Imperial College London

ProfessorStefanMaier

Faculty of Natural SciencesDepartment of Physics

Lee-Lucas Chair in Experimental Physics
 
 
 
//

Contact

 

+44 (0)20 7594 6063s.maier Website CV

 
 
//

Location

 

Huxley 903Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Dinter:2022:10.1021/acsphotonics.2c00800,
author = {Dinter, T and Li, C and Kuehner, L and Weber, T and Tittl, A and Maier, SA and Dawes, JM and Ren, H},
doi = {10.1021/acsphotonics.2c00800},
journal = {ACS Photonics},
pages = {3043--3051},
title = {Metasurface measuring twisted light in turbulence},
url = {http://dx.doi.org/10.1021/acsphotonics.2c00800},
volume = {9},
year = {2022}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Orbital angular momentum (OAM) of light represents an independent degree of freedom using orthogonal helical modes for optical and quantum multiplexing, offering great potential to transform future ultrahigh-bandwidth information systems. Practical OAM communication systems suffer from turbulence-induced phase distortions to the propagating beams, decreasing the orthogonality of OAM modes through introduced modal crosstalk. To date, optical systems used for measuring OAM orthogonality breakdown in different turbulence conditions are too bulky and slow (e.g., one OAM mode at a time) for any practical use. Here, we demonstrate the use of an ultrathin OAM mode-sorting metasurface for characterizing the OAM orthogonality breakdown under different turbulence conditions. Our approach allows the measurement of the whole OAM spectrum at the same time. This metasurface exhibits strong OAM selectivity with an average modal crosstalk below −42.4 dB for OAM modes with topological charges ranging from −15 to +15. Our results suggest that higher-order OAM modes are as robust as lower-order modes in particular turbulence environments, paving the way for future practical free-space OAM communications harnessing high-dimensional OAM multiplexing. We demonstrated that a flat optical device with a small form factor can be integrated with practical communication systems for compact, fast, and efficient generation and detection of twisted light.
AU - Dinter,T
AU - Li,C
AU - Kuehner,L
AU - Weber,T
AU - Tittl,A
AU - Maier,SA
AU - Dawes,JM
AU - Ren,H
DO - 10.1021/acsphotonics.2c00800
EP - 3051
PY - 2022///
SN - 2330-4022
SP - 3043
TI - Metasurface measuring twisted light in turbulence
T2 - ACS Photonics
UR - http://dx.doi.org/10.1021/acsphotonics.2c00800
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000854487400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - https://pubs.acs.org/doi/10.1021/acsphotonics.2c00800
UR - http://hdl.handle.net/10044/1/99977
VL - 9
ER -