Imperial College London

ProfessorSergeyLebedev

Faculty of Natural SciencesDepartment of Physics

Professor of Plasma Physics
 
 
 
//

Contact

 

+44 (0)20 7594 7748s.lebedev Website

 
 
//

Location

 

743Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Rigby:2018:10.1038/s41567-018-0059-2,
author = {Rigby, A and Cruz, F and Albertazzi, B and Bamford, R and Bell, AR and Cross, JE and Fraschetti, F and Graham, P and Hara, Y and Kozlowski, PM and Kuramitsu, Y and Lamb, DQ and Lebedev, S and Marques, JR and Miniati, F and Morita, T and Oliver, M and Reville, B and Sakawa, Y and Sarkar, S and Spindloe, C and Trines, R and Tzeferacos, P and Silva, LO and Bingham, R and Koenig, M and Gregori, G},
doi = {10.1038/s41567-018-0059-2},
journal = {Nature Physics},
pages = {475--479},
title = {Electron acceleration by wave turbulence in a magnetized plasma},
url = {http://dx.doi.org/10.1038/s41567-018-0059-2},
volume = {14},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ 1-3 . Strong shocks are expected to accelerate particles to very high energies 4-6 ; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool 7,8 . Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible.
AU - Rigby,A
AU - Cruz,F
AU - Albertazzi,B
AU - Bamford,R
AU - Bell,AR
AU - Cross,JE
AU - Fraschetti,F
AU - Graham,P
AU - Hara,Y
AU - Kozlowski,PM
AU - Kuramitsu,Y
AU - Lamb,DQ
AU - Lebedev,S
AU - Marques,JR
AU - Miniati,F
AU - Morita,T
AU - Oliver,M
AU - Reville,B
AU - Sakawa,Y
AU - Sarkar,S
AU - Spindloe,C
AU - Trines,R
AU - Tzeferacos,P
AU - Silva,LO
AU - Bingham,R
AU - Koenig,M
AU - Gregori,G
DO - 10.1038/s41567-018-0059-2
EP - 479
PY - 2018///
SN - 1745-2473
SP - 475
TI - Electron acceleration by wave turbulence in a magnetized plasma
T2 - Nature Physics
UR - http://dx.doi.org/10.1038/s41567-018-0059-2
UR - http://hdl.handle.net/10044/1/59190
VL - 14
ER -