2541, ISSN: 0105-4538

In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date it has resulted in ~6.5 million confirmed cases and caused almost 400,000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socio-economic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thrombo-embolic complications and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19 and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development and epidemiology. Over 140 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.

Journal article

Kamal F, Glanville N, Xia W, Bakhsoliani E, Aniscenko J, Bartlett NW, Edwards MR, Johnston SL, Singanayagam Aet al., 2020, Beclomethasone has lesser suppressive effects on inflammation and anti-bacterial immunity than Fluticasone or Budesonide in experimental infection models., Chest, Vol: 158, Pages: 947-951, ISSN: 0012-3692

Journal article

Kumar K, Losa F, Kebadze T, Del Giacco S, Mallia P, Singanayagam A, Edwards MR, Johnston SLet al., 2020, Differences in induction of asthma-relevant pro-inflammatory mediators by β2-agonists and muscarinic antagonists in human bronchial epithelial cells, European-Academy-of-Allergology-and-Clinical-Immunology Digital Congress (EAACI), Publisher: WILEY, Pages: 163-164, ISSN: 0105-4538

Conference paper

Kumar K, Singanayagam A, Johnston SL, 2020, Respiratory Virus Infections in Asthma: Research Developments and Therapeutic Advances., Acta Med Acad, Vol: 49, Pages: 130-143

In this review, we discuss the latest developments in research pertaining to virus-induced asthma exacerbations and consider recent advances in treatment options. Asthma is a chronic disease of the airways that continues to impose a substantial clinical burden worldwide. Asthma exacerbations, characterised by an acute deterioration in respiratory symptoms and airflow obstruction, are associated with significant morbidity and mortality. These episodes are most commonly triggered by respiratory virus infections. The mechanisms underlying the pathogenesis of virus-induced exacerbations have been the focus of extensive biomedical research. Developing a robust understanding of the interplay between respiratory viruses and the host immune response will be critical for developing more efficacious, targeted therapies for exacerbations. CONCLUSION: There has been significant recent progress in our understanding of the mechanisms underlying virus-induced airway inflammation in asthma and these advances will underpin the development of future clinical therapies.

Journal article

Johnston SL, 2020, Asthma and COVID-19: is asthma a risk factor for severe outcomes?, Allergy, Vol: 75, Pages: 1543-1545, ISSN: 0105-4538

When I first read the manuscript that accompanies this editorial, upon its online publication on February 19th 2020(1), COVID-19 had already killed 2118 people in China, but only one person in Europe - an 80-year-old tourist from China, who died in France on the 15th February. I read the manuscript with grim fascination, as it was clear that SARS-CoV-2 had spread very rapidly in China which already had 74,576 cases and in South Korea which already had 58 cases, and that it was then invading Europe also, as France already had 12 cases, Germany 16, the UK 9, Italy 3, Spain 2 and other countries too.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00173317&limit=30&person=true&page=2&respub-action=search.html