Publications
744 results found
Li C, Jang J, Badloe T, et al., 2023, Arbitrarily structured quantum emission with a multifunctional metalens, eLight, Vol: 3, ISSN: 2097-1710
Structuring light emission from single-photon emitters (SPEs) in multiple degrees of freedom is of great importance for quantum information processing towards higher dimensions. However, traditional control of emission from quantum light sources relies on the use of multiple bulky optical elements or nanostructured resonators with limited functionalities, constraining the potential of multi-dimensional tailoring. Here we introduce the use of an ultrathin polarisation-beam-splitting metalens for the arbitrary structuring of quantum emission at room temperature. Owing to the complete and independent polarisation and phase control at the single meta-atom level, the designed metalens enables simultaneous mapping of quantum emission from ultra-bright defects in hexagonal boron nitride and imprinting of an arbitrary wavefront onto orthogonal polarisation states of the sources. The hybrid quantum metalens enables simultaneous manipulation of multiple degrees of freedom of a quantum light source, including directionality, polarisation, and orbital angular momentum. This could unleash the full potential of solid-state SPEs for their use as high-dimensional quantum sources for advanced quantum photonic applications.
Ben-Jaber S, Glass D, Brick T, et al., 2023, Photo-induced enhanced Raman spectroscopy as a probe for photocatalytic surfaces., Philos Trans A Math Phys Eng Sci, Vol: 381
Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (Vo) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following Vo formation and healing kinetics. This work establishes comparison between PIERS and Vo-induced SERS approaches in defected noble-metal-free titanium dioxide (TiO2-x) films to further confirm the role of Vo in PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum annealing and argon etching), correlation of Vo kinetics and distribution could be established. A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic materials are also presented. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Gryb D, Wendisch FJ, Aigner A, et al., 2023, Two-Dimensional Chiral Metasurfaces Obtained by Geometrically Simple Meta-atom Rotations., Nano Lett
Two-dimensional chiral metasurfaces seem to contradict Lord Kelvin's geometric definition of chirality since they can be made to coincide by performing rotational operations. Nevertheless, most planar chiral metasurface designs often use complex meta-atom shapes to create flat versions of three-dimensional helices, although the visual appearance does not improve their chiroptical response but complicates their optimization and fabrication due to the resulting large parameter space. Here we present one of the geometrically simplest two-dimensional chiral metasurface platforms consisting of achiral dielectric rods arranged in a square lattice. Chirality is created by rotating the individual meta-atoms, making their arrangement chiral and leading to chiroptical responses that are stronger or comparable to more complex designs. We show that resonances depending on the arrangement are robust against geometric variations and behave similarly in experiments and simulations. Finally, we explain the origin of chirality and behavior of our platform by simple considerations of the geometric asymmetry and gap size.
Beddoe M, Gölz T, Barkey M, et al., 2023, Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: A proof-of-principle study., Acta Biomater, Vol: 168, Pages: 309-322
The preservation of oral health over a person's lifespan is a key factor for a high quality of life. Sustaining oral health requires high-end dental materials with a plethora of attributes such as durability, non-toxicity and ease of application. The combination of different requirements leads to increasing miniaturization and complexity of the material components such as the composite and adhesives, which makes the precise characterization of the material blend challenging. Here, we demonstrate how modern IR spectroscopy and imaging from the micro- to the nanoscale can provide insights on the chemical composition of the different material sections of a dental filling. We show how the recorded IR-images can be used for a fast and non-destructive porosity determination of the studied adhesive. Furthermore, the nanoscale study allows precise assessment of glass cluster structures and distribution within their characteristic organically modified ceramic (ORMOCER) matrix and an assessment of the interface between the composite and adhesive material. For the study we used a Fourier-Transform-IR (FTIR) microscope and a quantum cascade laser-based IR-microscope (QCL-IR) for the microscale analysis and a scattering-type scanning near-field optical microscopy (s-SNOM) for the nanoscale analysis. The paper ends with an in-depth discussion of the strengths and weaknesses of the different imaging methods to give the reader a clear picture for which scientific question the microscopes are best suited for. STATEMENT OF SIGNIFICANCE: Modern resin-based composites for dental restoration are complex multi-compound materials. In order to improve these high-end materials, it is important to investigate the molecular composition and morphology of the different parts. An emergent method to characterize these materials is infrared spectroscopic imaging, which combines the strength of infrared spectroscopy and an imaging approach known from optical microscopy. In this work, three state of
Sortino L, Gülmüs M, Tilmann B, et al., 2023, Radiative suppression of exciton-exciton annihilation in a two-dimensional semiconductor., Light Sci Appl, Vol: 12
Two-dimensional (2D) semiconductors possess strongly bound excitons, opening novel opportunities for engineering light-matter interaction at the nanoscale. However, their in-plane confinement leads to large non-radiative exciton-exciton annihilation (EEA) processes, setting a fundamental limit for their photonic applications. In this work, we demonstrate suppression of EEA via enhancement of light-matter interaction in hybrid 2D semiconductor-dielectric nanophotonic platforms, by coupling excitons in WS2 monolayers with optical Mie resonances in dielectric nanoantennas. The hybrid system reaches an intermediate light-matter coupling regime, with photoluminescence enhancement factors up to 102. Probing the exciton ultrafast dynamics reveal suppressed EEA for coupled excitons, even under high exciton densities >1012 cm-2. We extract EEA coefficients in the order of 10-3, compared to 10-2 for uncoupled monolayers, as well as a Purcell factor of 4.5. Our results highlight engineering the photonic environment as a route to achieve higher quantum efficiencies, for low-power hybrid devices, and larger exciton densities, towards strongly correlated excitonic phases in 2D semiconductors.
Tilmann B, Huq T, Possmayer T, et al., 2023, Comparison of Harmonic Generation from Crystalline and Amorphous Gallium Phosphide Nanofilms, Advanced Optical Materials, Vol: 11
Gallium phosphide (GaP) is a promising material for nanophotonics, given its large refractive index and a transparency over most of the visible spectrum. However, since easy phase-matching is not possible with bulk GaP, a comprehensive study of its nonlinear optical properties for harmonic generation, especially when grown as thin films, is still missing. Here, second harmonic generation is studied from epitaxially grown GaP thin films, demonstrating that the absolute conversion efficiencies are comparable to a bulk wafer over the pump wavelength range from 1060 to 1370 nm. Furthermore, the results are compared to nonlinear simulations, and the second order nonlinear susceptibility is extracted, showing a similar dispersion and magnitude to that of the bulk material. Furthermore, the third order nonlinear susceptibility of amorphous GaP thin films is extracted from third harmonic generation to be more than one order of magnitude larger than that of the crystalline material, and generation of up to the fifth harmonic is reported. The results show the potential of crystalline and amorphous thin films for nonlinear optics with nanoantennas and metasurfaces, particularly in the visible to near infrared part of the spectrum.
Katzmarek DA, Mancini A, Maier SA, et al., 2023, Direct synthesis of nanopatterned epitaxial graphene on silicon carbide., Nanotechnology, Vol: 34
This article introduces a straightforward approach for the direct synthesis of transfer-free, nanopatterned epitaxial graphene on silicon carbide on silicon substrates. A catalytic alloy tailored to optimal SiC graphitization is pre-patterned with common lithography and lift-off techniques to form planar graphene structures on top of an unpatterned SiC layer. This method is compatible with both electron-beam lithography and UV-lithography, and graphene gratings down to at least ∼100 nm width/space can be realized at the wafer scale. The minimum pitch is limited by the flow of the metal catalyst during the liquid-phase graphitization process. We expect that the current pitch resolution could be further improved by optimizing the metal deposition method and lift-off process.
Lv J, Wu Y, Liu J, et al., 2023, Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes., Nat Commun, Vol: 14
Photonic crystals (PhCs) are a kind of artificial structures that can mold the flow of light at will. Polaritonic crystals (PoCs) made from polaritonic media offer a promising route to controlling nano-light at the subwavelength scale. Conventional bulk PhCs and recent van der Waals PoCs mainly show highly symmetric excitation of Bloch modes that closely rely on lattice orders. Here, we experimentally demonstrate a type of hyperbolic PoCs with configurable and low-symmetry deep-subwavelength Bloch modes that are robust against lattice rearrangement in certain directions. This is achieved by periodically perforating a natural crystal α-MoO3 that hosts in-plane hyperbolic phonon polaritons. The mode excitation and symmetry are controlled by the momentum matching between reciprocal lattice vectors and hyperbolic dispersions. We show that the Bloch modes and Bragg resonances of hyperbolic PoCs can be tuned through lattice scales and orientations while exhibiting robust properties immune to lattice rearrangement in the hyperbolic forbidden directions. Our findings provide insights into the physics of hyperbolic PoCs and expand the categories of PhCs, with potential applications in waveguiding, energy transfer, biosensing and quantum nano-optics.
Gargiulo J, Herran M, Violi IL, et al., 2023, Impact of bimetallic interface design on heat generation in plasmonic Au/Pd nanostructures studied by single-particle thermometry., Nat Commun, Vol: 14
Localized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis. Bimetallic nanoparticles combining plasmonic with catalytic metals are raising increasing interest in artificial photosynthesis and the production of solar fuels. Here, we perform single-particle thermometry measurements to investigate the link between morphology and light-to-heat conversion of colloidal Au/Pd nanoparticles with two different configurations: core-shell and core-satellite. It is observed that the inclusion of Pd as a shell strongly reduces the photothermal response in comparison to the bare cores, while the inclusion of Pd as satellites keeps photothermal properties almost unaffected. These results contribute to a better understanding of energy conversion processes in plasmon-assisted catalysis.
Weber T, Kühner L, Sortino L, et al., 2023, Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces., Nature Materials, Vol: 22, Pages: 970-976, ISSN: 1476-1122
Photonic bound states in the continuum (BICs) provide a standout platform for strong light-matter coupling with transition metal dichalcogenides (TMDCs) but have so far mostly been implemented as traditional all-dielectric metasurfaces with adjacent TMDC layers, incurring limitations related to strain, mode overlap and material integration. Here, we demonstrate intrinsic strong coupling in BIC-driven metasurfaces composed of nanostructured bulk tungsten disulfide (WS2) and exhibiting resonances with sharp, tailored linewidths and selective enhancement of light-matter interactions. Tuning of the BIC resonances across the exciton resonance in bulk WS2 is achieved by varying the metasurface unit cells, enabling strong coupling with an anticrossing pattern and a Rabi splitting of 116 meV. Crucially, the coupling strength itself can be controlled and is shown to be independent of material-intrinsic losses. Our self-hybridized metasurface platform can readily incorporate other TMDCs or excitonic materials to deliver fundamental insights and practical device concepts for polaritonic applications.
Berger LM, Duportal M, Menezes LDS, et al., 2023, Improved In Situ Characterization of Electrochemical Interfaces Using Metasurface-Driven Surface-Enhanced IR Absorption Spectroscopy, Advanced Functional Materials, Vol: 33, ISSN: 1616-301X
Electrocatalysis plays a crucial role in realizing the transition toward a zero-carbon future, driving research directions from green hydrogen generation to carbon dioxide reduction. Surface-enhanced infrared absorption spectroscopy (SEIRAS) is a suitable method for investigating electrocatalytic processes because it can monitor with chemical specificity the mechanisms of the reactions. However, it remains difficult to detect many relevant aspects of electrochemical reactions such as short-lived intermediates. Herein, an integrated nanophotonic-electrochemical SEIRAS platform is developed and experimentally realized for the in situ investigation of molecular signal traces emerging during electrochemical experiments. A platinum nano-slot metasurface featuring strongly enhanced electromagnetic near fields is implemented and spectrally targets the weak vibrational mode of the adsorbed carbon monoxide at ≈2033 cm−1. The metasurface-driven resonances can be tuned over a broad range in the mid-infrared spectrum and provide high molecular sensitivity. Compared to conventional unstructured platinum films, this nanophotonic-electrochemical platform delivers a 27-fold improvement of the experimentally detected characteristic absorption signals, enabling the detection of new species with weak signals, fast conversions, or low surface concentrations. By providing a deeper understanding of catalytic reactions, the nanophotonic-electrochemical platform is anticipated to open exciting perspectives for electrochemical SEIRAS, surface-enhanced Raman spectroscopy, and other fields of chemistry such as photoelectrocatalysis.
Lin T, Yang T, Cai Y, et al., 2023, Transformation-optics-designed plasmonic singularities for efficient photocatalytic hydrogen evolution at metal/semiconductor interfaces, Nano Letters: a journal dedicated to nanoscience and nanotechnology, Vol: 23, Pages: 5288-5296, ISSN: 1530-6984
Inspired by transformation optics, we propose a new concept for plasmonic photocatalysis by creating a novel hybrid nanostructure with a plasmonic singularity. Our geometry enables broad and strong spectral light harvesting at the active site of a nearby semiconductor where the chemical reaction occurs. A proof-of-concept nanostructure comprising Cu2ZnSnS4 (CZTS) and Au-Au dimer (t-CZTS@Au-Au) is fabricated via a colloidal strategy combining templating and seeded growth. On the basis of numerical and experimental results of different related hybrid nanostructures, we show that both the sharpness of the singular feature and the relative position to the reactive site play a pivotal role in optimizing photocatalytic activity. Compared with bare CZTS, the hybrid nanostructure (t-CZTS@Au-Au) exhibits an enhancement of the photocatalytic hydrogen evolution rate by up to ∼9 times. The insights gained from this work might be beneficial for designing efficient composite plasmonic photocatalysts for diverse photocatalytic reactions.
Doiron B, Li Y, Bower R, et al., 2023, Optimizing hot electron harvesting at planar metal–semiconductor interfaces with titanium oxynitride thin films, ACS Applied Materials and Interfaces, Vol: 25, Pages: 30417-30426, ISSN: 1944-8244
Understanding metal-semiconductor interfaces is critical to the advancement of photocatalysis and sub-bandgap solar energy harvesting where electrons in the metal can be excited by sub-bandgap photons and extracted into the semiconductor. In this work, we compare the electron extraction efficiency across Au/TiO2 and titanium oxynitride (TiON)/TiO2-x interfaces, where in the latter case the spontaneously forming oxide layer (TiO2-x) creates a metal-semiconductor contact. Time-resolved pump-probe spectroscopy is used to study the electron recombination rates in both cases. Unlike the nanosecond recombination lifetimes in Au/TiO2, we find a bottleneck in the electron relaxation in the TiON system, which we explain using a trap-mediated recombination model. Using this model, we investigate the tunability of the relaxation dynamics with oxygen content in the parent film. The optimized film (TiO0.5N0.5) exhibits the highest carrier extraction efficiency (NFC ≈ 2.8 × 1019 m-3), slowest trapping, and an appreciable hot electron population reaching the surface oxide (NHE ≈ 1.6 × 1018 m-3). Our results demonstrate the productive role oxygen can play in enhancing electron harvesting and prolonging electron lifetimes, providing an optimized metal-semiconductor interface using only the native oxide of titanium oxynitride.
Pessoa AR, Galindo JAO, Dos Santos LF, et al., 2023, Correction Due to Nonthermally Coupled Emission Bands and Its Implications on the Performance of Y<inf>2</inf>O<inf>3</inf>:Yb<sup>3+</sup>/Er<sup>3+</sup>Single-Particle Thermometers, Journal of Physical Chemistry C, Vol: 127, Pages: 9673-9680, ISSN: 1932-7447
Lanthanide-doped single dielectric nanoparticles have been exploited toward the realization of temperature sensing in the nanoscale with high spatial, temporal, and thermal resolution. However, due to the relatively small number of emitters when compared with suspensions or powders, the luminescence readouts in individual nanocrystals usually require higher excitation power densities to keep an acceptable signal-to-noise ratio. Since in numerous cases these thermometers work by exploiting upconversion excitation pathways, higher excitation powers can lead to higher-order photon emissions that can overlap with the luminescent bands used to perform the temperature measurements. This work shows that the performance and the characterization of ∼400 nm Y2O3: Yb3+/Er3+ single-particle thermometers vary depending on the excitation irradiance if higher-order spectrally overlapping bands are not properly taken into account. We apply a recently developed method to separate these bands based on their different power-law, without the need for multiple wavelength excitation, resulting in a correction procedure that reduces the temperature readout uncertainty from 0.6 to 0.3 K in the specific case of the thermometer investigated in this work. Additionally, power-excitation-related thermal artifacts on the order of 10 °C were detected and corrected with the presented method.
Oulton R, 2023, Emission enhancement of erbium in a reverse nanofocusing waveguide, Nature Communications, Vol: 14, Pages: 1-10, ISSN: 2041-1723
Since Purcell’s seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic antennas offer excellent control but only over a limited spectral range. Strategies to mutually tune and match emission and resonator frequency are often required, which is intricate and precludes the possibility of enhancing multiple transitions simultaneously. In this letter, we report a strong radiative emission rate enhancement of Er3+-ions across the telecommunications C-band in a single plasmonic waveguide based on the Purcell effect. Our gap waveguide uses a reverse nanofocusing approach to efficiently enhance, extract and guide emission from the nanoscale to a photonic waveguide while keeping plasmonic losses at a minimum. Remarkably, the large and broadband Purcell enhancement allows us to resolve Stark-split electric dipole transitions, which are typically only observed under cryogenic conditions. Simultaneous radiative emission enhancement of multiple quantum states is of great interest for photonic quantum networks and on-chip data communications.
Bragas AV, Maier SA, Boggiano HD, et al., 2023, Nanomechanics with plasmonic nanoantennas: ultrafast and local exchange between electromagnetic and mechanical energy, Journal of the Optical Society of America B, Vol: 40, Pages: 1196-1196, ISSN: 0740-3224
<jats:p>Converted into mechanical nanoresonators after optical pulsed excitation and electron decay into coherent acoustic phonons, plasmonic nanoantennas produce a periodic modulation of their optical properties, allowing, in turn, an optical reading of these extremely small movements. In this work, we review the physics of these nanoresonators and their acoustic vibrations, whose frequencies are in the range of a few to tens of GHz. The accurate determination of their oscillation frequencies allows them to act as mechanical nanoprobes, measure local mechanical moduli of the environment, and perform high-resolution imaging using phononic reconstruction. Furthermore, the internal and external damping mechanisms that affect the quality factor of the nanoresonator and, in particular, the role of the substrate when the nanoantennas are integrated into platforms and probed individually are also reviewed. Finally, we discuss the all-optical generation of hypersonic surface acoustic waves with nanoantennas and the importance of their manipulation for potential acousto-plasmonic devices operating in the GHz range and at nanoscale.</jats:p>
Xiao X, Gillibert R, Foti A, et al., 2023, Plasmonic Polarization Rotation in SERS Spectroscopy., Nano Lett, Vol: 23, Pages: 2530-2535
Surface-enhanced Raman optical activity (SEROA) has been extensively investigated due to its ability to directly probe stereochemistry and molecular structure. However, most works have focused on the Raman optical activity (ROA) effect arising from the chirality of the molecules on isotropic surfaces. Here, we propose a strategy for achieving a similar effect: i.e., a surface-enhanced Raman polarization rotation effect arising from the coupling of optically inactive molecules with the chiral plasmonic response of metasurfaces. This effect is due to the optically active response of metallic nanostructures and their interaction with molecules, which could extend the ROA potential to inactive molecules and be used to enhance the sensibility performances of surface-enhanced Raman spectroscopy. More importantly, this technique does not suffer from the heating issue present in traditional plasmonic-enhanced ROA techniques, as it does not rely on the chirality of the molecules.
Berté R, Weber T, de Souza Menezes L, et al., 2023, Permittivity-asymmetric quasi-bound states in the continuum., Nano Letters: a journal dedicated to nanoscience and nanotechnology, Vol: 23, Pages: 2651-2658, ISSN: 1530-6984
Breaking the in-plane geometric symmetry of dielectric metasurfaces allows us to access a set of electromagnetic states termed symmetry-protected quasi-bound states in the continuum (qBICs). Here we demonstrate that qBICs can also be accessed by a symmetry breaking in the permittivity of the comprising materials. While the physical size of atoms imposes a limit on the lowest achievable geometrical asymmetry, weak permittivity modulations due to carrier doping, and electro-optical Pockels and Kerr effects, usually considered insignificant, open the possibility of infinitesimal permittivity asymmetries for on-demand, dynamically tunable resonances of extremely high quality factors. As a proof-of-principle, we probe the excitation of permittivity-asymmetric qBICs (ε-qBICs) using a prototype Si/TiO2 metasurface, in which the asymmetry in the unit cell is provided by the permittivity contrast of the materials. ε-qBICs are also numerically demonstrated in 1D gratings, where quality-factor enhancement and tailored interference phenomena of qBICs are shown via the interplay of geometrical and permittivity asymmetries.
Abdelwahab I, Tilmann B, Zhao X, et al., 2023, Highly Efficient Sum-Frequency Generation in Niobium Oxydichloride NbOCl<inf>2</inf> Nanosheets, Advanced Optical Materials, Vol: 11
Parametric infrared (IR) upconversion is a process in which low-frequency IR photons are upconverted into high-frequency ultraviolet/visible photons through a nonlinear optical process. It is of paramount importance for a wide range of security, material science, and healthcare applications. However, in general, the efficiencies of upconversion processes are typically extremely low for nanometer-scale materials due to the short penetration depth of the excitation fields. Here, parametric IR upconversion processes, including frequency doubling and sum-frequency generation, are studied in layered van der Waals NbOCl2. An upconversion efficiency of up to 0.004% is attained for the NbOCl2 nanosheets, orders of magnitude higher than previously reported values for nonlinear layered materials. The upconverted signal is sensitive to layer numbers, crystal orientation, excitation wavelength, and temperature, and it can be utilized as an optical cross-correlator for ultrashort pulse characterization.
Tirole R, Vezzoli S, Galiffi E, et al., 2023, Double-slit time diffraction at optical frequencies, NATURE PHYSICS, ISSN: 1745-2473
- Author Web Link
- Cite
- Citations: 1
Kühner L, Sortino L, Tilmann B, et al., 2023, High-Q Nanophotonics over the Full Visible Spectrum Enabled by Hexagonal Boron Nitride Metasurfaces., Adv Mater, Vol: 35
All-dielectric optical metasurfaces with high quality (Q) factors have been hampered by the lack of simultaneously lossless and high-refractive-index materials over the full visible spectrum. In fact, the use of low-refractive-index materials is unavoidable for extending the spectral coverage due to the inverse correlation between the bandgap energy (and therefore the optical losses) and the refractive index (n). However, for Mie resonant photonics, smaller refractive indices are associated with reduced Q factors and low mode volume confinement. Here, symmetry-broken quasi bound states in the continuum (qBICs) are leveraged to efficiently suppress radiation losses from the low-index (n ≈ 2) van der Waals material hexagonal boron nitride (hBN), realizing metasurfaces with high-Q resonances over the complete visible spectrum. The rational use of low- and high-refractive-index materials as resonator components is analyzed and the insights are harnessed to experimentally demonstrate sharp qBIC resonances with Q factors above 300, spanning wavelengths between 400 and 1000 nm from a single hBN flake. Moreover, the enhanced electric near fields are utilized to demonstrate second-harmonic generation with enhancement factors above 102 . These results provide a theoretical and experimental framework for the implementation of low-refractive-index materials as photonic media for metaoptics.
Kalinic B, Cesca T, Balasa IG, et al., 2023, Quasi-BIC Modes in All-Dielectric Slotted Nanoantennas for Enhanced Er3+Emission, ACS PHOTONICS, ISSN: 2330-4022
Kim J, Bürger J, Jang B, et al., 2023, 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy., Opt Express, Vol: 31, Pages: 2833-2845
Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the anti-resonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.
Ezendam S, Nan L, Violi IL, et al., 2023, Anti Stokes Thermometry of Plasmonic Nanoparticle Arrays, Advanced Optical Materials
Metallic nanoparticles possess strong photothermal responses, especially when illuminated as ensembles due to collective effects. However, accurately quantifying the temperature increase remains a significant challenge, impeding progress in several applications. Anti Stokes thermometry offers a promising solution by enabling direct and non-invasive temperature measurements of the metal without the need for labeling or prior calibration. While Anti Stokes thermometry is successfully applied to individual nanoparticles, its potential to study light-to-heat conversion with plasmonic ensembles remains unexplored. In this study, the theoretical framework and the conditions that must be fulfilled for applying Anti Stokes thermometry to ensembles of nanoparticles are discussed. Then, this technique is implemented to measure the light-induced heating of square arrays of Au nanodisks. The obtained temperature measurements are validated using wavefront microscopy, demonstrating excellent agreement between the two thermometry methods. These results showcase the extension of Anti Stokes thermometry to plasmonic ensembles, highlighting its potential for implementation in the diverse photothermal applications involving these systems.
Lin R, Chen H, Cui T, et al., 2023, Optimization of p-Type Cu<inf>2</inf>O Nanocube Photocatalysts Based on Electronic Effects, ACS Catalysis, Pages: 11352-11361
The size effect in semiconductor photocatalysis has been widely investigated but still remains elusive. Herein, employing p-type Cu2O nanocubes as the heterogeneous photocatalysts, we propose a feasible size optimization strategy to enhance the photocatalytic performance of semiconductors. With the size of Cu2O increasing from 2.5 nm (exciton Bohr radius) to 5 nm (twice the exciton Bohr radius), the corresponding calculated band gap of Cu2O decreases from 3.39 to 2.41 eV, indicating that controlling the size to above twice the exciton Bohr radius is vital for retaining the visible-light response of Cu2O. Based on the theoretical calculations and experimental measurements of the charge carrier dynamics, we found that the synthesized 30 nm Cu2O nanocubes have an electron diffusion length of 191 nm, while 229 nm Cu2O nanocubes show an electron diffusion length of 45 nm. An electron diffusion length larger than the semiconductor particle size lowers the electron-hole recombination, resulting in a visible-light CO generation rate 23.4 times higher for the smaller Cu2O nanocubes than that for the larger ones. These results verify that confining Cu2O size to within the minority carrier diffusion length and above twice the exciton Bohr radius is a promising way to enhance Cu2O photocatalytic activity.
Wang J, Weber T, Aigner A, et al., 2023, Mirror-Coupled Plasmonic Bound States in the Continuum for Tunable Perfect Absorption, Laser and Photonics Reviews, ISSN: 1863-8880
Tailoring critical light-matter coupling is a fundamental challenge of nanophotonics, impacting fields from higher harmonic generation and energy conversion to surface-enhanced spectroscopy. Plasmonic perfect absorbers (PAs), where resonant antennas couple to their mirror images in adjacent metal films, excel at obtaining different coupling regimes by tuning the antenna-film gap size. However, practical PA applications require constant gap size, making it impossible to maintain critical coupling beyond singular wavelengths. Here, a new approach for plasmonic PAs is introduced by combining mirror-coupled resonances with the unique loss engineering capabilities of plasmonic quasi-bound states in the continuum. This novel combination allows to tailor the light–matter interaction within the under-coupling, over-coupling, and critical coupling regimes using flexible tuning knobs including asymmetry parameter, dielectric gap, and geometrical scaling factor. The study demonstrates a pixelated PA metasurface with optimal absorption over a broad range of mid-infrared wavenumbers (950–2000 cm−1) using only a single gap size and applies it for multispectral surface-enhanced molecular spectroscopy. Moreover, the asymmetry parameter enables convenient adjustment of the quality factor and resonance amplitude. This concept expands the capabilities and flexibility of traditional gap-tuned PAs, opening new perspectives for miniaturized sensing platforms towards on-chip and in situ detection.
Zhang C, Huang B, Li H, et al., 2023, Plasmonic Nanoneedle Arrays with Enhanced Hot Electron Photodetection for Near-IR Imaging, Advanced Functional Materials, ISSN: 1616-301X
Hot electron photodetection based on metallic nanostructures is attracting significant attention due to its potential to overcome the limitation of the traditional semiconductor bandgap. To enable efficient hot electron photodetection for practical applications, it is necessary to achieve broadband and perfect light absorption within extremely thin plasmonic nanostructures using cost-effective fabrication techniques. In this study, an ultrahigh optical absorption (up to 97.3% in average across the spectral range of 1200−2400 nm) is demonstrated in the ultrathin plasmonic nanoneedle arrays (NNs) with thickness of 10 nm, based on an all-wet metal-assisted chemical etching process. The efficient hot electron generation, transport, and injection at the nanoscale apex of the nanoneedles facilitate the photodetector to achieve a record low noise equivalent power (NEP) of 4.4 × 10−12 W Hz−0.5 at the wavelength of 1300 nm. The hot-electron generation and injection process are elucidated through a transport model based on a Monte Carlo approach, which quantitatively matches the experimental data. The photodetector is further integrated into a light imaging system, as a demonstration of the exceptional imaging capabilities at the near-IR regime. The study presents a lithography-free, scalable, and cost-effective approach to enhance hot electron photodetection, with promising prospects for future imaging systems.
Berger LM, Barkey M, Maier SA, et al., 2023, Metallic and All-Dielectric Metasurfaces Sustaining Displacement-Mediated Bound States in the Continuum, Advanced Optical Materials
Bound states in the continuum (BICs) are localized electromagnetic modes within the continuous spectrum of radiating waves. Due to their infinite lifetimes without radiation losses, BICs are driving research directions in lasing, non-linear optical processes, and sensing. However, conventional methods for converting BICs into leaky resonances, or quasi-BICs, with high-quality factors typically rely on breaking the in-plane inversion symmetry of the metasurface and often result in resonances that are strongly dependent on the angle of the incident light, making them unsuitable for many practical applications. Here, an emerging class of BIC-driven metasurfaces is numerically analyzed and experimentally demonstrated, where the coupling to the far field is controlled by the displacement of individual resonators. In particular, both all-dielectric and metallic as well as positive and inverse displacement-mediated metasurfaces sustaining angular-robust quasi-BICs are investigated in the mid-infrared spectral region. Their optical behavior with regard to changes in the angle of incidence is investigated and experimentally shows their superior performance compared to two conventional alternatives: silicon-based tilted ellipses and cylindrical nanoholes in gold. These findings are anticipated to open exciting perspectives for bio-sensing, conformal optical devices, and photonic devices using focused light.
Liu C, Zhang S, Maier SA, et al., 2022, Disorder-Induced Topological State Transition in the Optical Skyrmion Family, PHYSICAL REVIEW LETTERS, Vol: 129, ISSN: 0031-9007
Aigner A, Tittl A, Wang J, et al., 2022, Plasmonic bound states in the continuum to tailor light-matter coupling, SCIENCE ADVANCES, Vol: 8, ISSN: 2375-2548
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.